XMM OPTICAL MONITOR

MULLARD SPACE SCIENCE LABORATORY
UNIVERSITY COLLEGE LONDON H.E.Huckle, P.J.Smith, M.C.R.Whillock

XMM-OM ICU FM SOFTWARE DETAILED DESIGN

Document: XMM-OM/MSSL/SP/0205.03

Distribution:
XMM-OM Project Office A Dibbens
ESA PX H Eggel
CsL P Rochus

S Roose
Los Alamos National Laboratory CHo
UCSB T.Sasseen
Royal Greenwich Observatory R Bingham |:|
University College London JFordham :|
Mullard Space Science Laboratory R Card

M Carter v

R Chaudery

R Hunt

H Huckle v

H Kawakami

T Kennedy v

D Sdif

P Smith v

P Thomas

M Whillock v

K Mason

A Smith
Author: Date:
OM Project Office Date:

Distributed: Date:

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3 ii

CHANGE RECORD

Issue

Date

Comments

30 Oct 1998

First Edition

5 Nov 1999

Added Mode Manager to overview diagrams.

Corrected connectivity in overview diagrams.

Corrected Summary of main s'w components table.

Added Timer A interrupt handler to component summary.

Added descriptions of

a) task priority structure

b) interrupt structure

c) exception handling and debugging

d) useof pragmas.

Added section on Timer Delay correction.

Added section on use of adaref1750a.

Corrected bootstrap variable locations

Corrected bootstrap routine locations

Changed definition of prime/redundant

Added bootstrap variables location sentence.

Removed references to SAFING package, now part of TMQ.

Additional comments added to all operational code module
descriptions.

Additional comments added to some basic mode code module
descriptions.

12 May 2000

a)
b)
0)

d)

Update for release 10 including:

Automatic Safing in the event of F/W Position Loss
Automatic selection of focus heaters as a function of filter
Prevention of transition from Safe mode without f/w in
blocked position

Prevention of HV ramp up without f/w in blocked position.

This copy printed at 11:10 AM on 12-May-00

1.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 i

TABLE OF CONTENTS

INTRODUGCTION L.ttt e oo e oo e e bt bbb ettt e ettt et e et e eeeaeeeteaaeaeaeaeesaassaaaasnnnnsnbbennbreneeeeees 8
11 PUIDOSE...... e et e e e h e a e e R e e e h e e n e e s r e n e s 8
12 o0 o OSSOSO 8
13 Definitions, Acronyms and ADDF @VISLIONS ..o e 9
14 REFEI BINCES......eoeceeec e et r et r Rt bbb R bR Rt R e et e s 10

ICU SORTWARE ...ttt ettt e e te e e e e e e e e e e e e e e s s easa s s abbabbbeebre s e e eeeeaeeas 11
21 OVENVIBIW ..ottt r e e e E e h e s8Rt 1 e e Rt e e R eae 10 e e Rt e R R e e e e R et s e r e e nne et s 11
22 M ain Software Componentsfor Basic and Operational...........ccccovvveeeiienenesesiese e e enas 12
23 PrinCiPIE M EMOIY AT EBS....c.u ettt et ettt h et r e r e b e e st ss et st ne e n e e n e aes 14
24 IR [ATo] AT TSP S TR S ST 17
25 LA U] o] K3 S TRSPRSPRP 18
2.6 ADA Exception Handling and DEDUGOINGccvuerrierieerieerieerreesiee et e eses e e 19

2.8. 1 OVEIVIBW ..ottt ettt ettt e Rt e R Rt Rt e 19

2.6.2 EXCEPLON HANAIING ...cviiiieiiiciieiee et b et n s 19

2.6.3 RESEIVEA LOCALIONSoeuierieieireeieiec ettt sttt b e ettt r e 20
2.7 [CU Delay AQJUSEMENL & ...oveeiiieese ittt e a e se e ae st st e sae s aesteseessentesteste s e ssen e neesaeseanaesenneaneesensen 21

DESIGN METHODcoiiiiiiitiiie ettt ettt e e s et et ee e s aa kbt ae e e e e e e be b et e e e e e sbe bt e e e e e aa bbb et e e e e snbnbeeeesennnnens 22

ADA OVERVIEW ...ttt ettt e et e e o1ttt e e oo s aab bt e e e e e s eaebe et e e e e s nbe b e e e e e e annbnbeeaesssnnnnns 23
4.1 BaSIC DEFTNMITIONS. ...ttt sttt e r et r et st e R R et ee Rt st eeer e bt e e en e s e nenis 23
B2 TAK SCNEAUING w..vveeoeevee et sees s sees s e ees e sssseee s ess s senssssses s eessasnes s snnsssssesssens 24
4.3 Identifier Naming CONVENTIONS........c.eiiiiiiiiree e e e e et s 24
4.4 Programming StANUAI AScceiiieere et sttt st e e e tes e e e saeseeseesae e eneesenseenenneenas 24

COMPONENTS ettt ekttt e e e e b ettt e s ek h b et e e e e e aa b b e et e e s ek a b e et e e e s eabb b e e e e e e easnbneeeeesansnrnneeeenannns 25
51 OVEIN VBV ...ttt et et et et E e R £ eeeE £ A e R e AR bR b e R bRk es Rt ne e ne bt e Rt e R bt e Rt r et r et er e 25
52 File NamiNg CONVENTIONS........ccoiiiiiirciireisree et r e se e st se et se et sr et sr e en s 25
53 COMPONENT SUMIMAIY .ttt sttt sttt ste s sbe s et besbeesee s st s sesbeesbeesbesbe e s besae e s e eaeesbeesbeabeenbesneensennsenbeeneessaens 26

ST T8 A © | o= o TSRS 26

5.3.2 DEFINITIONS. ...ttt et et Rt Rt R R e 28

5.3.3 LIDrary ROULINES.......c.oiiiirieiiiieiisici et ettt ettt r et r e bt b e bt ne et es e b er e n e s e aes 28

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 iv

6. DETAILED COMPONENT DESCRIPTION. ...cuiiiit ittt et e et s e et s e s s s e s s s e s ea s e ebaeeeraaeeen 29
6.1 () (oo 18 T A o o WSO OSSOSO 29
6.1.1 ADA Procedure and FUNCLION NOLBHIONc.uiiiieiiie ettt ettt ettt ettt e eas s e e e eeeeeeeasnneeeaneeas 29
6.1.2 ADA Task and ENtrY NOBIIONcciceieceeeieiceis et et e st ste s e se e sre e te s sestesressan e ssessensaneeseeneseeesseseensnseenens 30
6.1.3 USL Of ADA PragimalS......oeoiee ettt st et st tr e sr e s er e er e er e e et e e e s 30
6.1.3.1 ol AN = O AN I 30
6.1.3.2 FOREIGN_BODY ..ottt ettt sttt sttt bt st sesae e st b et sbeenbesbae s st es e s b e ebe e s e naeeseenreen b s se e e 30
6.1.3.3 INLIN E .ottt et e e e e st e e e e e s eas sa e e e aeee s sbbe b e e ae s s sabeeeeseesaaba e ees e sansbarees senabenesae e s sbannbas 30
6.1.34 LINKAGE NAME ... ettt st sttt s st st st e e sh e e st et e e sbeseearee s en 30
6.1.35 (O] I 111 74 TP 31
6.1.3.6 o X T 31
6.1.3.7 PRIORITY oottt ittt et eee et et et e s e st e e s abae e e st b be s e e e s abee s e shee s saabeessab e e s sbeesshbeaesshaes srnsbeesnnsneesars 31
6.1.3.8 IS 1 =!I T 31
6.1.3.9 SUPPRESS. ...ttt ettt et b e et e e s e st ee e ahbe s e sbbe s eeab e besaabe e e abee s sbes e anbee e sataeesbeeeesrbeeen 31
6.2 BOOLSII AP COUE..... ittt r et R et h et Rt h e b e eh e R et R e r e n e n s 33
B.2.1 INETOUUCTION ... oottt ettt et e et e e etee e etee e et e eseeeae e steeebeeeabeeeetee s seaeabesensssrbeeesbeesteeesenasaneans 33
6.2.2 BOOTSTRAP FUNCTIONALITY ettt et s ettt et e se e s ettt e s s sree s sate s e ssbas s e sreessaseesstbessnnbanesnsnnenans 34
6.2.3 BOOTSTRAP IMPLEMENTATIONe ittt et atae e srae s satee s st e s s e sree e sabaae s sabeserbbessansneenans 34
6.2.4 Design and IMPIEMENTALION...........eouiriirerres ettt r e bt e s r b s e r s es e s e s e e 38
S T - ' o] 1= TSRO 46
B.2.6 ROULINES. ...ttt ettt ettt et e e e et e e ate e sheaebeeeaeesabe e e s e saeenbeeessbensssnes eases e s e snneenseesantesbesensssenneesnenn 48
B.2.7 APPENDIX L.ttt ettt ettt e e e et e e e b be e e bae s aabe e eabe e e eheessbeebeaabee b ahabeenabeee e et bessebeaeean 49
6.3 BASIC COUE.. ...ttt ettt e ettt e ete e e eteeeaeeeteesaaeeabeeeaseesaeeebeeasseenseeeabeasseenseeeaeeeatesenteeaseeenneseanas 51
6.3.1 I o = et Yo ot (U TSP 53
6.3.1.1 T 6 RN 1 TP 53
6.3.2 T @ L T 55
(I RS Y <Y/ S 1 s W=V K= R 55
6.3.2.2 DCPA . 1N . BSM tretsstrreteeesairreraeeeeairareeeseassssersaeesasseeeseeansaseesteaeeeans s e eeeeeeaasa e eeeaannareeeeraansraeeeeeesanenreeeeeaeerans 56
6.3.2.3 € X I I J= 3 PN 57
6.3.2.4 L a0 = T 59

5 .3.2.5 CEC.AAD ttettiteerereesaraiassass sssasssssnssesnsessnseresssressteeesesesstnenseraestnansessssassaasassnssasnss s srs s besesareesareerrreeebeaesbeaeses 60
6.3.2.6 1S LY <L =Y R 62

L I T G 1= <Y E T S e | < PSSR 63
6.3.2.8 1 111 £ G = K 64
6.3.2.9 [0S 111 £ = G =K 1 o 65
6.3.2.10 Y =T TN 66
6.3.2.11 1K - @I ttttte et eeesereeseeetasesbeeessas e e s et ee s et beeesahae s aasae e babe e et ee e ek be e e ehae s sahbeeeaR Rt e eree s shbeee e et beesabree et e e errs 67
6.3.2.12 FS) ST Y LIRS R UPRTRRPP 69
6.3.2.13 EEC ST e TP 70
6.3.2.14 I3 0T ol 2 ol Y 1 71
6.3.2.15 EC) Y B R a =y oY)< M 72
6.3.2.16 1 CU_IMEM_ MANAGET « AOS turruunernnnernnnnrsrsmsrsarsrsnmar sttt . 74
6.3.2.17 B2 b E (1SY (B 1 F =T 1 ol Yo | o 75
6.3.2.18 S (11 0T o =B o KT 78
6.3.2.19 MNEM_MANAGEY « ACS tarunrnranrnsanrnsnnsnnnnsssnsssrssssnsssssn s e e ot 80
6.3.2.20 LTSS LT (=S 01 £ ol Lo | 81
6.3.2.21 TNEIM L OC o A S tutuuusrunsnssssnnssnsansessnssssnnsssnssssnsnsssssssssssnsssssssssssssssssssessensessssesssnssssnees oneseesesnnennessennsensneeesnnnn 83
6.3.2.22 TNOCEIMATY o« QTS wuussanasnassnnurasnnssssnsnnssnnssessessssnstsssssssssness asssssssssssssssssssssssnssssssssssssssssssssssmesssnessssssssnssrssnnnns 84
6.3.2.23 MOAEIAT . BAD +1eetereesaseissasusserass sssssssssnssssaeersareseesseesssnesseseessreesstenssnessesssssssssssssssnssssssessssessesseeessneeeenens 85
6.3.2.24 TIUE ©X oGS tuuuuurussurassarasnssnsnssnnsasnssnnssr s ssssassnsassnsssssssssnssssnssssnssssssnssssnssssssssssssssnssssnsssssssssssssssnsessnnes 86
6.3.2.25 IUE EX . OI0 t1eereieesarasssrssssssss sssssesesnssssssersssesesstesesseessesanssrenssnenssnessessssssssnssssssssssssnssssnssssssnsessnnesseeeessens 87
6.3.2.26 TITIK - GO tveeearrererassaeeenssseessseesasssessase s sas e ssassaeeas seeessbees enss e ean s e e aab e s ea eheeeehbee b ehebeenanteeeanneeeabeesenrnbennnns 88
6.3.2.27 Yo 0 e | < RPN 89

Thiscopy printed at 11:10 AM on 12-May-00

= e
(G2 B SO

10 LN o ol B L = 179

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 v
6.3.2.28 ST - L - R 90
6.3.2.29 ST S 1 TR - 91
6.3.2.30
6.3.2.31
6.3.2.32
6.3.2.33 e o T I T o T =
6.3.2.34 el o S T o PR = ¢
6.3.2.35 reset.ads ...
6.3.2.36 e ST U= = 1
6.3.2.37 LR ok I o L= TP PP 106
6.3.2.38 FE R Mo ol v S Y | o J RPN 107
6.3.2.39 Y R o U=V I TP PP 109
6.3.2.40 TR R B oY SRR PR VRS PRPRPR 110
6.3.2.41 Lo =0 S o= oY =Y = P 111
6.3.2.42 L= B S Y o A Y 1 o 112
6.3.2.43 B = 4 111D o IR Y 1 113
6.3.2.44
6.3.2.45
6.3.2.46
6.3.2.47
6.3.2.48
6.3.2.49
6.3.2.50
6.3.2.51
6.3.2.52
6.3.2.53
6.3.2.54
6.3.2.55
6.3.2.56
6.3.2.57
6.3.2.58
6.3.2.59
6.3.2.60
6.3.2.61
6.3.2.62
6.4 OPEratioNal COUE.......cuecuiectiect ettt et R et Rt Rt r et eb e se bt e bt nneee e en e
6.4.1 Main Program.
6.4.1.1 0 = o
6.4.2 D= T = L 1
6.4.2.1 3 T T U Y =
6.4.2.2 bcp4.ih.asm.
6.4.2.3 L o TN Y 1
6.4.2.4 L @ = Y 1 o T
6.4.2.5 [ST 1 L = o N
6.4.2.6 [ST 1 L RN o o N
6.4.2.7 [LS =6 =Y
6.4.2.8 [ST 4= G = @ o e
6.4.2.9 detanalog.ads
6.4.2.10 et anal Og . A0 ittt 164
6.4.2.11 detdigital.ads.. .170
6.4.2.12 AET AL GLEAL . BAD ttuttesrrreiireessiseeseaseeesisresssseessassessassasessssssesassessastesssasessssnssessassesssasessssssssesssseesssenenn 173
6.4.2
6.4.2
6.4.2.
6.4.2

-
(o))

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design

A Oy O OO0 O OO0 OO0 OO0 OO O OO0 OO0 OO0 OO0 O OO0 OO0 OO0 OO0 O OO0 OO0 OO0 OO O O OO0 OO0 OO0 O O OO0 OO0 OO OO O OO0 OO0 OO0 OO O OO0 OO0 OO0 OO0 O OO0 OO0 OO0 OO O OO0 OO0 OO0 O O

L e T S T T = S e e T T S S e e s T S T e I L T = e e e T~ T S

N DD NN DNDDNDDNDNDDNDDNDNDDNDDNDNDDNDDNDDNDNDDNDDNDDNDDNDDNDDNDNDNDDNDNDNDNDDNDDNDNDNDDNDDNDDNDNDDNDDNDNDDNDNDDNDDNDNDDNDDNDDNDDNDDNDDNDDNDNDN

.17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50
.51
.52
.53
.54
.55
.56
.57
.58
.59
.60
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
.71
.72

XMM OM/MSSL/SP/0205.3 vi

[1S 115 4 (1 F= 0 = £ ol o 1 e 191
[0 S T 103 T 1L T Lo = 193
heater.ads
heater.adb ...

) @ o ol I ol Lo = 208
1N @ o T B AVl o i o 209
1CU_MEM_ MANAGET « @OS tarararanarensrarsnsransrasnmsmamernssmsmsmemnssss st 211
B 2B B (LS (B (= 1= T 1 Yo | o 212
I (1) ST o =0 o KT 215
TNTVEC . GSIM 4 uuteeesuseresunseeesuseessassesasassesaassseesassessaasssssasssssanssessansesssasssssassesesssessssseesassesanssesssansesssnsees 217
LTS @l o = 0 = ¢ A= Y = 219
LTSY @ o F= o) 1R | 222
LTSS L (TS 0 £ ol Lo = 230
LSS L (= 0T 1 ol Lo | o T 231
113 1116 o N Lo =

LT 1116 N = o o

memloc.ads ...

modeman.ads
LT L 1= 0T Y | o 239
R Q= Y

mutex.adb ...

ST A Y

peek_poke.ads.
F SIS TS ST)TN =

el o S T o PR Y =
el o e T o YR = ¢ PP
AT o =
A S I 4
science_fm.
science_fm.
ssi_driver.
ssi_driver.
ssi_ih.ads
ssi_ih.asm...
ssi_in.ads
ssi_in.adb
ssi_out.ads

ssi_out.adb

L= B T = T B A Y 278
L= B S Y oo A Y 1 o 280
L= B0 11T o NN L 282
LU =014 415 = L 1 o 283
L @ = Y 289
L @ e = Y 1 291
O B = L 293
o B = L | o P 295
L e Y 297
L @ Y | o 298

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design

O Oy O O OO0 OO0 OO0 O O OO0 OO OO0 O O

B R N e e S L

NN DD DD D DNDNDDNDDNDDND N NN

.73
.74
.75
.76
L7
.78
.79
.80
.81
.82
.83
.84
.85
.86

LS 1 TSN 117 o U=

oS (T 1= 5 0 U= K 1 o

timer_a_ih.ads

timer_a_ih.adb

58 111 G = Y

00 (1] 11 = o o P

XMM OM/MSSL/SP/0205.3 vii

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 8

1. INTRODUCTION

1.1 Purpose

This document spedfies the detailed design of the software cntained within the Flight Model (FM) of the
Instrument Control Unit (ICU) of the Opticd Monitor (OM) instrument onboard the ESA spacecaft XMM (X-
ray, Multi-Mirror) misgon.

It's purposeisto provide an understanding of the basic design of the software, and show that it is cgpable of
meding the requirements st out in the Software Requirements Document RD XMM -OM/MSS./SP/002401.

The intended readership isincludes :-

1. Thetedhnicd development team for this software, in order to aid clarification of the software structure and
show top level compliancewith the requirements.

2. Other OM team members, including Pl, projed manager, system enginees, software management, PA, test
managers, EGSE & operations personrel, COI's, and athers to whom requirements, schedul e, interfaces,
and quality are relevant.

3. ESA, asthey will assume responsibility for operating and supporting the software from about 6 months
after launch up to the end of the misson (perhaps 10 yeas).

4. Anyone dsewho isinterested, including other XMM experimenters & users.

1.2 Scope

The scope of this document is limited to a detailed description of the ICU onboard software ssciated with the
OM instrument. The ICU is primarily concerned with providing overall system control, spacecaft interfacedata
handing, and instrument monitoring.

It does not include OM onboard DPU software. The DPU software is primarily responsible for the scientific data
colledion, processng and forwarding to the ICU.

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 9

1.3 Definitions, Acronyms and Abbreviations

CCD Charge Coupled Device (detector)
CONFIG CONFIGuration

DBI Digital Bus Interface (between OM & spacecraft)
DBU Digital Bus Unit

DDD Detailed Design Document

DEM Digital Electronics Module

DMA Direct Memory Access

DPU Digital Processing Unit

DSP Digital Signal Processor

EGSE Electrical Ground Support Equipment
EOB Electro-Optical Breadboard (development phase)
EPIC European Photon Imaging Camera
ESA European Space Agency

FIFO First-In First-Out (queue)

FOoV Field Of View

HK Housekeeping (data/information)

ICB Instrument Control Bus

ICU Instrument Control Unit

1/10 I nput-Output

MACSbus Modular Attitude Control System bus
NHK Non-periodic Housekeeping

OBDH On-Board Data Handling (system)
oM Optical Monitor (instrument)

PSU Power Supply Unit

RAM Random Access Memory

RBI Remote Bus Interface (from OM to spacecraft)
RGS Reflection Grating Spectrometer
ROM Read Only Memory

SC Spacecraft

SIW Software

SSl Serial Synchronous Interface

TBA To Be Added

TBC To Be Confirmed

TBD To Be Defined

TC Telecommand queue

™ Telescope Module

™ TeleMetry queue

TMPSU Telescope Module Power Supply Unit
uv Ultra-Violet

XMM X-ray Multi-Mirror Instrument

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 10
1.4 References
Ref - 1. MSSL XMM-OM User Requirements Specification, XMM-OM/MSSL/SP/0030.01
Ref - 2. MSSL XMM-OM On-Board Software Requirements, XMM-OM/MSSL/SP/0024.01
Ref - 3. ESA XMM EID Part-A, RS-PX-0016
Ref - 4. ESA XMM EID Part-B, RS-PX-0018
Ref - 5. ESA XMM EID Part-C, RS-PX-0024
Ref - 6. OBDH System RS-PX-0015
Ref - 7. Packet Structure Definition RS-PX-0032

Ref - 8. XMM-OM ICU S/W Architectural Design
Ref - 9. XMM-OM ADA Coding Standard

XMM-OM/MSSL/SP/0059
XMM-OM/MSSL/SP/0008

Ref - 10. XMM-OM ICU EGSE and S'W Development. Environment XMM-OM/M SSL/SP/0025

Ref - 11. XMM-OM User Manual (EM)

XMM-OM/MSSL/SP/0005

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 11

2. ICU Software

2.1 Overview

The overall instrument function is provided by the instrument controller. Its main software functions are as
follows:-

e Configuring the instrument.

* Monitoring for breakdown/failure conditions (and safing if required).

e Controlling and monitoring status of, the detector, the telescope power supply and the DPU
* Incorporating new or modified code modules for itself or the DPU

* Caollecting and telemetering. instrument housekeeping and engineering packets.

* Accepting, reformatting into packets and telemetering science data from the DPU

* Interfacing with the OBDH for data and commands.

e Monitoring and controlling the thermal environment.

The ICU software consists of 3 programs :-

BOOTSTRAP This resides in ROM and is copied into RAM for execution. It is responsible for bringing up
the ICU in a known safe state after turn on or spacecraft initiated reset, from either a cold or
warm start. It also copies the basic state software from ROM to RAM.

BASIC Thisresidesin ROM and is copied into RAM for execution. Basic will be responsible for loading
the uplinked ICU operational mode code into RAM, housekeeping and basic thermal control.

OPERATIONAL Thisisuplinked and will residein RAM. Operational provides the full functionality of the ICU. It
also alows up-linking of the DPU DPUOS code to provide full OM

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3 12

2.2 Main Software Components for Basic and Operational.

The diagrams overled illustrate the control and data flows between the main software components for both

basic end operational code. A brief explanation of ead component isalso gven. These two modes are many
components. Their similarities and diff erences are summarised below, together with the type of telecommands
(and Task Identifier - TID - if appropriate) they service

Component Type TID Function in Basic Function in Operational
of TC (HEX)
DEMPSU 5 80 ¢ Resets DEMPSU Latchup * Resets DEMPSU Latchup
e Turns-on DPU if Off » Turns-on DPU if Off
DETECTOR 5 100 18 ABSENT » Control and monitor detedor.
DPU 5 A40 A6 | ABSENT * UsesSS to communicae with the DPU.
CONTROLLER Configure and control DPU modes.
Control Science and Engineeing data
flow from DPU and sendto TM QUEUE.
Monitors DPU heatbeats
Turns off DPU
HK 5 DO Colled and passHK padkets Colled and passHK padketsto the TM
to the TM QUEUE that QUEUE for the whole OM.
monitor only the TMPSU and
DPU heatbeds.
ICB 5 41 Controls dataflow to/from the Controls dataflow to/from the instrument
instrument subsystems using subsystems using the ICB interface
the ICB interface
MECHANISMS 5 60, 65 ABSENT Control & monitor mechanisms (filter
wheels, dichroic).
MEMORY 6 - Suppats memory uplink and Suppats memory uplink and davnlink
MANAGER downlink and memory for the DPU only.
chedksum cdculationsfor the
ICU only
MODE 5 - Implements mode change Implements mode change reguests from
MANAGER request to Safe spacecaft
RBI 510 50 Provides routines to suppart Provides routines to suppart the RBI chip
the RBI chip Handle gpropriate interruptsto the TC
Handle gpropriate interrupts and TM queues and time.
to the TC and TM queues and Supply Watchdog Fadlity
time.
Suppy Watchdog Fadlity
SS seeDPU | - Monitors DPU heatbeats and Passes control and datainfo to the DPU

sends the count and DPU
status to the HK.

using the SSl interface
Obtains info from the DPU using the SS
interface.

Continued on rext page...

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3 13

Component Type TID Function in Basic Function in Operational
of TC (HEX)

TASK 5 Implements the task * Implements the task

MANAGER management padket requests management padet requests

TC PROCESS All Obtains telecommand » Obtains telecmmmand padkets
padets from the from the telecmmand queue.
telecommand qeue. * Verifies, adknowledges and
Verifies, adknowledges and routes telecommand padkets -
routes telecommand padkets the ‘main’ program
- the ‘main’ program

THERMAL 5 66,67 Enables or disables Main * Provide full thermal control
and Forward Heders
simultaneoudly.

TIME 10 - Implements the Time e Implementsthe Time

MANAGER management padket requests management padket requests
(verificationand (verificationand
synchronisation). synchronisation).
Provide time stamps for » Provide time stamps for
padets. padets.

TEMEMETRY 9 - Enables/Disables padkets * Enables/Disables padkets

MANAGER defined by their SID’S defined by their SID’S

TM QUEUE Suppies - Provide aility to control e Provide aility to control and

™ and qLeue telemetry padets gueue telemetry padkets for

for downlink. downlink.

e Initiates Safing of HV if TM
queue remains full for > 5 mins

This copy printed at 11:10 AM on 12-May-00

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 14

2.3 Principle Memory Areas

Code Address Description
(hex)
Start End
0 3FF Bootstrap
400 3FFF Basic Mode
3800 FFFF Operational Mode
Data Address Description
(hex)
Start End
2Cc7 2D4 Bootstrap Deduced ICU Status
2F1 313 Bootstrap Filter Wheel Acceleration Table
3F2 3FD Memory Loading Work Area
400 403 RBI Communications Area (CCA)
404 SF3 TC Queue
5F4 9FF TM Queue
AQ0 AQA RBI Code Work Area
AOB AOB SSI Code Work Area
FCO FCF DEBUG Area
1000 1B55 Basic Mode Operands
1C00 4A10 Operational Mode Operands
23104 23DB Focus Heater Settings as function of Filter Wheel
E900 FDOO Main Program Stack
FDO1 FFFF Interrupt Stack

This copy printed at 11:10 AM on 12-May-00

« D e t——A > s P—) _Hv

oju) BujwiL qﬂ_mouﬂm_oo \u_,“%m_wo e1eq 18410 co_\%_“_mhg SMH ‘Buz/e0ualos
; ﬁ‘ HIOVNVYIN
N aNIL]
NSdINL _
IVANYIHL | — — — — — - I
g0l @ |e-—-—- SWSINVHOIN [« ————~ | ,— [+— =% ss3o0ud oL
¥010313a [_ _ _
- $19||043U0D ||) | | I
e Bl I O
————rt- b S
_ | y
I I
HIOVYNVYIN
—_ <
L | YIDVYNVYIN
J “) AHONIN
N |
HIOVNVYIN AL ﬂ
JA0W -

ISS Inand W1

NSdN3d ;’| -

MIIANGIAO M/S 2ISVE NI NO-ININX

ST £'6020/dS/TSSIN/INO ININX ubsa@ pa|erdaemyos A4 NI

« D e A o s —) ﬂHHv

oju BuwiL eea 042402 e1eq 18I0 uolresLliaA AH ‘uzjeouaios

® |043U0D /puBRWWOD IMHN
YIOVNVYW
N JNIL)
NSdNL — e - _
TVWYIHL e — — — — — ~ | |
401 je-—-—- SWSINVHOIN ¢ ————~ | | ¢~ [t — =~ S53008d 0L
¥012313a - _ " _ _
- $19||0U0D > T dIOVNYW | 4 | I
L MSVL | | '
_ J | _____
_ N v
RN YIOVNVYI A
7 W1 o
ql_lj HIOVNYIN
_ AYMOWAN
N~
YIOVNYN [«
JA0OW J -\ !
ap— p———

<«
d371041NOD .
ISS nda ¢

anand WL

.

L
-
—
Uy

MIIANGIAO M/S TVNOILVYHId0 NII NO-ININX

91 £'6020/dS/TSSIN/INO ININX ubsa@ pa|erdaemyos A4 NI

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 17

2.4 Task Priorities

ADA tasks are dlocaed to adions that are exeauted in parallel with other adions. In order to ensure that the
behaviour of tasks is a deterministic as possble, their prioriti es (defined in the padage IMPORTANCE) are dl ocated
in bands as foll ows:

Task Type Priority Band
H/W Simulators (for debuggng) 191->200
RBI Watchdog reset 190

S/'W Watchdogs 171->189
"Semaphore" Tasks 131->140

"Monitor Tasks' (e.g. DPU, TC) | 111->130

"Working Tasks" e.g. HK, Blue 011->110

"Idle" Tasks (default) 010

The tasks, and the padkages that contain them, are asfollows:

Task Package Basic Operational
HV_PROCESS DETANALOG - Yes
LOAD CENTROID TABLE TASK?® DETDIGITAL - Yes
LOAD WINDOW TABLE TASK TYPE’ DETDIGITAL - Yes
HEARTBEAT WATCHDOG’ DPU - Yes
DATA MANAGER® DPU - Yes
CONTROL’ HEATER - Yes
PROCESS’ HK Yes Yes
GUARDED' ICB Yes -
TCPROC® ICU (the main program) Yes Yes
MEMORY DUMP* ICU MEM_MANAGER Yes Yes
MECH™ MECHANISM - Yes
SAFING TASK™ MODEMAN - Yes
SEMAPHORE"® MUTEX Yes Yes
WATCHDOG" RBI Yes Yes
BCP4" TIME MAN Yes Yes
GUARDED' TMQ Yes -
Notes.

1. Inoperationa code, the function of thistask (to perform controlled accessto aresource) is provided by the
SEMAPHORE task in package MUTEX..

2. Rampsthe HV voltages up and down.

3. Loadsthe Blue Eledronics centroid look-up table.

4. Loadsthe Blue Eledronics window table.

5. Monitorsthe DPU heatbeds and isaues alerts in there dsence

6. Monitorsand processes all output from the DPU.

7. Monitors and controls the telescope module hegers.

8. Acquires Housekeeping.

9. Monitorsthe Telecommand stream.

10. Performs memory load and dumps.

11. Controls the medchanisms.

12. “Safe”sthe instrument (HV down, filter whed to blocked).

13. Provides emulation of a mutex type semaphore.

14. Controlsthe RBI watchdog fadlity.

15. Processes BCP4 interrupts.

ICU FM Software Detail ed Design

2.5 Interrupts
Theinterrupts for the ICU is as foll ows:-

XMM OM/MS4./SP/02053

18

Number Description
0 Power Down (cannot be masked or disabled)*
1 Machine Error (cannot be disabled)
2 Spare
3 Floating Point Overflow
4 Fixed Point Overflow
5 Exeautive Call (cannot be masked or disabled)
6 Floating Point Underflow
7 Timer A*
8 BCP4
9 Timer B®
10 sg®
11 Spare
12 [nput/Output Level 1
13 Instruction to User/RBI/LOSSN?
14 [nput/Output Level 2
15 Spare
Notes.
1. Interrupt Number O hasthe highest priority. Priority deaeases with increasing interrupt number.

2. All Interrupts are & per the 1750standard except 8, 10and 13 These ‘spare’ interrupts that have been all ocated as

above for the ICU.

3. Used by the Tartan Kernel to derivetimesfor e.g. the delay fadlity — however, seesedion entitled “ICU Delay

Adjustment”.

4. Used by the ICU codeto produce aseries of pulsesto control the speed of the mecdhanisms (filter whed and

dichroic).

(Thefollowingis a summary of sedion 8.5.5.4 o the Tartan Compil ation System Manual). There ae five mnfigurable
interrupt masks that control the behaviour of the runtimes with resped to interrupts. They are defined in the linker
control filet1ink17.1cf. The purpose of ead mask is as foll ows:

ART_MASK

Used when exeautive spaceruntime mde is exeaiting

ARTELAB_MASK

Used when exeautive spacemain program is being elaborated

ARTTASK_MASK

Used when exeautive main program or user tasks are exeauting

PREEMPTER_MASK

Blocks all i nterrupts that might cause task pre-emption

CONNECT_MASK

Determinesif atask entry may be diredly conneded to a particular hardware interrupt

For both basic and operational code, the interrupts are enabled as follows:

MASK Value Interrupt (1 = ENABLED)

(thex)] 0| 1|2 |3]|4|5|6|7]8|9|10|11]12|13|14]15
ART_MASK pse4 [1 |12 -2l -T2l-12lalalal-1-12]-1-
ARTELAB_MASK pp4o0 [12 |2 -2l a2l -T2l -T2l -1-T1-1-1-71-
ARTTASK_MASK pbE4 [1 |12 - 2al2l a2l -T2l -T1T-1-1-7-
PREEMPTOR_MASK [Dcoo [1 [12 [- [2122 -T7T-1-1-1-1T-1-1-171-7-
CONNECT_MASK otoo | -1 -1 -1-1-1T-"T7T-TaVv-1-1-1-1-71-71T-T1-

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 19

2.6 ADA Exception Handling and Debugging

2.6.1 Overview

The padkage DEBUG provides a number of fadliti es which can be helpful in the event of an urexpeded ADA
exception or ‘hang' of the cde. In addition, a series of fixed memory locations (defined in padkage MEMLOC) are
provided in which debuggng information may be written. A combination of the two will usually indicéte the problem
areaof the mde.

2.6.2 Exception Handling

In the event of an ADA exception

1) a mde of theform ‘Offset Code’ + ‘Exception Type' iswritten to the reserved location FCO (hex) — seenext
sedion. Thisisdone using the procedure EXCEPTION_REPORT in padkage DEBUG. The ‘ Off set Code’
indicaes the padage in which the exception occurred. The ‘ Exception Type' indicaes which ADA exception
occurred

2) A non-periodic engineaing exception padet isissied containing two parameters. The first parameter contains an
‘Exception Code’ indicating which subsystem issued the exception. The second parameter is of the form ‘ Off set
Code’ + ‘Code Region’. The ‘Off set Code’ indicates which padage was exeauting just prior to the exception.
The ‘Code Region’ indicaes within which region of padage ade the exception occurred. This ssoond parameter
is contained within reserved location FIRST _PROGRESS (seenext sedion) of padkage DEBUG. Its contents are
set up using cdlsto procedure PROGRESSIin padkage DEBUG.

The Off set Codes (defined in padkage DEBUG) are & foll ows:

Package O fset Codes
Nare Basi ¢ Qper ati onal
ICU 1000 2000
CRC 1100 2100
DEMPSU 1200 2200
HK 1300 2300
MODEMAN 1400 2400
NHK 1500 2500
RBI 1600 2600
TASK_REPORT 1700 2700
TASKMAN 1800 2800
TC_OQO 1900 2900
TC_VERIFY 1200 2200
TCQ 1B0OO 2B00
ICU_MEM_MANAGER 1C00 2C00
ICB 1CBO 2CBO0
ICB_DRIVER 1CBD 2CBD
™_0Q 1D00 2D00
TMPSU 1E00 2E00
T™Q 1F00 2F00
MECHANTSM — 4000
DETDIGITAL — 4100
TIME_MAN 3200 4200
MUTEX 3400 4400
HEATER — 4500
MEM_MANAGER 3C00 4C00
SSI_DRIVER 5500 6500
SSI_IN 5600 6600
SSI_OUT — 6700
SCIENCE_FM — 6800
DPU - e000
DPU_MEM_MANAGER — e100
DETANALOG — E300
MEMDPU — E400
TM_MAN 3500 E500

ICU FM Software Detailed Design

The exception types are as follows:

ADA Exception

Exception Type

Constraint Error

Program Error

Storage Error

Tasking Error

AIWIN|FL|O

Other

XMM OM/MSSL/SP/0205.3

20

The exception codes are detailed in the telecommand and telemetry section of the User Manual (section 3.4.2 of

XMM-OM/MSSL/ML/0010).

2.6.3 Reserved L ocations

The package MEMLOC defines the following reserved locations for debugging purposes.

L ocation Description Notes Address

FIRST PROGRESS address See exception handling above 16#FC1#;
LAST_PROGRESS address See section on debug . adb for description 16#FC3#;
FIRST _EXCEPTION address See exception handling above 16#FCO#;
LAST_EXCEPTION address See section on debug . adb for description 16#FC24#;
SSI ERROR COUNT address SSI Error Counter 16#FCA#;
SSI IN BUF PTR address Pointer to next free location in SSI input buffer 16#FC5#;
SSI_ HEARTBEAT_COUNT address SS| Heartbeat Counter 16#FC5H#;
SSI INT_COUNT address SSI Interrupt Counter 16#FC6#;
BCP4 INT_COUNTER address BCP4 Interrupt Counter 16#FCT#;
RBI_INT_COUNTER address RBI Interrupt Counter 16#FC8#;
PROGRESS SPECIAL address 16#FCO#;
PROGRESS SPECIAL?2 address 16#FCA#,
PROGRESS SPECIAL 3 address Used as required to hold 16#FCB#;
PROGRESS SPECIAL4 address additional debug information 16#FCCH,
PROGRESS SPECIALS address 16#FCD#,
PROGRESS SPECIAL6 address 16#FCEH#,
PROGRESS SPECIAL7 address 16#FCF#;

The following are reserved areas for counters for use by the named task (see section 2.4).

L ocation Description Address

LOAD_CENTROID_TABLE TASK_COUNTER address 16#FDO#;
LOAD_WINDOW_TABLE_TASK_COUNTER address 16#FD1#;
HEARTBEAT WATCHDOG_TASK_COUNTER address 16#FD2#;
DATA_MANAGER_TASK_COUNTER address 16#FD3#;
DPU_MEMORY_DUMP_TASK_COUNTER address 16#FD4#;
CONTROL_TASK_COUNTER address 16#FD5#;
PROCESS TASK_COUNTER address 16#FD6#;
TCQ_TASK_COUNTER address 16#FD7#;
ICU MEMORY_DUMP_TASK_COUNTER address 16#FD8#;
MECH_TASK_COUNTER address 16#FD9%;
ICU_TASK_COUNTER address 16#FDAH;
WATCHDOG_TASK_COUNTER address 16#FDB#,
PROT_TASK_COUNTER address 16#FDCH,
BCP4_TASK_COUNTER address 16#FDD#;
TC Q TASK_COUNTER address 16#FDE#;
TIMER_A_TASK_COUNTER address 16#FDF#,

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 21

The following are reserved as code location indicators for the named task (see section 2.4).

L ocation Description Address

LOAD_CENTROID_TABLE TASK_PROGRESS address 16#FEO#;
LOAD_WINDOW_TABLE_TASK_PROGRESS address 16#FE1#;
HEARTBEAT WATCHDOG_TASK_PROGRESS address 16#FE24#;
DATA_MANAGER_TASK_PROGRESS address 16#FE3#;
DPU_MEMORY_DUMP_TASK_PROGRESS address 16#FEA#;
CONTROL_TASK_PROGRESS address 16#FES#;
PROCESS TASK_PROGRESS address 16#FE6H;
TCQ_TASK_PROGRESS address 16#FET#;
ICU_ MEMORY_DUMP_TASK_PROGRESS address 16#FE8H;
MECH_TASK_PROGRESS address 16#FE9#;
ICU_TASK_PROGRESS address 164#FEA¥H;
WATCHDOG_TASK_PROGRESS address 16#FEB#,
PROT_TASK_PROGRESS address 16#FECH,
BCP4_TASK_PROGRESS address 164#FED#;
TC Q TASK_PROGRESS address 164#FEE#;
TIMER_A_TASK_PROGRESS address 16#FEFH;

2.7 ICU Delay Adjustment :

The standard 31750 processor specification requires atimer B clock of 100 khz. However, for the RGS and OM (same
processors design), a 62.5 khz clock is used. Asthistimer is used to control any requested delays, thiswill produce an
error factor of 0.625 in the del ay statements. For example adelay of 1 second will produce an actual delay of (1/0.625
second). In the mgjority of cases, this does not matter as the delay is used for tasks de-scheduling. However in other
cases (such asthe HK timer - default to 10 seconds), a correction factor of 0.625 is applied to get an accurate delay. For
example amore accurate 10 second delay can be achieved as follows :

TIME_CORRECTION = 0.625

delay (10.0 * TIME_CORRECTION) .

However, for the OM code, the Tartan run time library (madart . t1ib) was modified so that the above correctionis
automatically applied by modifying the handling of Timer B interrupts.

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 22

3. Design Method

The design methoddogy is “objed-based”, i.e. most modules in the system denote an objed identified in the system
(e.g. ‘red’ objeds such asthe detedor, or ‘soft’ objeds such as an on-board telemetry manager). These objeds were
then implemented in the ADA language.

By objed, we mean an entity that has
1. adtate(i.e avalue or vaues)
2. adionsit suffersor can apply to ather objeds

It isrecognised that it is not posdble to have aperfect knowledge of a software problem at the start, i.e. the growth of
understandingis an iterative one. It istherefore asaumed that previously unrecognised problemswill be found as the
projed proceels. However, sincethe design corresponds to the ‘red world', it is hoped that the resultant changes will
not radicdly affed the design. Instead, they will only impad those modules associated with the d#feded oljeds. Thisis
also agood system in situations where important sub-systems require ealy development, and where some dements are
not well known ealy on.

Therefore, the steps used are & foll ows:

e ldentify the objeds and their attributes.

» ldentify the operations that affed ead objed and the operations that ead objed must initi ate.
« Establish the visihility of ead objed inrelation to ather objeds.

» Establish theinterfaceof ead objed.

e Implement ead objed.

There ae dso anumber of moduleswhich are of a‘library’ nature - i.e. they provide mnstants, definitions and
routines of a general nature with no spedfic objed in mind.

The designaim is that modules are implemented as ADA padkages. However, when speed of exeadtionisa
reguirement, the language of choiceis 1750Assmbler.

We have dso been guded by ESA PSS05 software engineaing standards, though some diff erences arise becaise of
the small i n-house software team (2-3 people) involved in this projed and the prioriti sed nature of the work required.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 23

4. ADA Overview

4.1 Basic Definitions

A full description of the ADA language is beyond the scope of this document, but the following summary of some
ADA features may be useful in understanding the descriptions in the following sections.

Program Units- An ADA program is composed of one or more program units. It is standard OM practice to compile
these separately. Program Units consist of Subprograms, Task, Packages and Generic Units. All ADA program units
have a similar two part structure, consisting of a Specification and aBody. These are also compiled separately
Specifications identify the information visible to aclient (i.e. the caller) of that program unit.

Bodies contain the implementation details and will be hidden from the client.

Subpr ograms are either Procedures or Functions and express a sequential action. A function isthe same asa
procedure, except that its primary purpose isto return a calculated value. (A Main Program isaspecial case of a
Subprogram that is called directly when the code starts running. It can also be regarded as a separately running task)
Tasks defines an action that is executed in parallel with other tasks.

Packages are a collection of computational resources, encapsulating data types or instances thereof, subprograms,
tasks or other packages.

Generic Units are templates for subprograms and packages and serve as the primary mechanism for building reusable
software components.

The following table summarises the above characteristics and, additionally, lists the applications for each.

Program Characteristic Applications
Unit
Subprogram Sequential Action Main Program Unit

Definition of Functional Control
Definition of Type Operations

Package Collection of Resources Named Collection of Declarations
Groups of Related Program Units
Abstract Data Type

Abstract State Machines

Objects

Task Parallel Action Concurrent Actions
Routing Messages
Controlling Resources
Interrupts

Generic Unit Template Reusable S'W Components

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 24

4.2 Task Scheduling

At agiven time during the execution of an ADA program, there are a set of tasks that are eligible for execution. The
process of choosing a subset of tasks to actually run is called scheduling. The code uses the Tartan implementation of
this process.

Scheduling has two parts:

1. Scheduler
2. Dispatcher

The scheduler isresponsible for:

» adding atask to the set of executable tasks
* removing atask from the set of executable tasks
» sdlecting atask from the set to be the next task executed

The scheduler isimplemented as a strictly priority ordered queue. The task with the highest priority is selected for
execution. New tasks are inserted after tasks of equal priority within priority levels.

When the dispatcher isinvoked, it causes the currently executing task to be suspended and replaced by the next task
selected by the scheduler. If the current task is also the task selected to be the next by the scheduler, no change occurs.

The dispatcher is invoked whenever an ADA tasking or delay operation causes execution of the current task to be
blocked, or when a high priority task becomes ready (for instance, by the expiration of adelay) and pre-empts a
task with lower priority. This method of pre-emptive scheduling minimises the amount of time a high-priority task
must wait for execution after adelay operation.

4.3 Identifier Naming Conventions

In common with standard ADA coding practice, lower case lettersindicate reserved words, UPPER CASE letters
indicate identifiers.

4.4 Programming Standards
Ref - 9 defines the ADA coding standards used in the project.

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 25

5. Components

5.1 Overview
The mmponents are grouped into the foll owing categories:

Main Program.

Spedficaions and bodes of Named ‘objeds'.

Spedficaions and bodes of Libraries of Related Routines that do not form an objed (e.g. amathslibrary).
Spedficaions of General Definitions e.g. Types and Constants.

Miscdlaneous

ghrwpnpE

5.2 File Naming Conventions

fil enanme.ada - afile ontaininga' main' program

filename.ads - afile containingan ADA spedfication

filename.adb - afile cntainingan ADA body

fil enanme.adp - afile containing both ADA spedfication and body
filename.asm - afile containing MS3. written 31750assembler code
filename. ASM - afile mntaining Tartan supplied, MSS_ modified, asembler code
filenane.ad[sb] -refersto bahfi | ename.ads andfi |l ename.adb

Thef i | ename for aspedficaion (. ads) isthe same & the crresponding padage body (. adb) name.

fi | enane isaways the name of the padage spedficaion and/or body or main program included in thefile.

BS 9yl o0 pueluwod Ndd e spuss

[gs]pe-qno” Tss

B5S B0 JUsS %00|g eep Ndd S1IoNJIsuo)

[gs]pe uT_Iss

wse - yT1 ISS BS
sidnueul BS a|puey 01 SaulNoy spe*yr 1SS
O/1 BS 10 1ed 1dn1s1ul Uou 8|puUey 0} SBUINOY [ds]pe-I2ATIP TSS
wse " yr Tqx
dniel | gy 8fpuey 01 auinoy spe YT 1qd
suonouny 194 UsALIp idnussjui-uou wioied 01saunnoy [gs]pe- Tgx g4
wse- -yt pdog
1dnue! 4049 9|puey 0} ssulinoy spe YT ydoq
arenb N1 ul 1oed pue xped srudoidde spnisuod ‘((zsbeuew wsw ndp Jo ped) sdwnp Alowsw Ndg Sideaelu| [gs]pe - ndpwau
use *oyod yoad
'SopOoW AJoWwBW SNOLIA Ul SSSaJpe Sauiwexd spe - oayod yoad
aunnosarldoidde |po pue xped wewebeuew Alowsw sp.ideu| [gs]pe- Iobeurw waw HIADVYNVYIN
dwnp pue peo| Alowew ND| wioed 01Saulnoy| [qs]pe: zebeueu wsw NOT AHONIIN
dwnp pue peo| Alowew Ndg wopad 01seunnoy| [gs]pe - zebeueu wauw ndp
's1dnuieiul W JBwWil 8|puUey 01 SaUINOY [ds]pe-yT e IauT?]
'shuies Jeray 1senbal pue ‘pueLuuod Bulfes arss| ued ‘010Jydip pue paym 1|13yl [0411U0d 01 3p0)D [gs]pe-wstueyossw| SINSINVHOIIN
adeBIUI gD 8yl uo O/ wioysad 01Saunnol syl sepinoid [ds]pe-IaATIP goT
*ISATIP OO T UISP@ 3dBLBIUI gD |8yl 01SHIJE S|0U0D [gs]pe-goT a0l
'anenb |\ L 8y} 01 }nsa. spuss pue 1oped HH 8} S1oNJISu0d ‘Swell MH suriqo [ds]pe-" 3y MH
SUO luljsp dluoWLU N Ndd Sepinoid spe owsuw ndp| Y3 TT0OH4INOD
‘Ndd 8y} WoJ} eep SOASI3. pue SPUBLLILIOD SPUaS [gs]pe ndp Nndd
SaUNOJ JOPaRP [J0Jade Bl 8jPUS SAPIN0Id spe*10310233p
SO1UOJPa P JOPAJEP BY} JO SuoRUN} [eIBIP BY) JO}UOW pUe [0JIUOD 0} SBUNNOY spe-1e3TbIpISP d4010313a
‘pUELILLIOD Bu1fes arss| Ued ‘SoluoJpap Jopalep auy} Jo suonouny Bofete ayl Jouuow pue [041Uod 0} Ssulinoy [gs]pe-boTeueisp
NSdINZ A 8y} [0.3U0d 0] SSUlINoY [gs]pe nsdusp NSdIN3A
uondiioseg (s)awreus|i4 Jo 1sISU0D palqo

"Jussa.d s1 pafjo pauwreu ay) Teyl ‘8sInod Jo ‘papincid spm spow
feuoieledo pue diseq Uioq Joj pleASIa[gelsIy L ol 01 dew, ‘91128 UBAIG swelifelp MaIAIBAO 3} Lo pardIpUl se 'spalqo ms fedioulid 8y moy sedipul 8(gel Buimo |04 ay L

9¢ £5020/dS/BSIN/INO ININX

spalgo T1°¢'S

Arewwns jusauodwo) €'

ubse@ pa el 8emyos INH ND|

Buliojuow pue [0JU0d NSAINL PA8] MO| JOj SauNoy [gs]pe - nsdun NSdINL
ananb AL ay1 ul wayl sade(d ue sexded 11odal yse) s1onaisuod [gs]pe-31xodsr yse]
anenb |A1 8y ul weyl sade|d pue sexJed 82Us10S S1oNJIsuU0) [gS]pe wI @0UsTOS
anenb L ul waylade|d pue sxded MH d1poisad uou S1nIsuo) [gs]pe-3jyu Elg=(ple)
syded A1 o ndiUew 01SsunoJ 0] SS32Je S|0.IU0D [gs]pe-bul NL
‘Ul T < JoJ [[njananb AL J1 Bulpes sanssi ‘sixded AL 8yl arendivew 0] aunnoy [gs]pe b w2

seunnos arldoidde |[eo pue sexded uswebeuew aw i sp.ideu|

[gs]pe-uew swTy

HIOVNVIN INIL

Sielesy |0JJU0d 0} SssulinoyY [gs]pe-I23e2y IVING3IHL
anenb D woujspxded 138118 0] SBUIIN0J 0] SSBIJe S|0U0D [gs]pe-boa
sxoed D | SSIepIeA 03 sauinoy [gs]pe*AITIisa 012
anenb ay ui sxoed O 1 81 ndiuew 03 SsuNoyY [as]pe-b 03 SS3004d 01
Rbeue |\ 1B)ed aklidoidde ay1 01 WYl SEINgLIISIP pue Sexded D1 pleAsede] "welboid urew ay | epe noT
wse -]39s921
[euoizeado 03 d1seq Woj Buiyolivs uaym urwspour Aq pa|ed spe-3osal HADVNVYIN
aunnoJ arlido.idde |[ea pue sexIed Jusweleue |\ yse | seideu| [gs]pe-uewyseq MSVL
BuIyo1IMS BpO N SWLIoLIed [gs]pe - uewspou
uond1iosad| (s)aueud |14 JO IS ISUOD 19100

Le £'6020/dS/ISSIN/INO ININX

(penunuoo) s18 o

ubIsaQ pa|e’q 8:emyos N4 ND|

$92IN0S31 SN0 LA 01S82JR aAKBN[OX8 A |eninw apinod 01 pesn

[gs]pe-xo3nu

seunnoJ Ayjm Bbubbngea

[gs]pe-bngsp

SaUINOJ UOIRNDRIDYHD

[gs]pe- 2aD

suondiioseg

(s)aueua | I4

" Salkelql|, Se psssep alopeylale Aay] ‘Auew Ag pasn pealsul ale Ing palqo apuis e 01 dew 10U Op Teyl SSuNoJ urIUM 3|gqe1 Bulmo o) ayL

ssunnoy Areliqi €€'g

SHSewW pue SjUeIsUm aW i Unl YAy + Jopej UoIpaliod Bwi]

WSY " SAHdIHESN

sidn.ueiu| o) SeII0d 92IARS pLe abeyul]

IWSY " DHALNT

Suo1rJ0| Alowsw Aoy seujed

spe - DoTwau

sanuoud ¥se1 vav seuljea

spe-* @OG@MMOQEH

aJnonus wyped sy ssuleq

spe - 1oyoed

sadA) vQV [euo ippe ssuleq

spe-sadAa

uondiioseg

(s)aueua | I4

€5020/dS/ BSIN/INO ININX

"Apoq abiexped e Hulureuod S8 |1 Bulpuodsa.liod ou 8k a8y ‘suoirdlipads AJuo urluod Ay "Ajuo Suo nuIjep J0) Pasn afe Sa |1} Yo Iym araipul a|cel Buimo |jo4 ay |

suoniued ¢e€g

ubse@ pa el 8emyos INH ND|

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 29

6. Detailed Component Description

6.1 Introduction

This sdion contains:

1) A detailed description of the Bootstrap code.

2) A components sdion describing the software components that make up the Basic and Operational code.This
components edion is sibdivided acmrding to the type of the amponents contained within the spedfied file eg.
Main Program, Padkage representing an Objed, Padages representing a Library etc. It has been compiled by
extrading ‘flagged’ comments of adesign reture - e.g. ‘ Structured English’ descriptions - from the mde itself.

6.1.1 ADA Procedure and Function Notation

Many of the components described in this sdion assume knowledge of the cali ng convention, or interface to
procedures and functionsin ADA. A summary is therefore presented here.

The list of parametersin a subprogram or function cal are known as actual parameters; inside the subprogram they
are cdled formal parameters. They are passed in one of 3 cdli ng modes:

e in Only the adual value is used; the subprogram cannot modify the value.
* out The subprogram creaes a value but does not use the value of the adual parameter
e in out The subprogram uses the value from the adual parameter and may assgn anew valueto it.

If omitted, in mode is the default.

The notation used in subprogram and function cdlsis asfollows, e.g.:

procedure COUNT_LEAVES_ON_BINARY_TREE;

ill ustrates an interfaceto a procedure with no arguments.

procedure ROTATE
(POINT : in out TRANSFORM.COORDINATE;
ANGLE : in UNITS.RADIANS) ;

states that procedure ROTATES formal first argument has the name POINT, isof type COORDINATE (whichinturnis
defined in the padage TRANSFORM) and that its cdlingmodeisin out. Similarly the seaond argument has the
name ANGLE, isof type RADIANS (defined in padkage UNITS) and that its cdlingmodeis in.

Similarly for functions:

function COS
(ANGLE : in UNITS.RADIANS) return FLOAT;

shows that the function COS returns the predefined type FLOAT.
Note that function arguments can only be of mode in.

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 30

6.1.2 ADA Task and Entry Notation

A task spedfication introduces the name of the task, together with any entry paints to the task. It
thus defines the communication paths (entries) avail able to ather tasks. It may also define the priority at which atask
runs. An entry dedaration has aform similar to a subprogram spedfication. e.g:

task PROTECTED_STACK is

pragma priority (100); —-— define priority
entry POP (ELEMENT : out INTEGER); —-— define entry point
entry PUSH(ELEMENT : in INTEGER); —-— define entry point

end PROTECTED_STACK;

It is always necessary to prefix entry cdls with the task name. e.g.:
PROTECTED_STACK.POP (MY_VALUE) ;

Occasionally, tasks are spedfied as task types. Thisis done if there is more than one instance of the task or to all ow
certain ADA pragmas (spedal instructions to the compil er) to be obeyed that are only supparted under task types. The
followingis equivalent to the @ove spedficaion.

task type PROTECTED_STACK_TYPE is -- define the type.
pragma priority (100); —-- define priority
entry POP (ELEMENT : out INTEGER); —-— define entry point
entry PUSH(ELEMENT : in INTEGER); —-— define entry point

end PROTECTED_STACK_TYPE;

PROTECTED_STACK : PROTECTED_STACK_TYPE; —— Ccreate an
instance of the task.

6.1.3 Useof ADA Pragma’s

A pragmais a statement that conveys information to the compiler. The following ADA pragmas are used throughout
the ade. The followingisasummary of the usage.

6.1.3.1 ELABORATE

Takes one or more simple names denoting library units as arguments. This pragmais only all owed immediately after
the context clause of a compilation unt (before the subsequent library unit or secondary unit). Each argument must be
the simple name of alibrary unit mentioned by the context clause.

This pragma spedfies that the mrresponding library unit body must be daborated before the given compil ation unit.
If the given compil ation unit is a subunit, the library unit body must be daborated before the body of the acestor
library unit of the subunit.

6.1.3.2 FOREIGN_BODY

This provides a way to accessentiti es written in languages other than ADA. It must appea in the visible part of the
padkage before ay dedarations — seesedion 4.1.2.2 of the Tartan ADA Compil ation System Manual.

It dictates that all subprograms and oljeds in the padage are provided by means of aforeign objed module. In the
case of the ICU, the language used is always assembler and therefore the pragma takes the agument string “ASM”.

6.1.3.3 INLINE

Takes one or more names as arguments; ead name is either the name of a subprogram or the name of a generic
subprogram. This pragmaisonly allowed at the placeof adedarative item in adedarative part or padkage
spedficaion, or after alibrary unit in a compil ation, but before any subsequent compil ation urit.

This pragma spedfies that the subprogram bodes sould be expanded inline & ead cdl whenever posshle.

6.1.3.4 LINKAGE_NAME

This pragma asciates an ADA entity (e.g. subprogram or variable name) with atext string meaningful externaly to,
say, alinkage dlitor. It is usually used to equate that entity to its equivalent in assembler code.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 31

6.1.3.5 OPTIMIZE

Takes one of the identifiers TIME or SPACE asthe single argument. This pragmais only allowed within a declarative
part and it appliesto the block or body enclosing the declarative part.

It specifies whether time or space is the primary optimisation criterion.

6.1.3.6 PACK

Takes the simple name of arecord or array type as the single argument. The allowed positions for this pragma, and
the restrictions on the named type, are governed by the same rules as for a representation clause.

The pragma specifies that storage minimization should be the main criterion when selecting the representation of the
given type.

6.1.3.7 PRIORITY

Takes a static expression of the predefined integer subtype PRIORITY asthe single argument. This pragmais only
allowed within the specification of atask unit or immediately within the outermost declarative part of a main program.

It specifies the priority of the task (or tasks of the task type) or the priority of the main program. N.B. The package
IMPORTANCE defines of all task priorities used as arguments to this pragma.

6.1.3.8 SHARED

Takes the simple name of avariable as the single argument. This pragmais allowed only for a variable declared by an
object declaration and whose type is a scalar or access type; the variable declaration and the pragma must both occur
(in this order) immediately within the same declarative part or package specification.

This pragma specifies that every read or update of the variable is a synchronization point for that variablei.e. no
optimisation is performed which might lead to the value contained in the variable not always being up-to-date.

6.1.3.9 SUPPRESS

Takes as arguments the identifier of a check and optionally also the name of either an object, atype or subtype, a
subprogram, atask unit, or ageneric unit. This pragmais only allowed either immediately within a declarative part or
immediately within a package specification. In the latter case, the only allowed form is with a name that denotes an
entity (or several overloaded subprograms) declared immediately within the package specification. The permission to
omit the given check extends from the place of the pragmato the end of the declarative region associated with the
innermost enclosing block statement or program unit. For a pragma given in a package specification, the permission
extends to the end of the scope of the named entity.

If the pragma includes a name, the permission to omit the given check is further restricted: it is given only for
operations on the named object or on all objects of the base type of a named type or subtype; for calls of a named
subprogram; for activations of tasks of the named task type; or for instantiations of the given generic unit.

Theidentifier isthat of the check that can be omitted. The name (if present) must be either a simple name or an
expanded name and it must denote either an object, atype or subtype, atask unit, or a generic unit; alternatively the
name can be a subprogram name, in which case it can stand for several visible overloaded subprograms.

The following checks correspond to situations in which the exception CONSTRAINT ERROR may beraised; for these
checks, the name (if present) must denote either an object or atype.

e ACCESS_CHECK: When accessing a selected component, an indexed component, a slice, or an attribute, of an
object designated by an access value, check that the access valueis not null.

e DISCRIMINANT_CHECK: Check that adiscriminant of acomposite value has the value imposed by a
discriminant constraint. Also, when accessing a record component, check that it exists for the current
discriminant values.

e INDEX_CHECK: Check that the bounds of an array value are equal to the corresponding bounds of an index
constraint. Also, when accessing a component of an array object, check for each dimension that the given index

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 32

value belongs to the range defined by the bounds of the array object. Also, when accessing adice of an array
object, check that the given discrete range is compatible with the range defined by the bounds of the array object.

e LENGTH_CHECK: Check that thereisamatching component for each component of an array, in the case of
array assignments, type conversions, and logical operators for arrays of boolean components.

e RANGE_CHECK: Check that avalue satisfies arange constraint. Also, for the elaboration of a subtype
indication, check that the constraint (if present) is compatible with the type mark. Also, for an aggregate, check
that an index or discriminant value belongs to the corresponding subtype. Finally, check for any constraint checks
performed by a generic instantiation.

The following checks correspond to situations in which the exception NUMERIC_ERROR israised. The only allowed
names in the corresponding pragmas are names of numeric types.

e DIVISION_CHECK: Check thatthe second operand isnot zero for the operations /, rem and mod.
e OVERFLOW_CHECK: Check that the result of a numeric operation does not overflow.

The following check corresponds to situations in which the exception PROGRAM_ERROR israised. The only allowed
names in the corresponding pragmas are names denoting task units, generic units, or subprograms.

e ELABORATION_CHECK: When either asubprogramis called, atask activation is accomplished, or a generic
instantiation is elaborated, check that the body of the corresponding unit has already been elaborated.

The following check corresponds to situations in which the exception STORAGE_ERROR israised. The only allowed
names in the corresponding pragmas are names denoting access types, task units, or subprograms.

e STORAGE_CHECK: Check that execution of an allocator does not require more space than is available for a
collection. Check that the space available for atask or subprogram has not been exceeded.

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 33

6.2 Bootstrap Code

6.2.1 Introduction

The OM Boatstrap resides in the ICU memory, andis the first pieceof code to be exeauted by the ICU processor
after areset or power up. It's purpose isto initi ali se the instrument hardware and higher level software.

This code is blown into PROM and henceit will not be aleto be changed after launch.

The ICU isdesigned to have 16K words of PROM, ead PROM chip hdds 8K octets of code. The 16K words
available will hald bah the Boatstrap code and the Basic mode ade.

The PROM’sto be used for this are very higher power ones, so the ontime of these chips needs to minimised.
The Booatstrap code will beinitiated bythreepossble dternatives (SeeFigure 1) :-

1. Power On o the Main Power Bus to the instrument has been interrupted.

2. A RESET ICU, warm or cold start, command hes been receéved by the instrument from the
spacecaft.

3. ThelCU watchdog tastimed out. (The RBI’ swatchdogtimer isto be used for this function.

[App-2]).

Sincethe ICU usesan MA3179) procesor, 31750asseembler language is a natural choiceto be alopted for the
Bootstrap code implementation.

Basic Mode
Code
Bootstrap
Power Watchdog
On RESET Time Out
ICU

Figurel ICU Bootstrap Operational Architecture

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 34

6.2.2 BOOTSTRAP FUNCTIONALITY

This dion spedfieswhat the Bootstrap code does, and the implementation and operational constraints.

Eseential (Priority 1) :

R1.1

R1.2
R1.3
R1.4
R1.5

Enable the spacecaft OBDH to be aleto perform read and write operations to the ICU RAM
memory. ([App-1] R4.1.3.3.1-4). (Thisisreguired in order that the spacecaft can send
telecommands to, and take telemetry data from the ICU RAM, even thoughthese will not be
suppated at thistime. Thisalso all ows gacecaft low level accessto the ICU RAM in case of
problems, e.g. patch access)

Safe theinstrument asit is posshble for the ICU to remain in reset mode for an indefinite time.
Load all PROM code into RAM, turn off PROM, and run Boatstrap code from RAM.
Initialise dl interrupt handersto return to cdler.

Follow OBDH protocol to next mode.

Highly Desirable (Priority 2) :

R2.1

R2.2
R2.3

Constraints :

C1

C2

C3

C5

Perform RAM chedks relevant to loading code from ROM to RAM and report any errorsto
groundin RBI software indicaionfield. (Cheds may be pre- or/and past- loading) (Isnot

classed as esential as RAMs used are very SEU immune)

In event of aRAM error, provide means to avoid bad RAM locations.

Unused interrupt handlers to store court of times cdled to be reported in howsekeeing for

diagnastic purposes.

Minimise time that the ROM is powered. (To lessthan 100msecs for nominal operations, to
avoid overheding d componrents, to minimise total power consumed and to avoid brown ous).
Boatstrap + Basic code must fit within 16K 16-bit words. (Bootstrap code must fit within 2K
words baseline dl ocation.)
Implement Bootstrap onan MA31750 pocessor operating at 8Mhz, with (TBD) PROM.
Comply with OBDH protocols (for next mode) [App-1].
On entry to Bootstrap the ICU hardware status will be :-

* Interrupts are disabled.

* DMA by the RBI will be disabled.

* The PROMswill be powered on.

6.2.3 BOOTSTRAPIMPLEMENTATION

This dion spedfies how the Boatstrap code isimplemented.

0. The Bootstrap Code will beimplemented in 31750 assembler on an MA31750 processor.

» SincetheCU usesan MA31750 pocessor, 31750assembler is anatural choiceto be adopted for the ICU
Bootstrap code language.

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 35

» Theuse of assembler isalso consistent with stringent memory and speed limitations consistent with these
Bootstrap requirements.

The following spedfies what the Bootstrap will do orceit isinvoked, in chrondogicd order :-
S1. Enable Spacecraft to have read & write accessinto theinstrument’s memory.

Thisisrequired to :-

» Enablethe spacecaft to be ale to send telecommands to the ICU.

» Enable the spacecaft to take telemetry data from the ICU.

» Allow spacecaft read/write accesto the ICU RAM in case of problems.

(a) Enable DMA: The Bootstrap will write any value to 10 locaion DMAE, defined in 31750assmbler.

(b) Command RBI into Reset state: The Boatstrap will write 8000 fex to the RBI Configuration register, 10 address
6806 hex.(Note that if awatchdogtime-out has occurred this command will have no effed. The valuein the RBI
Status register, bits 0-3, seen by the GroundSystem will be zeo.)

(c) Write the CCA addressinto RBI’ s base aldressregister.
(d) Send reset page addresscommand to RBI configuration register.
S2. Copy code in PROM to RAM, turn off PROM and run in Bootstrap code from RAM.

— Copy bodstrap code from ROM into RAM.
— Options:
(a) Immediately turn of PROM and goto S3, or
(b) Chedk that RAM code is OK and/or do chedksum on code mpied.
- If OK, then turn off PROM, run code from RAM, and goto S3.
- If not OK, then try again.
— If not OK for asecondtime, find four words in conseautive RAM memory which are OK and copy two
jump instructionsto RAM which loopto ead ather.
— A vaueiswritten to the RBI Status register bits 12-15, Software Indicationfield, to indicaeto the
Ground System the Boatstrap fail ed.
— The PROM isthen turned off and the two jump instructions are run.
(The Ground System then can then study the problem. If sufficient code can be loaded using Low
Level DMA commands under GroundSystem control the GroundSystem can then change one of
the addressesin the jJump instructions control is passed to the loaded code.)
— If four wordsin conseautive RAM memory cannat be foundwhich are OK :-
- Write avalue to the RBI Status register to indicae to the Ground System that total RAM fail ure has
occurred.
- Turn dof the PROM.
— CopyBasic mode amde from PROM into RAM unlessthe boastrap was garted dueto areset ICU no copy
interrogation to the RBI.

S3. Safe various components of the instrument.
This gep will alwaysturn off the heders and the filter whed phases, reset the DPU and move the filter whed to the

blocked pasition wsing the marse sensor only. Additionally, the high vdtage unit and the TMPSJ secondaries will
be turned off if the boastrap isrunning dweto a “warm start” (i.e. ICU code has already been runring).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 36

S Initialise all interrupt handlerstoreturn to caller.

Thisisachieved at code assembly time.

S5. Deter mine next mode as per OBDH Bus Protocol Specification. [1]
Sections of [1] that describe this procedure are figure 4.1.3-1 and R4.1.3.3.1-1.

A pseudo code listing of this procedureis given below :-

- Copy the bootstrap to RAM
- Read RBI configuration register
If WD bit set - If watchdog time-out has occurred
Set jump pointer to WD_ENTRY
Set boot type flag to watchdog
Goto PROM_OFF
End If
- Read RBI ingtruction to RBI register
If 0000 X XXX 0000 0000 - Reset ICU Cold Sart command)
Set jump pointer to BASIC_START
Set boot type flag to cold
Else
Set jump pointer to READ_LOOP
Set boot type flag to warm

If 0000 XX XX 0101 1110 - Reset ICU Warm Sart command, no copy.
Goto PROM_OFF

End if

End if - Reset ICU Warm Sart command, copy.
- Copy Basic mode code into RAM - Fall through
PROM_OFF:

Turn off PROM
Perform safing

Use jump pointer to goto to next procedure

READ_LOOP:
Read RBI configuration register.
If 1T1 bit not set goto READ_L OOP
End If
If IT1 bit isset read Instruction-to-RBI Register
If 1111 XX XX 0000 0000 - Start ICU command.
Goto BASIC_START
Elseif 0000 XXXX 0101 XXXX - Reset ICU Warm Start Cmd
Restart Bootstrap
End If
Else goto READ_L OOP
End if

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

BASIC _START:
Command RBI into Running State
Transfer control to Basic mode Code

WD_ENTRY:
Goto WD_ENTRY - wait for reset command from
- ground and then go back to Sl1.

37

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 38

6.2.4 Design and Implementation

The XMM-OM bootstrap is based on a modified version of the Tartan supplied Adascope kernel.

Due to the power requirements of the PROMs the bootstrap must copy itself to code space RAM, turn off the PROMs
and continue running from RAM. Additionally, before shutting off the PROM S the bootstrap must decide whether to
copy out the Basic mode code too.

Flow charts of the bootstrap are shown in figures 2 to 6 and the corresponding pseudo code is given below.

- Copy the bootstrap to RAM
- Read RBI configuration register
If WD bit set - If watchdog time-out has occurred
Set jump pointer to WD_ENTRY
Set boot type flag to watchdog
Goto PROM_OFF
End If
- Read RBI instruction to RBI register
If 0000 X XXX 0000 0000 - Reset ICU Cold Start command)
Set jump pointer to BASIC_START
Set boot type flag to cold
Else
Set jump pointer to READ_LOOP
Set boot type flag to warm

If 0000 X XXX 0101 1110 - Reset ICU Warm Start command, no copy.
Goto PROM_OFF

End if

End if - Reset ICU Warm Start command, copy.
- Copy Basic mode code into RAM - Fall through
PROM_OFF:

Turn off PROM
Perform safing

Use jump pointer to goto to next procedure

READ_LOOP:
Read RBI configuration register.
If IT1 bit not set goto READ_LOOP
End If
If IT1 bit isset read Instruction-to-RBI Register
If 1111 XXXX 0000 0000 - Sart ICU command.
Goto BASIC_START
Elseif 0000 XXXX 0101 XXXX - Reset ICU Warm Sart Cmd
Restart Bootstrap
End If
Else goto READ_LOOP
End if

BASIC_START:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 39

Command RBI into Running State
Transfer control to Basic mode Code

WD_ENTRY:

Goto WD_ENTRY - wait for reset command from
- ground and then go back to S1.

Perform safing

if boot type flag = cold
if Blue Processing Electronicsison
goto WARM_SAFE

end if
cal WARM_SAFE1 - common safing procedure with warm start
cal SAFE_FW - safe the filter wheel

Use jump pointer to goto to next procedure - will be the read loop for go command
- in the case of a warm start, or Basic mode
- code in the case of a cold start

end if

WARM_SAFE

turn off high voltages
cal WARM_SAFE1 - common safing procedure with cold start
pause for 5 seconds
turn off secondary voltages
call SAFE_FW procedure
Use jump pointer to goto to next procedure - will be the read loop for go command
- in the case of a warm start, or Basic mode
- code in the case of a cold start.

WARM_SAFE1

turn off all heaters

turn off filter wheel phases
reset the DPU

return from sub-procedure

SAFE_FW

NEXT

initialise counters, phase variable, etc.
turn on coarse sensor LED
if command failed
goto EXIT
end if

do
calculate next phase
read coarse sensor
if read failed
goto EXIT
end if

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 40

if coarse sensor detected
goto COARSE_SEEN
else
set coarse counter - to detect when we see coarse for second time
end if
energise next phase
if command failed
goto EXIT
end if
delay for time specified in acceleration table
decrement step counter
while step counter > 0
EXIT
save results of procedure
turn off LED and phases
return from sub-procedure

COARSE_SEEN

if coarse counter =0 - then gap between seeing coarse sensor
goto NEXT

end if

increment coarse counter

if coarse counter =2 - seeing coar se for second time
store step counter in steps remaining location
set step counter to 1257/1258 (redundant/prime) - steps needed until in blocked position
goto NEXT

else
goto NEXT

end if

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3

Enter
Bootstrap

Enable DMA, Reset
RBI, Init CCA, Reset
PA

v

Copy bootstrap

to RAM

v

Read RBI config

register

Cold/Warm Entry‘

Determine
warm start type

Warm Start

Read Instruction to

<

Warm start copy

Cold Start#

Warm start no copy

RBI register

Copy Basic code
to RAM

v

p Turn off PROM

v

Perform safing

Figure2 Determination Of Boot Type

41

Watchdog
Kick Entry

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Determine boot |

type
Warm start Cold Start

Perform warm < I%?g(c:lr?e
safing procedure |~ T T T T T | Elect ! cgs
Watchdog Cold Start|

i Off
Kick Warm start !

Wait for Start Perform cold

|
|
Watchdog loop ICU command I safing procedure
I A

v

Command RBI
into running state

Exit To: Basic Code
B ts't (ADA)
0otstrap (Running Mode)

Figure3 Perform Safing

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Turn off High
Voltage

v

Turn off
Heaters

v

Turn off
Phases

v

Reset
DPU

v

Pause for 5
seconds

v

Turn off
Secondaries

v

Safe Filter
Wheel

Figure4 Warm Safing Procedure

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Turn off
Heaters

\

Turn off
Phases

.

Reset
DPU

.

Safe Filter
Whed

Figure5 Cold Safing Procedure

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3

Initialize

Y

Turn on coarse
sensor LED

Command failed

on OK+

No

No

Calculate next
phase

v

Read coarse
sensor

Read fail

Read OK+

Coarse sensor
LED detected ?

Energize
phase

“y

<NO

+ Energize fail

Leading
Edge?

Decrement step
counter

5

v

Movefind
steps

Step counter at
zero ?

v

Save results of
procedure

v

Turn off LED
and phases

RO

Figure 6 SafeFilter Wheel Procedure

45

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 46

6.2.5 Variables

This section lists the variables which are used by the bootstrap. These variables are also available for the Basic mode
code to inspect and downlink to the ground, providing information as to what happened during the bootstrap process.
They appear in the linker map reference asBOOTSTRAP_PARAMS . Thelength of each parameter is given in 16-bit
words and the address isin hexadecimal. These variables are to be found in data space. All the variables are defined
inthefile emboot .asm.

Address Length Parameter Description

03FE 1 PRM_RED Indicates whether the Primary or Redundant
systemisrunning
1 = Primary, 0 = Redundant.

03FF 1 VERSION Version number of the Bootstrap code only.
Constant = 0137.

02C7 1 BOOT_TYPE Boot type detected by the Bootstrap.
0 = Power up
1 = Reset cold

2 = Reset warm copy
3 = Reset warm no copy
4 = Watchdog kick

02C8 1 PROGRESS Bit pattern recording the safing procedures
completed. See note 1.

02C9 1 ICB_GOOD Counter recording the total number of valid
ICB commands sent. Range [0,FFFF]

02CA 1 ICB_SYNC _ERRS Counter recording the total number of ICB
sync errors detected. Range [0,FFFF]

02CB 1 ICB_EXT_ERRS Counter recording the total number of ICB
extension errors detected. Range [0,FFFF]

02CC 1 ICB_TX_ERRS Counter recording the total number of ICB
transmission errors detected. Range [0,FFFF]

02CD 1 ICB_TIMEOUT Counter recording the total number of ICB
time-out errors detected. Range [0,FFFF]

02CE 1 ICB_DEAD 0=Alive, 1 =Dead

02CF 1 COARSE_SEEN I ndicates whether the Coarse Sensor was

detected when safing the Filter Wheel. 0 =
coarse not seen, 1 = coarse seen.

02D0 1 STEPS REMAINING Number of steps remaining to move the filter
wheel a complete revolution when the coarse
sensor was detected. Range [0,898 (hex)].

02D1 1 FINAL_STEPS A count of the stepsto do when detecting the
coarse sensor. Range [0,1257/1258].

02D2 1 LAST_PHASED_USED Last phase used when moving the filter wheel.
Phases 1-4 are represented as 1111, 2222,
4444, 8888.

02D3 1 BAD_FW Records errors encountered when moving the
filter wheel. See note 2.

02D4 1 INIT_ICB ICB settle loop. Number of loops remaining
when the ICB status became OK. Counts
down from DF37 (hex).

02D5 1 WPR_SAVE Adascope variable. Not used.

02D6 6 cmdbuf Adascope variable. Not used.

02DC 2 ackbuf Adascope variable. Not used.

02DE 16 rstate Register save area during interrupt handling.

02EE 3 state Interrupt linkage/service pointer storage.
Machine state at time of interrupt.

02F1 35 ACCEL_TABLE Constant. Table of values used for

accelerating the filter wheel.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 47
Notes:
1. Progressflag.
Thisisahit pattern recording the safing procedure completed. The following table indicates which bit

corresponds to each safing procedure. Initially each bit is set and is reset only after the procedure has been
successfully performed. If the procedure is not appropriate for the type of boot in progress then the bit will

remain set.
Bit 0-9 10 11 12 13 14 15
Procedure Not High Heaters Phases DPU Second- Filter
Used Voltage aries Wheel
Warm 0 0 0 0 0 0 0
Cold 0 1 0 0 0 1 0

Therefore, after a cold start the value of this parameter should be 0022 (hex) and after awarm start it should be 0
if all the safing procedure were carried out successfully.

2. Filter Wheel Safing Error Counter.

This comprises of three 4-bit nibblesin the least significant portion of the word (bits 4 to 15) as shown in the
following table:

Bits 0-3 4-7 8-11 12-15
Err Not Bad Bad Sensor Bad
or Used Phase Read LED

If no errors occurred whilst safing the filter wheel then all the nibbles will be set to 0. Only one error will be
recorded as the safing procedure is aborted after the first error is detected. The errors that can happen are all ICB
command related and are shown in the following table:

Error 1 2 3 4
Code
Meaning Sync Extensio Transmission Time-
Error n Error Error out
Error

ICU FM Software Detail ed Design

6.2.6 Routines

This dion lists the most important routines used by the bodstrap, giving their addressin code space

XMM OM/MS4./SP/02053

Name Addre Description
S

KSTART 01DF Start of the Tartan supplied Adascope kernel
code.

WARM_SAFE1 0314 Code which is common to bah Cold and Warm
bods. Turns off the Heders and Filter Whed
Phases and resets the DPU.

SAFE_FW 0328 This routine performs the filter whed safing.

ICB_CMD_SEND 038F Routine to send commands along the ICB bus.

UPDATE_PROGRESS 03B7 Routine cdled after ead safing procedure to
record the result of ead particular safing
procedure.

SAVE STATS 03BD Saves the result of safing the Filter Whed.

DELAY 03C1 Implements a delay in software.

CHECK_BPE 03C9 Routine to ched whether the Blue Processng
Eledronicsison or off. Used to provide more
information in determining whether the arrent
Boot Typeiswarm or cold.

WATCHDOG LOOP 03D3 Loopwhich isentered only when the Boaotstrap
has determined that it isrunring dueto a
Watchdog kick and after the instrument has been
safed.

START_ICU 03D9 This routine puts the RBI into running mode and
starts the Basic mode mde.

SW_INDICATE 03E7 Writes to the 4 software indication bits avail able
in the RBI configuration register.

WRF_START 03F2 Routine exeauted when the ICU hasreceved an
“ICU RESET” instruction to RBI. Relocaed to
addressFFRB in Code spaceby the boastrap.

GOCMD 016 Part of the Adascope kernel which is cdled when
the bodstrap has deteded awarm start. Waits for
an RBI “GO” command o an “1CU REST”
instruction to RBI.

COPY_BOOTSTRAP 0295 Routine which copies the boastrap code from the

COPY_BOOTSTRAP_ PROM into RAM.

AND_VECTORS

COPY_BASIC 0213 Routine which copies the Basic mode ade from
the PROM into RAM. Exeauted unlessfoll owing
a“ICU REST WARM NO COPY” instruction to
RBI.

COPY_BOOTSTRAP_ 0292 Routine which copies only the boatstrap code

ONLY

from PROM to RAM. Basic mode interrupt table
isnot copied.

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053

6.2.7 APPENDIX

Private Communication 30-MAY-1996 15:47:02.24

From: MSS.::JJAT "Jason A Tandy"
To: ADV
CC JAT

Subj: RBI Chip. Attn: P.Mercier.
Dea Phili ppe,
With respeda to the RBI's Watchdogtimer;

When thistimes out and resets the running kit in the Status register, how

does the ICU software onreboating gothroughthe normal sequence of setting
the Reset bit then the Running Lit?

At present | findthat | get abad operation in the Configuration register.

Does the ICU software have to wait until the spacecaft has read the Status
register and cleas the Watchdogtimeott bits?

Then the ICU can proceed.

Chees, Jason.

Private Communication 31-MAY -1996 08:08:53.92

From: SMTP%"advtlse@dialup.francenet.fr"
To: jat@msd.ucl.acuk (Jason A Tandy)
(6{05

Subj: Re: RBI Chip. Attn: P.Mercier.

Dea Jason,

When awatchdogerror is deteded, then the aror isflagged in the RBI
status word by resetting the Running hit. However the RBI is dill
considered to bein the 'Running state and nd in the 'Init' state and

then amicroprocesor 'Reset ICU' and 'START ICU' ingtructionsis
considered asinvalid (this explain why the bad operation kbt is st in the
Configuration register).

Note that a Watchdogtime-out error indicates that the ICU SW hasfailed
andthen it isnat able to isale these mmands. In fad thisisthe

central computer role to manage this error by issling a'Reset ICU'
interrogation which will restart the ICU SW. Thisinterrogation can be
precaled by a'Suspend ICU' interrogation and by'Read Block'
interrogationsif the cantral computer wants to chedk the ICU memory before
to restart the microprocessor.

Best regards.

P. Mercier

- Phili ppe Mercier, ADV techndogies -
- Parc Techndogique du Canal, 16 Avenue de I' Europe -
- 31520Ramonvill e Saint Agne, France -

49

ICU FM Software Detailed Design

-Tel : (33) 621904 44 Fax : (33) 62 19 03 54
- E-mail advtlse@Dialup.FranceNet.fr

XMM OM/MSSL/SP/0205.3

50

ICU FM Software Detail ed Design

6.3 Basic Code

Basic codeis built from the following fil es:-

XMM OM/MS4./SP/02053

ADA Assembler
Specifications Bodies

bcpd4_ih.ads bcpd4_ih.asm
bsio.asm

crc.ads crc.adb

debug.ads debug.adb

dempsu.ads dempsu.adb
emboot .asm
emsubs.com

hk.ads hk.adb

icb.ads icb.adb

icb_driver.ads

icb_driver.adb

icu.ada

icu_mem_manager.ads

icu_mem_manager.adb

importance.ads

mem_manager.ads

mem_manager.adb

memloc.ads

modeman.ads

modeman.adb

mutex.ads

mutex.adb

nhk.ads nhk.adb

packet.ads

peek_poke.ads peek_poke.asm
rbi.ads rbi.adb

rbi_ih.ads rbi_ih.asm

reset.ads

reset.asm

ssi_driver.ads

ssi_driver.asm

ssi_ih.ads

ssi_ih.asm

task_report.ads

task_report.adb

taskman.ads

taskman.adb

tc_qg.ads tc_g.adb
tc_verify.ads tc_verify.adb
tcg.ads tcqg.adb

time_man.ads

time_man.adb

tm_man.ads

tm_man.adb

tm_g.ads tm_g.adb
tmpsu.ads tmpsu.adb
tmg.ads tmg.adb
types.ads

USERDEFS.ASM

The foll owing pages contain ‘ Structured English’ extraded from comments in the file. They should be studied in
conjunction with the cde listings as they have alditional comments regarding implementation detail s but are omitted
in this document for clarity.

* The oomments extraded from the spedfication files (*.ads) describe ‘what’ a given padkage does.
e The comments extraded from the associated bod files (*.ads or *.asm) describe ‘how’ a given padage
performs the operations defined by the spedfication.

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 52

In addition, thefile icu. xtof can be supplied. It may be used in conjunction with the TARTAN utility
adaref1750a to extrad the dependencies, list of cdlsand inverse cdlsand crossreferenceinformation..

To extrad the cdl graph (of ‘cdlers).

adarefl750a -input icu.xtof -call_graph

To extrad the cdl graph (of ‘cdled by’).

adarefl750a —-input icu.xtof -call_graph -reverse

To extrad the cdl graph (of ‘cdlers’) from one padkage.

adarefl750a -input icu.xtof -call_graph -from package_name

To extrad alist of dependent relationships.

adarefl750a —-input icu.xtof -dependency_graph

To extrad alist of dependent relationships from one padage.

adarefl750a —input icu.xtof —-dependency_graph —-from package name

To extrad a dphabeticd li st of user defined entiti es, containing sourcelocation of dedaration, source location of
whereit is st and used.

adarefl750a —-input icu.xtof -xref

To extrad a dphabeticd li st of user defined entiti es, containing sourcelocation of dedaration, source location of
whereit is %t and used for one padage.

adarefl750a -input icu.xtof -xref —-about package_name

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.1 Main Program

6.3.1.1 icu.ada

Extracted fromfile "icu.ada"

Function

This procedure is the 'main' program for the basic code of the ICU. It

1) Initialises the ICU then...
2) Routes all valid received telecommand packets as appropriate

procedure ICU is

Initializations

Initialise the SSI interface controlling software.

Initialise RBI related matters
(including the communications area and TC and TM ready bits)

Start the RBI Watchdog.
Ensure that telemetry gqueues are initialised

Ensure the telecommand queues are initialised (after which we can
receive telecommands

Send the Bootstrap Status Block

1st Determine whether its an event (boot OK) or exception (boot not OK)

then send the block

Now turn on both main heaters, in order to compensate for lack of
heat input because secondaries are not on during basic mode.

Now start the Housekeeping task
Now begin the endless control loop

Wait for a valid telecommand packet

When a valid packet is obtained, route it to the appropriate package

on the basis of the packet type
For a Task Management Packet
send it to the Task Manager package TASKMAN
For a Memory Maintenance Packet
call the memory manager package MEM_MANAGER
For a Telemetry Management Packet
Call the telemetry manager package TM_MAN.
For a Time Management Packet
Call the Time Manager package TIME_MAN
For a test packet
do nothing
For all other packet types
do nothing
end of selection by packet type

If nothing has indicated that the packet was bad

53

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3

Place a Successful Acceptance Telemetry Packet in the

telemetry queue.

Increment the good packet count

(modulo 65536) for HK purposes.

Otherwise, increment the bad packet count (modulo 65536)

for HK purposes

End the controlling loop

54

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6. 3.2 Packages

6.3.2.1 bcp4_ih. ads
Extracted fromfile "bcp4_ih. ads"

Function

This file merely contains the specification for the XMM-OM bcp4 interrupt
handler. It specifies that the body of bcp4_ih is written in assembler

and therefore directs the linker to link it as foreign.

The interrupt handler had to be written in assembler for speed so as not to
block other interrupts for too long.

55

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.2 bcp4.ih.asm
File is bcp4_ih.asm

Fetch the interrupt counter

Check for impending overflow

If it's OK, increment it

otherwise avoid overflow
Check BCP flag and if it is not 1, we don't have to bother so jump to end
"Freeze" the current time by writing appropriate instruction
to config register.
Read bits 0-15
Read bits 16-31
Read remaining bits 32-42 (result in high order bits)
Set the BCP flag to 2 to show we've got a time

Recover registers

Turn on interrupts

Back from whence we came

56

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.3 bsio.asm
File is bsio.asm

Name

INITLINK

Initialize the communications link

Parameters

None

Notes

This routine is called on startup. R14 is the link register.
All other registers may be trashed.

In the ROM version, this routine is called after the kernel has
been copied to RAM, but before the startup ROM is shut off.
This code may either execute from ROM, or disable the startup
ROM if it needs to read RAM.

NO LONGER USED

Name

QUIET

Presuming a transmission error, wait for quiet on input link

Parameters

None

Notes

R14 is the link register. RO, R1 and R3 can be trashed.

We 'read' and discard characters until there had been no more input

for 500ms.
NO LONGER USED

Name

ENABLE_MONITOR

Enable monitoring of the link before going off to the user's program

Parameters

None

Notes

(?)
(?)

R14 is the link register. All other registers are trashable.
Usually, we enable UART receiver error or data interrupts.

Thus, if the host tries to send us a message while we are in
the user's program we will get back to the kernel (we hope).

In the SBC50 we left the interrupt on. We just clear the pending
bit, if set.

NO LONGER USED

Name
READLINK
Read bytes from the communications link
Parameters
rl2 Destination address
r0 Byte count (must be even)
r9 Address State
Returns
checksum in r0
Notes
R14 is the link register. Destroys rl,r2,r3
but r2 counts down to 0 for cmdinterp to check.
rl2 used later too
READLINK EQU

RDRDY

57

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Set the software indication bits to 2
RD_POLL

Read the RBI configuration register

If IT1 (interrupt) pin has been asserted
then branch to STARTTEST

else branch to RD_POLL

STARTTEST
; Don't forget ICU Resetw command

Read instruction to RBI register

If there has been a start ICU command

then jump to START_ICU

If it is not a reset command then branch to RD_POLL
Reset command so jump to 16#FFF8# in page 2

Name
Writelink
Write bytes to the communications link
Parameters
rl2 Destination address
r0 Byte count (must be even)
Notes
R14 is the link register. Destroys rl,r2,r3,R13
mov ra,rl2 ; ra=move to rbi addr; rl2=move from, r(at+l)=number to move
WRITELINK EQU
WRRDY

Not used

58

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.4 crc. ads

Extracted from file "crc.ads"

Function

This file contains the specification for the CRC package.
This contains the CRC algorithms for XMM which
are based on the algorithm described in ESA technical note PX-TN-00540

This function returns the unsigned 16 bit integer checksum of the
first NUMBER locations in unsigned byte array DATA.

function CHECK_TC(TC : PACKET.TC_TYPE) return UINT16;

This function calculates the checksum of telecommand packet TC,
using the packet length stored within the packet to determine its
length. Returns value of zero if as expected, otherwise returns
value of checksum found, NOT including the 2 byte checksum

field at the end of the packet.

It thus checks whether that packet TC contained a valid CRC.

function CALC_TM(TM : PACKET.TM_TYPE) return UINT16;

This function calculates the value to be inserted into

the checksum field of packet TM, using the packet length stored

within the packet to determine the length of the data to be checksumed
(i.e. NOT including the checksum field at the end of the packet).

function CALC_MEM (CURRENT_CRC : UINT16;
MEM : UINT16_ARRAY;
NO_WORDS : INTEGER) return UINT16;

This function is used to calculate a checksum for a large block

of data on the assumption that not all the data will be available

at once. Therefore, it uses the CURRENT_CRC value returned by a prior
call as input to the current call and then calculates the CRC of the
NO_WORDS 16-bit words of data contained in MEM. The result is the CRC
for all blocks of data supplied (NOTE: the sequence is restarted by
supplying a value of all binary ones for CURRENT_CRC) .

59

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.5 crc.adb

Extracted from file "crc.adb"

Function

This file contains the body for the CRC package.
This contains the CRC algorithms for XMM which
are based on the algorithm described in ESA technical note PX-TN-00540

function CLC (SYNDROME : UINT16; DATA : UBYTE_ARRAY; NUMBER : UINT16)
return UINT16 is

This function returns the unsigned 16 bit integer checksum of the
first NUMBER locations in unsigned byte array DATA. An initial value
of the currently 'running' checksum is contained in SYNDROME.

It is a function internal to this package.

The following test data was used (taken from the reference above).

DATA CRC

4 4+
00 00 1D OF
00 00 00 CC 9C
AB CD EF 01 04 A2
14 56 F8 9A 00 01 7F D5

First define the lookup table for efficient calculation (equivalent of
routine InitLtbl in above reference.

loop over NUMBER data points
Calc RHS term by
1) Shift right the input checksum by 8.
2) Exclusive Or result with current datum.
3) Mask off the 8 least significant bits of the result.
4) Use result to index into table of pre-calculated coefficients.
calc LHS term by
1) Shift left the input checksum by 8.
2) Mask off the 8 most significant bits of the result.
Calculate checksum by Exclusive Oring the two terms.
Return final value of the checksum.

function CALC (DATA : UBYTE_ARRAY; NUMBER : UINT16) return UINT16 is

Call the CLC routine with the initial CRC set to all binary 1's.

function CHECK_TC(TC : PACKET.TC_TYPE) return UINT16 is

This function calculates the checksum of a whole packet,

using the packet length stored within the packet to determine its
length. Returns value of zero if OK, otherwise returns

value of checksum found, NOT including the 2 byte checksum

field at the end of the packet.

It thus checks whether that packet contained a valid CRC.

Call routine CALC (using the whole packet as data and deriving
its length from internal length information) to check that the result
(i.e. the checksum of whole packet) is zero

if it is, return zero

Otherwise

60

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 61

Return checksum found (not including the CRC field).

function CALC_TM(TM : PACKET.TM_TYPE) return UINT16 is

This function calculates the value to be inserted into

the checksum field of packet TM, using the packet length stored

within the packet to determine the length of the data to be checksumed
(i.e. NOT including the checksum field at the end of the packet).

Calculate the appropriate length to be used from the length
field in the packet, then use routine CALC to calculate the
checksum of packet TM and return the value.

function CALC_MEM (CURRENT_CRC : UINT16;
MEM : UINT16_ARRAY;
NO_WORDS : INTEGER) return UINT16 is

This function is used to calculate a checksum for a large block
of data on the assumption that not all the data will be available
at once. Therefore, it uses the CRC value returned by a prior
call as input to the next one.

Loop over the block of data, 1 16 bit word at a time.

Call function CLC to calculate the 'running' CRC for just 1 word.

Return the resulting CRC.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 62

6.3.2.6 debug. ads
Extracted from file "debug.ads"

Function

This file contains the specification and body for the package DEBUG.
As its name implies, it contains a collection of routines useful

for debugging.

Both procedures write a meaningful number to fixed location in memory
which can be read later (e.g., after a crash) to help understand what
went wrong.

Dependencies

with TYPES; use TYPES;
with SYSTEM;
with MEMLOC;

Where ITEM is the progress number to write to memory

This procedure writes the number "ITEM" to a fixed location in memory
and is used to keep a record of how far the running code has progressed.
When this memory location is read later, after a crash, it will provide
good idea as to what was running as the code crashed.

procedure EXCEPTION_REPORT (ITEM : UINT16);

Where ITEM is the exception number to write to memory

When the running code produces an Ada exception, the Ada exception
handler should call this procedure which will write the exception

number to a special known location in memory that can be read afterwards
to help understand why the code crashed.

Define some constants for the progress numbers.
In this way, the high order bits of the code numbers used indicate the
package involved.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.7 debug. adb
Extracted from file "debug.adb"

Function

This file contains the body for the package DEBUG.
As its name implies, it contains a collection of routines useful
for debugging.

package body DEBUG is
procedure PROGRESS (ITEM : UINT16) is

Where ITEM is the progress number to write to memory
If we haven't had an Ada exception

Write ITEM to the FIRST_PROGRESS standard memory location

ITEM identifies which part of the code is running: the package and
a location in that package

After an Ada exception the value stored at this address

will not change

Write ITEM to the LAST_PROGRESS standard memory location
This will continue to update after an Ada exception

procedure EXCEPTION_REPORT (ITEM : UINT16) is

Where ITEM is the progress number to write to memory
If this is the first exception trapped

Write ITEM to the fixed memory location reserved to store the
first exception. This will not be overwritten.

ITEM identifies in which part of the code the exception occured:
the package and which exception was handled

Then write ITEM to the fixed memory location reserved to store the
last exception. This is overwritten at each exception.

63

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.8 denpsu. ads

Extracted from file "dempsu.ads"

Function

This file contains the specification for the DEMPSU package
It provides routines to control the Digital Electronics Module
Power Supply Unit.

procedure DPU_RESET;

Resets the DPU after a 'latch-up' or turns it on again if it is
powered down.

64

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.9 denpsu. adb

Extracted from file "dempsu.adb"

Function

This file contains the body for package DEMPSU
It provides routines to control the Digital Electronics Module
Power Supply Unit.

Define the addresses used

The DEMPSU reset register

DPU_RESET_REGISTER
Define the procedure/functions to read / write to registers

procedure DPU_RESET is

To reset/turn on the DPU, write a "don't care" bit
pattern to the DPU Reset Register of the DEMPSU control card.

65

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.10 hk. ads
Extracted from file "hk.ads"

Function

This file defines the specification for the HK package. The package
acquires and sends the Housekeeping Packets (HK), the contents of
which are defined in the XMM-OM Telecommand and

Telemetry Specification document, XMM-OM/MSSL/ML/0010

procedure ON;

This procedure enables the acquisition of the HK packet type

procedure OFF;

This procedure disables the acquisition of the HK.

66

ICU FM Software Detailed Design

6.3.2.11 hk.adb

Extracted from file

Function

"hk.adb"

XMM OM/MSSL/SP/0205.3

This file defines the body for the HK package. The package
acquires and sends the Housekeeping Packets (HK), the contents of
which are defined in the XMM-OM Telecommand and

Telemetry Specification document, XMM-OM/MSSL/ML/0010

Create an array of flags to hold the individual 'HK packet
is enabled' status

task PROCESS is
pragma PRIORITY (IMPORTANCE.HK_PROCESS) ;
entry ONj;
entry OFF;
end PROCESS;

The above is the specification for the internal task that performs the HK

acquisition

Entry ON starts the task.
Entry OFF stops the task
and returns whether or not it was already stopped.

task body PROCESS is

Create an instance of an HK packet

Set up initial time interval

Commence infinite loop

Await for either:

1) A request to start HK acquisition (already on by default)

If ON request comes in

Initiliase the next time for HK to be now

2) A request to stop HK acquisition

3)

If OFF request comes in

then disable acquisition

otherwise, provided HK is enabled (the default)

wait until it's time to collect the next block of HK

unless the time is too negative

Decide which HK section to acquire

and branch accordingly

If its the Detector section

If

Take no action

it's the TMPSU

Get

Get

Get

Get

Heater status
Sensor current info
Secondary Voltages

TMPSU Secondary Currents

67

ICU FM Software Detailed Design

If

If

If

If

If

If

XMM OM/MSSL/SP/0205.3

it's the ICB section

Get Status of ICB

it's the SSI section

Get SSI I/F error count

it's the RBI section.

Get RBI Status and Configuration Registers
DEMPSU Voltages

it's the miscellaneous section

Get ICB Error Count

Get TC Good Packet Counter

Get TC Bad Packet Counter

Get OM State

Get ICU State

Get Which chain (i.e Prime or Redundant)

Get S/W Version

it's the DPU section.

Get DPU Info

Correct for DPU ROM bug (NCR 89)

it's the section where we send out the packet.
then set the HK Packet SID field accordingly
Get the current time and place in packet
Indicate CRC present

Calculate and set the packet length field
Provided at least one type of HK SID is enabled

Send packet to telemetry queue

Set up for next HK section

Check whether current SID has changed

Calculate the next HK sample time
(derived from the time determined at start and the SID)

Subtract it from the current time and delay the

code by the result, thus ensuring an average time interval

end of infinite loop

procedure OFF is

Disable the HK acquisition program

procedure ON is

Ensure HK program is running

68

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 69

6.3.2.12 icbh. ads

Extracted from file "icb.ads"

Function

This file contains the specification for the ICB package. The package
controls access to lower-level routines that interface directly with
the Instrument Control Bus (ICB). The ICB is implemented using the
MACSbus protocol.

task GUARDED is

pragma PRIORITY (IMPORTANCE.ICB_GUARDED) ;

entry PUT (DEST : DEST_ADDRESS_TYPE; —-— data to one sub-address
SUBADR : SUB_ADDRESS_TYPE;
DATUM : UINT16;
OK : out BOOLEAN) ;
entry GET (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUB_ADDRESS_TYPE;
DATUM : out UINT16;
OK : out BOOLEAN) ;

entry RESET;

end GUARDED;

Provides one-at-a-time controlled access to the PUT, GET and RESET
functions for the ICB.

PUT
Writes DATUM to sub-address SUBADR at MACSbus destination DEST.
Returns OK = TRUE if no errors occur.

GET
Reads DATUM from sub-address SUBADR at MACSbus destination DEST.
Returns OK = TRUE if no errors occur.

RESET
Resets the ICB MACSbus interface.

function REPORT (TID : UBYTE;
FID : UBYTE) return BOOLEAN;

The function implements the "Read ICB Address Directly" command

as described in section 2.2.5 of the Telecommand and Telemetry
Specification, XMM-OM/MSSL/ML/0010.

Specifically, it constructs a Task Parameter Report [TM(5,4)] containing
the datum read back from subaddress FID at destination TID-40 (hex), as
documented in section 3.5 of the above document.

In this release, it always returns TRUE.

function STATUS return UBYTE renames ICB_DRIVER.HK_STATUS;

For convenience, renames a low-level routine which returns
the ICB interface status word - see package ICB_DRIVER for
more details.

function ERROR_COUNT return UBYTE renames ICB_DRIVER.ERROR_COUNT;

Returns the ICB error count (modulo 256) since the ICU was started.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.13 ich.adb
Extracted from file "icb.adb"

Function

This file contains the body for the ICB package. The package
controls access to lower-level routines that interface directly with
the Instrument Control Bus (ICB). The ICB is implemented using the
MACSbus protocol.

task body GUARDED 1is

Reset Interface
Commence Infinite Loop
Await a call on one of the following:
If a call to RESET is made
Call the ICB driver RESET procedure from ICB_DRIVER.
If a call is made to the PUT procedure in ICB_DRIVER.
Send the data to the put ICB driver
If a call is made to the GET entry
Obtain a value via the GET procedure from ICB_DRIVER.
End of infinite loop
function REPORT (TID : UBYTE;
FID : UBYTE) return BOOLEAN is
Get the datum at the address and sub-address corresponing
with the supplied TID and FID.

Supply the datum to the TASK_REPORT package to construct
and send the aappropriate Report Task Parameters Packet.

Always return success.

70

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 71

6.3.2.14 icb_driver.ads

Extracted from file "icb_driver.ads"

Function

This file contains the specification for the ICB_DRIVER package.

The package provides the lower-level routines that interface directly
with the Instrument Control Bus (ICB). The ICB is implemented using the
MACSbus protocol.

procedure PUT (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUBADR_ADDRESS_TYPE;
DATUM : UINT1l6;
OK : out BOOLEAN) ;

This procedure write the datum DATUM to sub-address SUBADR at
MACSbus destination DEST. OK is set to TRUE if no errors occur.

procedure GET (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUBADR_ADDRESS_TYPE;
DATUM : out UINT16;
OK : out BOOLEAN) ;

This procedure request the datum DATUM from sub-address SUBADR at
MACSbus destination DEST. OK is set to TRUE if no errors occur.

procedure RESET;

This procedure resets the MACSbus interface.
function HK_STATUS return UBYTE;

Returns ICB status

BUT only for the last occurring error.
function ERROR_COUNT return UBYTE;

This returns the (modulo 256) error count of MACSbus errors since
the ICU code started running.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.15 icb_driver.adb

Extracted from file "icb_driver.adb"

Function

This file contains the body for the ICB_DRIVER package.

The package provides the lower-level routines that interface directly
with the Instrument Control Bus (ICB). The ICB is implemented using the
MACSbus protocol.

| msb | [[[[[| 1sb |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15

\ DEAD BITS \ | TX | EXT | SYNC | END |
[\ | ERR | ERR | ERR | COMM |

Note: the structure of the ICB command register is:

function GET_STATUS return ICB_STATUS_TYPE is

Read the ICB MACSbus status register port.
Extract and return the status word

function HK_STATUS return UBYTE is

Return the last noted **error** status word.

procedure PUT (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUBADR_ADDRESS_TYPE;
DATUM : UINT16;
OK : out BOOLEAN) is

Construct command word to be written to command register
based on supplied DEST and SUBADR

(Note, Instr = RD = 010 binary, Ext = 101 binary)

Write Datum to datum register port

Write command word to command register (thus initiating transfer)
Wait for completion of command (END COMM bit set),

an error (i.e. TX ERR, EXT ERR or SYNC ERR bit set) or a timout, and

remember the resulting status.

Flag an error if error bitset , a timout or all 'dead bits' set.
Otherwise, assume OK.

if no error
Do nothing.
Otherwise

Hand status, command word and datum over to be
processed by the Analyse Errors procedure.

Finally, ensure status register always reset by

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 73

calling procedure RESET.

procedure GET (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUBADR_ADDRESS_TYPE;
DATUM : out UINT1é6;
OK : out BOOLEAN) is

Construct word to be written to command register
based on supplied DEST and SUBADR
(Note, Instr = TI = 100 binary, Ext = 101 binary)

Write command word to command register
(which initiates transfer).

Wait for completion of command (END COMM bit set),
an error (i.e. TX ERR, EXT ERR or SYNC ERR bit set) or a timout, and
remember the resulting status.

Set OK as 'false' if error or timout or all dead bits set
Otherwise set 'true'

Get datum (this will be bad data if there was an error)
If no error

Do nothing.
Otherwise

Hand status, command word and datum over to be
processed by the Analyse Errors procedure.

Finally, ensure status register always reset by
calling procedure RESET.

procedure RESET is
To reset the ICB interface, write a "don't care" bit
pattern to the Status Register port.
Note new status.
procedure ANALYSE_ERRORS (COMMAND_WORD : UINT16;
DATUM : UINT16;
STATUS: ICB_STATUS_TYPE) is
Remember this error status.
Increment the error count (modulo 256)
Construct and send the appropriate 'MACSbus Error' Exception Report.

function ERROR_COUNT return UBYTE is

Return the (modulo 256) error count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 74

6.3.2.16 icu_nmem nmanager. ads

Extracted from file "icu_mem_manager.ads"

function load_memory loads memory corresponding to the MID

where MID is the MID

where START_ADDRESS is the start address of the load

where DATA is the data to load as an array of unsigned 16 bit words

where LENGTH is the length of the data in words

where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
returns a boolean: true on success and false on failure

function dump_memory dumps memory corresponding to the MID

where MID is the MID

where ADDRESS is the address of the dump request

where LENGTH is the length of the requested memory dump in words

where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
returns a boolean: true on success and false on failure

function calculate_memory_checksum calculates the checksum of the memory region
corresponding to the MID

where MID is the MID

where ADDRESS is the address of the crc request

where LENGTH is the length of the requested block of memory to crc in words

where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
returns a boolean: true on success and false on failure

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.17 icu_nmem nmanager. adb

Extracted from file "icu_mem_manager.adb"

Dependencies

with TYPES; use TYPES;
with UNCHECKED_CONVERSION;
with ARTCLIENT;

with PACKET;

with TC_VERIFY;

with TMQ;

with PEEK_POKE;

with CRC;

with TIME_MAN;

with SYSTEM;

with NHK;

task MEMORY_DUMP is

procedure SEND_PACKET (SUB_TYPE: PACKET.TELEMETRY_SUBTYPE; ADDRESS: LONG_INTEGER; DATA
UINT16_ARRAY; LENGTH : UINT16; MID: UINT16) is
CRC_LENGTH: UINT16;
DUMP_PACKET: PACKET.TM_TYPE (PACKET.MEMORY_MAINTENANCE_REPORTS, SUB_TYPE);
Flag CRC as present
Check if CRC is present
If subtype is for a memory_dump
Write the address into the packet
Write the packet_length into the packet
Write the data into the packet
If subtype is for a memory_checksum_report
Write the address into the packet
Write the packet_length into the packet
Write the memory_length into the packet
Send the packet
procedure READ_BLOCK (MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: INTEGER; DATA: in out
UINT16_ARRAY; SEQUENCE_COUNT_AND_SOURCE: UINT16) is
returns array 0 .. PACKET.MAX_TM_MEM_PARAMS_M1
Check the MID

When the MID is 0: icu operand/data space
For each word of data to be read

Calculate the address state
Enter critical section

Read from the address

Leave critical section

When the MID is 1: icu instr space
For each word of data

Calculate the address_state

Enter critical section

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Read from the address
Leave critical section

When the MID is wrong
Send unsuccessful acceptance packet

task body MEMORY_DUMP is

begin an infinite loop
if a call to start is made
Finish when there's nothing left
If there's more than a packet left
Read the memory
Send the data in a packet
Recalculate the no of words left

If there's less than or just one packet left
Read the memory

Send the data in a packet

function LOAD_MEMORY (MID: UINT16; START_ADDRESS: LONG_INTEGER; DATA: UINT16_ARRAY;

UINT16; SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is
When the MID is 0: icu operand/data space
For each word to be loaded
Calculate address state and address offset
Protect from address state change by entering critical section
Write the value to memory
Leave critical section

When the MID is 1: icu instruction space
For each word to be loaded

Calculate address state and address offset

Protect from address state change by entering critical section
Write the value to memory

Leave critical section

Otherwise the MID must be wrong
put params in array

Send unsiccessful acceptance (illegal mid) packet
function DUMP_MEMORY (MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is
Remember the dump parameters
Try to ask for dump
for 0.5 second
if can't dump, return false so that an unsuccessful execution can be sent
function CALCULATE_MEMORY_CHECKSUM(MID: UINT16;

ADDRESS: LONG_INTEGER;
LENGTH: UINT16;

SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN

Set crc syndrome to ffff to start with

loop

LENGTH:

is

76

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

until there's nothing left to crc

If there's more than or just one packet's worth left
Read a block of memory
crc it
recalculate length remaining

If there's less than a packet's worth left
Read a block of memory

crc it
finish

Send a memory checksum report with the checksum just calculated

77

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.18 inportance. ads

Extracted from file "importance.ads"

Function

This package defines the priority of tasks

The range of priorities is 10..200
The default is SYSTEM.DEFAULT_PRIORITY := 10;

Priorities are allocated in bands as follows:-

H/W Simulators (for debugging) 191 -> 200
CPU Watchdog reset 190

S/W Watchdogs 171 -> 189
"Guard" Tasks to control access to resources 151 -> 170
Task initiated by interrupts 141 -> 150
"Semaphore" Tasks 131 —-> 140
"Monitor Tasks" (eg. DPU, TM) 111 -> 130
"Working Tasks" e.g. HK, Science, Blue 11 -> 110
"Idle" Task 10

Priority Definitions

CPU Watchdog Reset

CPU_RESET : constant SYSTEM.PRIORITY := 190;
Software Watchdogs
DPU Heartbeat Watchdog Task

DPU_HEARTBEAT : constant SYSTEM.PRIORITY := 171;

"Guard Tasks" to control access to resources

Priority of task to control access to SSI i/face

SSI_GUARDED : constant SYSTEM.PRIORITY := 151;

Priority of task to control access to ICB i/face

ICB_GUARDED : constant SYSTEM.PRIORITY := 152;

Priority of task to control access to telemetry queue

TMQ_GUARDED : constant SYSTEM.PRIORITY := 153;

Priority of task to control access to HK record (NOT USED)
HK_ACCESS : constant SYSTEM.PRIORITY := 154;

Priority of task to guard running/not running status flag for

HK acquire (NOT USED)

HK_RUNNING_GUARD : constant SYSTEM.PRIORITY := 155;

High Priority Interrupt Initiated Tasks

Priority of BCP4 interrupt task

BCP4_INTERRUPT : constant SYSTEM.PRIORITY := 140;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

"Semaphore" Tasks

Priority of DPU Event semaphore task

EVENT_ACTION : constant SYSTEM.PRIORITY := 131;

Priority of Mutual exclusion semaphore task type

MUTEX_SEMAPHORE : constant SYSTEM.PRIORITY := 132;

Timer A Resource

TIMER_A : constant SYSTEM.PRIORITY := 133;

"Monitor Tasks" (eg. DPU, TC)

Priority of Task to monitor DPU data for events

DPU_DATA_MANAGER : constant SYSTEM.PRIORITY := 112;

Priority of Task to monitor Telecommand queue

TCPROC : constant SYSTEM.PRIORITY := 111;

"Working Tasks" (e.g. HK, Science, Blue)

Priority of task that collects and send HK data

HK_PROCESS : constant SYSTEM.PRIORITY := 92;

Load Blue Centroid Table (NOT USED IN BASIC)

LOAD_CENTROID_TABLE : constant SYSTEM.PRIORITY := 93;
Load Blue Window Table (NOT USED IN BASIC)
LOAD_WINDOW_TABLE : constant SYSTEM.PRIORITY := 94;

Priority of task to perform Thermal Control (NOT USED IN BASIC)

THERMAL_CONTROL : constant SYSTEM.PRIORITY := 95;

Priority of task that fetches DPU science data (NOT USED) .
FETCH_DPU_DATA : constant SYSTEM.PRIORITY := 96;

Priority of task that fetches other DPU data

(e.g. priority data) - NOT USED AS NOT IMPLEMENTED

DPU_OTHER_DATA_MANAGER: constant SYSTEM.PRIORITY := 97;

IDLE Task (NOT USED)

IDLE : constant SYSTEM.PRIORITY := 10;

79

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.19 nem nanager. ads

Extracted from file "mem_manager.ads"

function REQUEST (MEM_MANAGER_PACKET: PACKET.TC_TYPE) return BOOLEAN;

Where MEM_MANAGER_PACKET is a memory management packet
Returns BOOLEAN true success or false on failure
This merely forwards packets onto the ICU_MEM MANAGER

80

ICU FM Software Detailed Design

6.3.2.20 nem nmanager. adb

Extracted from file "mem_manager.adb"

Function

XMM OM/MSSL/SP/0205.3

This file contains the body for package mem_manager.
It calls icu_mem_manager or dpu_mem_manager to load/dump/check memory.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/SP/0061

Dependencies

with UNCHECKED_CONVERSION;
with PACKET;

with ICU_MEM_MANAGER;

with TMQ;

with TC_VERIFY;
with DEBUG;

function REQUEST (MEM_MANAGER_PACKET:

PACKET

Find length of CRC (is it there or not)

Calculate length of data is packet

Convert length from bytes to words

.TC_TYPE)

return BOOLEAN is

Check memory management packet subtype - load/dump/crc

Check address is valid

If not, send an unsuccessful acceptance packet

Check the MID

When the MID is for the ICU

Call LOAD_MEMORY in ICU_MEM_MANAGER

Otherwise send an unsuccessful acceptance packet

Return FALSE if something went wrong

When it's a dump memory command (subtype 2)

Check the MID

When the MID is for the ICU

(0, 1)

Call DUMP_MEMORY in ICU_MEM_MANAGER

Otherwise send an unsuccessful acceptance packet

if we had trouble, send an unsuccessful execution packet

When it's a memory crc (subtype 3)

Check the MID

If the MID is for the ICU (O,

1)

Call CALCULATE_MEMORY_CHECKSUM in ICU_MEM_MANAGER

Otherwise send an unsuccessful acceptance packet

Otherwise we have a wrong subtype for MEM_MANAGEMENT
So send an unsuccessful acceptance

8l

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3

82

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3

6.3.2.21 nenl oc. ads

Extracted from file "memloc.ads"

Function

This file contains the specification only package MEMLOC.
This package defines any fixed memory locations.

Define
Define
Define
Define
Define
Define

Define
(these

the

the

RBI

the

the

location of the ADASCOPE version ID we are running
size of the telemetry queues

Communication Area Location

location TC_LOC of the telecommand queue area

location TM_LOC of the telemetry queue area

other tc/tm special addresses (e.g. queue pointers)

BCP4/RBI interrupt processing save areas

are

fixed to assist assembler

and ADA routines to communicate with each other).

define RBI special addresses

Define Time Control Flags locations

Define the Bootstrap Parameter Area

Define SSI special address

83

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 84

6. 3.2.22 nodenan. ads

Extracted from file "modeman.ads"

function TO_MODE (MODE : UINT16; PARAM : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

Sets the current mode of the ICU.

function MODE return UINT16;

Returns the current mode of the ICU.

ICU FM Software Detailed Design

6. 3.2.23 nodenan. adb
Extracted from file "modeman.adb"

with RESET;
with DEBUG;
with TC_VERIFY;
with PACKET;

function TO_MODE (MODE UINT16; PARAM UINT16;

If MODE is full safe then

Accept telecommand

XMM OM/MSSL/SP/0205.3

SRC_AND_SEQUENCE_COUNT

Wait one second for acknowledgement to be sent

Set current mode to new mode
Else
Send unsuccessful command acceptance

function MODE return UINT16 is

Return the current mode

UINT16)

85

return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.24 nutex. ads

Extracted from file "mutex.ads"

Function

This file contains the specification for the MUTEX package. This
provides a mutual exclusion semaphore emulation;

task type SEMAPHORE is
entry SEIZE;

This entry point acquires the resource

entry RELEASE;

This entry point releases the resource

end SEMAPHORE;

end MUTEX;

86

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.25 nutex.adb

Extracted from file "mutex.adb"

Function

This file contains the body for the MUTEX package. This provides a
mutual exclusion semaphore emulation;

task body SEMAPHORE is

Assume, by default, the resource is not in use.
Begin infinite loop
Await a call to seize or release a resource.
If resource is flagged as not 'in use'
allow acceptance of a seize resource request
and set flag as 'in use'
If resource is flagged as 'in use'
allow acceptance of a release resource request

and set flag as not 'in use'

87

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 83

6.3.2.26 nhk. ads
Extracted from file "nhk.ads"

Function

This file contains the specification for package NHK.
The function of this package is to provide routine(s) to construct and

place Non-Periodic Housekeeping (NHK) packets into the telemetry queue
prior to their being transmitted to the ground.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

procedure PUT (SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;

SID_EX : PACKET.SID_TYPE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) ;

The procedure PUT constructs and places an NHK packet in the telemetry
queue. The interface is as follows:

where:

SUB_TYPE specifies the sub-type of NHK packet to be placed in the queue.
It will take one of the the following values:

PACKET.EVENT_REPORT
PACKET .EXCEPTION_REPORT
PACKET.MAJOR_ANOMALY_REPORT

SID_EX specifies the Structure Identifier (SID) to be loaded into the
packet

PARAMS specifies an array of parameters to be loaded into the packet.
Note - the index range of the parameter array should start at O.

SIZE specifies the number of parameters to be loaded from PARAMS.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.27 nhk. adb
Extracted from file "nhk.adb"

Function

This package body implements the body for package NHK.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

procedure PUT (SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;

SID_EX : PACKET.SID_TYPE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) 1is

Create an instance of the NHK Packet Data Structure.
If this packet's SID is enabled

Place current time in data field header

Flag presence or absence of CRC in data field header

Calculate and load packet length

Load in Structure Identifier (SID)

Load Number of Parameters

Load parameters into packet

Put packet record into queue

89

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6. 3.2.28 packet. ads

Extracted from file "packet.ads"

Function

This file contains the specification only package PACKET. This

defines the format of the telecommand and telemetry packets used by the OM
instrument and are derived from the description in the 'Telecommand

and Telemetry Specification', XMM-OM/MSSL/ML/0010.

90

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.29 peek_poke. ads

Extracted from file "peek_poke.ads"

Function

This file contains the specification for the XMM-OM low-level memory read/write.
The program is written in assembler and linked as foreign.

91

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.30 peek_poke.asm
File is peek_poke.asm

Name
peek

Description
Picks up an address to be peeked and the Address State from the stack,
switches to that Address State, peeks the address, selects the
original Address State and exits with the value peeked in r2.

Calling sequence
var := peek(address,address_state)

(All parameters & return type are UINT16)

Input
r0 Link register
r2 Uplevel register (not needed ?)
rl4 Frame pointer (not needed ?)
rl5 Stack pointer
Output
r2 Holds contents of address peeked
Altered

rl, r2, r3, r4d

Register map

r0 Link register

rl Holds entry Address State

r2 Return value

r3 Holds address to peek

r4 Holds Address State to switch to
Notes

Assembled for use as a foreign code segment in Ada.
Registers r0-r4 can be trashed.
All other registers must be preserved.

Assumptions

No error checking is performed.

peekaddr
Save the current address state and change address state
Read the memory location
Restore old address state
Return
Name
poke
Description

Picks up an address to be poked, the Address State and the value

to be poked into memory from the stack, switches to that Address

State, pokes the address, selects the original Address State and

exits with the value poked in r2.

Calling sequence

var := poke(value,address,address_state);

(A1l parameters & return type are UINT16)

92

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Input

r0

Link register

r2

Uplevel register (not needed ?)

rl4

Frame pointer (not needed ?)

rl5
Stack pointer

Output

r2
Holds value poked into memory

Altered

rl, r2, r3, r4

Register map

r0

Link register

rl

Holds entry Address State

r2

Holds wvalue to poke and return value

r3

Holds address to poke

r4
Holds Address State to switch to

Notes
Assembled for use as a foreign code segment in Ada.
Registers rO-r4 can be trashed.
All other registers must be preserved.
Is a function because procedure definition in Ada appears

not to link properly (doesn't see assembler label).

Assumptions

93

ICU FM Software Detailed Design

No error checking is performed.

pokeaddr

Save current address state
Write address with value
Change back to original address state

Return

XMM OM/MSSL/SP/0205.3

94

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 95

6.3.2.31 rbi.ads

Extracted from file "rbi.ads"

Function

This file contains the specification for the RBI package. This, in turn,
contains RBI service routines. The package RBI and RBI_INT together
control and monitor the RBI (Remote Bus Interface).

The code in this package is based on the description of the RBI chip
given in "Standard RBI Chip For OBDH Interface

(MC1031 Technical Informations 2.8-01/06/95 and from the
"OBDH Bus Protocol Requirements Specification", XM-IF-DOR-0002.

procedure INIT;

Performs RBI package initialisation.

function UNCORRECTED_OBT return OBT_TYPE;

Returns the uncorrected OBT (On-board Time) from the RBI.

function CORRECT_OBT (UNCORRECTED_OBT_VALUE : in OBT_TYPE) return OBT_TYPE;
Applies the correction to the OBT documented in the ADV technical note
2.8-01/06/95

function CORRECTED_OBT return OBT_TYPE;

Combines the functions of UNCORRECTED_OBT and CORRECT_OBT;

procedure SET_OBT (OBT_VALUE : in OBT_TYPE);
Sets the RBI OBT wvalue. This is usually extracted from an Add Time Code
packet TM(10,3).

function "+" (A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE;

Adds OBTs together N.B. only accurate to 2**-8 secs!!!!

function "-" (A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE;
Subtract OBTs N.B. only accurate to 2**-8 secs!!!!
Watchdog Control

procedure SET_SYNC_READY (SYNC_ENABLE : BOOLEAN) ;

Set/Unset Sync Enable Bit in RBI Configuration Register

task type WATCHDOG_TYPE 1is
pragma PRIORITY (IMPORTANCE.CPU_RESET) ;

entry PARAMS (TIMOUT : UINT16 ;
RESET_INTERVAL : UINT16 ;
OK : in out BOOLEAN) ;

entry ENABLE;

entry DISABLE;

end WATCHDOG_type;

This task controls the RBI watchdog.

ENABLE starts the task.
DISABLE stops the task.
PARAMS resets the time intervals used to control the watchdog.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 926

TIMOUT specifies what value should be loaded into the
watchdog timer counter.
RESET_INTERVAL specifies how often the software the software should
reload the time counter with TIMOUT.
function TM_READY return BOOLEAN;
Returns whether TM_READY (telelemetry ready to transmit) bit is set
in the RBI status register
procedure SET_TM_READY (SET_TO_ON : BOOLEAN) ;
Set/Unset TM_READY (telelemetry ready to transmit) bit in the
RBI status register
procedure TOGGLE_TM_READY;
Toggles TM_READY (telelemetry ready to transmit) bit in the
RBI status register
function TC_READY return BOOLEAN;
Returns whether TC_READY (ready to receive telecommand) bit is set
in the RBI status register
procedure SET_TC_READY (SET_TO_ON : BOOLEAN) ;
pragma INLINE (SET_TC_READY) ;
Set/Unset TC_READY (ready to receive telecommand) bit in status register
procedure SET_COMM_AREA_TM_INFO (START_ADDRESS : UINT16;
PACKET_LENGTH : UINT16);
Store start address and length of a telemetry packet in
the communications area (CCA).
procedure SET_COMM_AREA_TC_INFO (START_ADDRESS : UINT16);
Store start address of where the telecommmand should be stored
in the communication area (CCA).

function STATUS_REGISTER return UINT16;

Returns the RBI Status Register

function CONFIG_REGISTER return UINT16;

Returns the RBI configuration register

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.32 rbi.adb
Extracted from file "rbi.adb"

Function

This file contains the body for the RBI package. This, in turn,
contains RBI service routines. The package RBI and RBI_INT together
control and monitor the RBI (Remote Bus Interface).

The code in this package is based on the description of the RBI chip
given in "Standard RBI Chip For OBDH Interface

(MC1031 Technical Informations 2.8-01/06/95 and from the
"OBDH Bus Protocol Requirements Specification"”, XM-IF-DOR-0002.

| OBT O | OBT 1 | OBT 2 | OBT location

I ¢ | b 1 E | Register

10 1516 31132-42|xxx| Bits in Counter

| secs | FRAC | Secs/Fractions of sec
123 01-1 -19xxx| 2**? secs

Note the layout of the SCET in a packet for comparison (and its offset)

function UNCORRECTED_OBT return OBT_TYPE is
Ensure exclusive use of RBI configuration register
while we peform a Freeze operation.

"Freeze" the current time by writing appropriate instruction
to the RBI configuration register.

Release the register for use by other code.

Read and store bits 0-15 of the result.

Read bits 16-31 of the result

Read remaining bits 32-42 (result in high order bits)
Return the stored result (i.e. the OBT as defined above).

function CORRECT_OBT (UNCORRECTED_OBT_VALUE : in OBT_TYPE) return OBT_TYPE is

if bits 32 to 42 of the counter freeze 2 is greater than 3ff hex
subtract 1 from bits 0 to 31
Otherwise
subtract one from 2nd word
Return the result (a corrected OBT).

function CORRECTED_OBT return OBT_TYPE is

Get the OBT and correct it.

procedure SET_OBT (OBT_VALUE : in OBT_TYPE) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Prevent use of Freeze register while we do this.

Write the most significant 16 bits of the provided OBT
into the 1st RBI OBT update register

Write the next 16 bits of the provided OBT
into the 2nd RBI OBT update register

Release Freeze register

function "+" (A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE is

Prevent Overflows on addtions.
Convert the OBT's to long integers, add and convert back.

function "-"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE is

Prevent Overflows on subtractions.
Convert the OBT's to long integers, subtract and convert back.

function TO_OBT_TYPE (INPUT : in LONG_INTEGER) return OBT_TYPE is

This routine is used internally to the package to convert

a supplied 64 bit integer into an OBT format (3*16 bit words) .
function TO_LONG_INT (INPUT : in OBT_TYPE) return LONG_INTEGER is

This routine is used internally to the package to convert

a supplied OBT (3*16 bit words) into a 64 bit integer.

procedure SET_SYNC_READY (SYNC_ENABLE : BOOLEAN) is

Get the RBI configuration register value
If the Synchronisation Enable bit is not as required
Toggle it

task body WATCHDOG_TYPE is

Begin infinite loop
Await a call to one of the rendevous points
If a call to the set params entry point is made

Remember the specified timout period (units = 1/256 secs)
and reset interval

Flag as valid.
If a call to enable the watchdog is made
Determine if watchdog is already enabled
Write timout period to appropriate register
If necessary, enable watchog
If a call to disable the watchdog is made
Determine if watchdog is enabled
If so, disable it
OR
Provided the watchdog is enabled
and if no call to a rendevous is made for reset period
Reset counter in watchdog (thus as long as the ICU code

is running, the timout counter is never allowed to get
to zero.

98

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 99

procedure INIT is

Set up the comms area by writing appropriate values to registers
Ensure TC and TM ready flags are disabled for now

function TM_READY return BOOLEAN is

Get the RBI Status register value
Extract and return the TM_READY bit
procedure SET_TM_READY (SET_TO_ON : BOOLEAN) is
If the telemetry ready for transmission (TM_READY) bit is not
already in the requested status
Toggle it so it is
procedure TOGGLE_TM_READY 1is
Toggle the current RBI TM_READY (telemetry ready for transmission)
bit state

function TC_READY return BOOLEAN is

Get RBI status register value

Extract and return the TC_READY
(ready to receive a telecommand) bit

procedure SET_TC_READY (SET_TO_ON : BOOLEAN) is

Get current status RBI register.

If bit 11 (the TC_READY- ready to receive a telecommand) is
already in the required status

Do nothing
Otherwise if it needs to be on

Set it on in the RBI status read back earlier
else

Clear it in RBI status read back earlier.

Finally, write back the resulting RBI status word to the
register (NOTE: only bits 11-15 can be written to)

procedure SET_COMM_AREA_TM_INFO (START_ADDRESS : UINT16;
PACKET_LENGTH : UINT16) is
Store the start address of the TM packet in bytes,

relative to the start adddress of the CCA, in the CCA,

Store the packet length in the CCA in words but
with 1 subtracted and the MSB set, as per specification.

procedure SET_COMM_AREA_TC_INFO (START_ADDRESS : UINT16) is
Store in TC packet start address in bytes relative to the start
of the CCA, in the CCA.

function CONFIG_REGISTER return UINT16 is

Get the config register value

function STATUS_REGISTER return UINT16 is

Get the status register value

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 100

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 101

6.3.2.33 rbi_ih.ads

Extracted from file "rbi_ih.ads"

Function

This file contains the specification for the XMM-OM rbi interrupt handler.
The interrupt handler is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 102

6.3.2.34 rbi_ih.asm

File is rbi_ih.asm

This follows closely the document:
OBDH Bus Protocol Requirement Specification
XM-IF-DOR-0002
Fetch the interrupt counter
Check for impending overflow
If it's OK, increment it
otherwise avoid overflow
read config_reg
get the bits we're interested in
is it lossn (0)7?
is it instruction to user (1)°?
is it instruction to rbi (2)7?
is it other_it (3)?

otherwise serious error so safe

Read value from appropriate register
(which also clears the interrupt)

read instruction to user reg

If the register is 0, jump to tcg_add
when it's an Instruction to RBI interrupt

read instruction to rbi reg
This could be caused by warm reset and we
call back into the bootstrap (TBI)

If it's any other sort of interrupt
This is an error (so we safe or discard with exception, TBD)
and finish off

set tc_ready to false
if full
Tell s/c we can't accept packets (This ought never happen as we take packets away in
time?)
read input_pointer from memory
add one
mod it with no_tc_slots
keep for future
store it again
Now set up new address for next packet
start_address = 16#404# + r0*248
if not tc_g.is_full
i.e.
if (input_pointer+1l)&3 != output_pointer
(increment input_pointer)
the required mask is 0
else required mask = set_tc_ready_mask (16#0010#)
Read status
'and' this status with set_tc_ready_mask (16#0010#);
Compare this with the required mask
If they're the same, finish off
if REQUIRED_MASK = SET_TC_READY_MASK (16#0010%#)
'or' the status that was read with set_tc_ready_mask (16#00104#)
else 'and' the status that was read with clear_tc_ready_mask (l6#ffef#)
xio this to the rbi_status reg
finish off
Read status
If the tm_ready bit is set
write a reset output transfer request to the rbi config reg
Increment the output_pointer
Read the input_pointer and compare output_pointer with input_pointer
If they're equal
finish off
Otherwise calculate the address and write it to cca_tm_start
Calculate the length and write it to cca_tm_length
Read the RBI status
'and' it with the tm_ready_mask (16#00804#)
finish off
if zero, write a reset_output_transfer_request to the RBI config reg
finish off
Tidy up after finishing
FINISH OFF:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 103

Recover registers
Turn on interrupts
Back from whence we came

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.35 reset.ads

Extracted from file "reset.ads"

Function

This file contains the specifications for the XMM-OM reset package.
reset is written in assembler and linked as a foreign.

procedure RESET (PARAM : UINTL16);

This procedure changes the mode of the ICU.

104

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 105

6.3.2.36 reset.asm

File is reset.asm

Name
reset

Description
When called, enables the start up ROM and jumps to
location zero.
Disable interrupts
Stop timer B
Make sure we are in address state 0
Copy new interrupt vectors to data space
Copy new interrupt vectors to instruction space
Reselct page 0
Clear all interrupts
Now start op code
Now start operational code

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 106

6.3.2.37 ssi_driver.ads

Extracted from file "ssi_driver.ads"

SSI_INTERRUPT is the SSI interrupt handler (written in Ada but
connected via the assembly code ssi_ih.asm)

This procedure resets the SSI link
(software only-—--there is no hardware reset)

SSI_ERROR_COUNT : UINT16 := 0;

This variable is a counter for the number of SSI errors that have occured
HEARTBEAT_COUNTER : UINT16 := O;
This variable is a counter for the number of heartbeats that have occured
It wraps at Oxffff back to 0 then 1 etc.
SSI_INT_COUNT : UINT16 := 0;

This variable is a counter for the number of SSI interrupts received
It wraps back to 0 after Oxffff

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 107

6.3.2.38 ssi_driver.adb
Extracted fromfile "ssi_driver.adb"

Function

This file contains the body for package ssi_driver.
It writes to and reads from the SSI interface.

Reference

The SSI interface is described in a document.

Dependencies

with SYSTEM;

with UNCHECKED_CONVERSION;

with INTRINSICS ; use INTRINSICS;
with ARTCLIENT;

with DEBUG;

with MEMLOC;

Suppress all checks to speed up

The first word of an SSI block read back by the ssi_ih interrupt handler
is stored at MEMLOC.SSI_FIRST_WORD_LOCATION for speed.

procedure SSI_INTERRUPT is

This (Ada code) is called from ssi_ih.asm (assembler code)
interrupts are already disabled by the 31750's microcode
- Read Data -

Read first word of SSI block from the special address that
the assembler code (ssi_ih) wrote to

remember the initial timer B value
Turn on RBI interrupts
loop
get the SSI status
If there's more data to read - read it
if the count of words in this block gets far too large, store an error
otherwise increment the READ count
reset the old stored value of timer B because we haven't stopped receiving data yet

but if there's nothing to read this time round
check the timer

if timer B has wrapped round, add on 64K

exit the loop when we've been waiting to read something for 40 timer-B ticks (4 ms)
read the SSI status
if there's been an overflow

clear the overflow

do a dummy read to clear

store an error "-8"

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 108

end loop
get the second word of the SSI block from the output buffer
this contains the number of words minus two that should be in the block
if the number read is just too large
remember an error "-11"
read the SSI status
if there's been an overflow
clear the overflow
do a dummy read to clear

store an error "-7"

clear SSI interrupt by writing to the SSI interface

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 109

6.3.2.39 ssi_ih.ads

Extracted from file "ssi_ih.ads"

Function

This file contains the specification for the XMM-OM ssi interrupt handler.
The interrupt handler is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.40 ssi_ih.asm

File is ssi_ih.asm

Sort out the stack
Read first word of SSI block from DPU to ICU and store for Ada
Jump to Ada SSI interrupt handler
Tidy up
Beware of strange arithmetic (eliminate complaints)
Prohibit preemption
Recover R15 contents
Release interrupt stack
Recover register R15
Recover registers RO to R3
Return from interrupt

110

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 111

6.3.2.41 task_report.ads
Extracted from file "task_report.ads"

Function

This file contains the specification for package TASK_REPORT.

The function of this package is to provide routine(s) to construct and
place Task Parameter Report packets into the telemetry queue
prior to their being transmitted to the ground.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

procedure PUT(TID : UBYTE;
FID : UBYTE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) ;

The procedure PUT constructs and places a Task Param Report packet
associated with TID and FID
in the telemetry queue. The interface is as follows:

where:

PARAMS specifies an array of parameters to be loaded into the packet.
Note - the index range of the parameter array should start at O.

SIZE specifies the number of parameters to be loaded from PARAMS.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.42 task_report.adb
Extracted from file "task_report.adb"

Function

This file contains the body for package TASK_REPORT.

The function of this package is to provide routine(s) to construct and
place Task Parameter Report packets into the telemetry queue
prior to their being transmitted to the ground.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

procedure PUT(TID : UBYTE;
FID : UBYTE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) is

Flag presence or absence of CRC in data field header
Calculate and load packet length
Load parameters into packet

Put packet record into queue

112

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 113

6. 3.2.43 tasknan. ads

Extracted from file "taskman.ads"

Function

This package contains the specification for the TASKMAN package.
The function of this package is to interpret the Task
Management Telecommands and forward them to the appropriate code.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

function REQUEST (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN;
The function REQUEST provides the means of passing the telecommand
to the package for action.
where:

TC_PACKET contains the packet to be interpreted and executed.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6. 3.2.44 tasknman. adb

Extracted from file "taskman.adb"

Function

This package contains the body for the TASKMAN package.
The function of this package is to interpret the Task
Management Telecommands and forward them to the appropriate code.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

function REQUEST (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

Set up default error condition of command not being accepted.
Select action on the basis of packet subtype.
When the packet subtype is Start Task...
Set up default error of illegal TID
Select Action on the basis of the Task Identifier (TID)
if its a normal TMPSU normal heater configuration command
Turn on 1 heater
Wait a bit
then turn on 2nd heater
Flag as accepted
If its a secondary voltages command
Enable them and flag as accepted
If its a DEMPSU reset
Reset/Turn-on the DPU
And flag as accepted
If its a watchdog command
Enable it
and flag as accepted
If its an HK command
Start it
and flag as accepted
If it's an ICB Direct command.
Allow direct writing to the ICB
and flag as accepted.
when TID is any other value
End of selection
When the packet subtype is Stop Task...

Set up default error of illegal TID

114

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 115

Select Action on the basis of the Task Identifier (TID)
If it's a TMPSU heater command
Turn off one heater
Wait a bit
then turn off the other heater
Flag as accepted
If it's a secondary voltage command
Disable them and flag as accepted
If it's a watchdog command
Disable it
and flag as accepted
If it's an HK command
Disable it
and flag as accepted
If it's an ICB Direct Command
Disallow direct writing to the ICB ports
and flag command as accepted.
when TID is any other value ————-------———---
Flag as invalid task
End of Selection
When the packet subtype is Load Task...
Set up default error of illegal FID
Select Action on the basis of the Task Identifier (TID)
when it's a ICB Direct command
and the FID value indicates a write to an ICB port.
and direct writing to ICB ports is enabled

Output supplied datum to specified
address and subaddress

In this code, always flag as accepted.
Otherwise
Issue an Unsuccessful Acceptance Packet
and flag command as unaccepted.
Any othe value of FID
Flag it as an invalid command.
If it's a watchdog command
If the FID indicates a watchdog timout class of command
Reset the controlling parameters
Otherwise
Flag as an invalid command
when TID is any other wvalue
Flag as a coomand error of illegal an TID

End of Selection

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 116

When the packet subtype is Report Task...
Set up default error of illegal FID
Look at the TID
If it's a valid read ICB port type
and direct access to the ICB is enabled

Request the appropriate task report packet
and flag as an accepted command

otherwise
Issue an unsuccessful acceptance packet.
and flag as such
Otherwise
Flag as an illegal comand with a TID error
When the packet subtype is Mode Transition...
Set up a default error of illegal mode

Then perform change to operational mode via the Mode Manager
code.

If the supplied command was an invalid task management command,
inform the ground with an Unsuccessful Acceptance Command packet.

Return success only if we had both a valid task command and
it was not rejected by called functions as a bad command.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 117

6.3.2.45 tc_g.ads
Extracted from file "tc_g.ads"

Function

This file contains the specification for the package TC_Q. That package
supplies the routines that manipulate the telecommand queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010
The OBDH protocol is defined in XM-IF-DOR-0002

Define number of slots NO_SLOTS in Telecommand Queue
Define telecommand queue data structure as follows

Description Size (Words)

R R

* Packet Slot O * 124
K *
* and so on until... * 124
K *
* Packet Slot n-1 * 124

R R

Two pointers are used to indicicate the 'occupation' of the queue.

The Input Pointer indicates the packet slot into which the
the next packet will be written.

The Output Pointer indicates the packet slot from which the
the next packet should be taken.

In addition, there is a communication area which the spacecraft examines
to determine the location of a TM packet to be collected or into which
a TC packet should be loaded.

R R R i i

* RBI Status Word *
K *
* Start Address of TM Source Packet *
K *
* Length of TM Source Packet *
K *

* Start Address of TC Source Packet *
dAh Ak hkhhhkhhkhrkhhhhhkhrhrhkhhkhkrdrhrhhdxhxkx

Create instance of Q data structure, and fix at location in memory
Define the input and output pointers at a fixed location in memory.

procedure RESET;

This procedure resets (i.e. clears) the TC queue

procedure REMOVE (PCKT : in out PACKET.TC_TYPE);

This procedure removes a packet from the TC queue
where:
PCKT is the packet removed from the TC queue.

procedure ADD;

This procedure informs the ICU that the s/c had DMAd a TC packet

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

NOTE: This routine is now obsolete and should have been removed.
Its function is now handled by a low level assembler routine
in package RBI_IH.

function IS_EMPTY return BOOLEAN;

This function determines whether the TC queue is empty
It returns TRUE if the queue is empty
function IS_FULL return BOOLEAN;

This function determines whether the TC queue is full
It returns TRUE if the queue is full

118

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.46 tc_g.adb
Extracted from file "tc_g.adb"

Function

This file contains the body for the package TC_Q. It
supplies the routines that manipulate the telecommand queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010.
The OBDH protocol is defined in XM-IF-DOR-0002

R R R

* Packet Slot O * 124
K *
* and so on until... * 124
K *
* Packet Slot n-1 * 124

R R

Two pointers are used to indicicate the 'occupation' of the queue.

The Input Pointer indicates the packet slot into which the
the next packet will be written.

The Output Pointer indicates the packet slot from which the
the next packet should be taken.

In addition, there is a communication area which the spacecraft examines
to determine the location of a TM packet to be collected or into which

a TC packet should be loaded.

R R R i R

* RBI Status Word *
K *
* Start Address of TM Source Packet *
K *
* Length of TM Source Packet *
K *

* Start Address of TC Source Packet *
dAhhkhhkhkhhkhkhkhrhhhkhhhrdrhhhhkrdrhhhhdxhxkx

procedure RESET is

Set the start and end pointers to the 1lst packet
Store the Start address of the 1lst packet in the comm area

Inform s/c we are ready to receive a packet by setting the
appropriate RBI status word bit.

procedure REMOVE (PCKT : in out PACKET.TC_TYPE) is

Copy packet from current slot
calc next pointer value

Inform s/c we are ready to receive a packet again by setting the

appropriate RBI status word bit (provided the queue is not full).

procedure ADD is

NOTE: This routine is now obsolete and should be removed.

119

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 120

Its function is now handled by a low level assembler routine in
package RBI_TIH.

Tell s/c we can't receive TC packets

Packet has already been stored by s/c
So calculate next slot index

Now set up new address for next packet
Now tell s/c we can accept TC packets again if g not full

function IS_EMPTY return BOOLEAN is

Return TRUE if Input Pointer equals the Output Pointer
otherwise return FALSE

function IS_FULL return BOOLEAN is

calc index of next (after current) packet slot to be written

return TRUE if same as next location to be read

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 121

6.3.2.47 tc_verify.ads

Extracted from file "tc_verify.ads"

Function

This file contains the specification for the TC_VERIFY package.

That package supplies the routines that construct and send the
telecommand verification packets.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

procedure SUCCESSFUL_ACCEPTANCE
(TC_SEQ_COUNT_AND_SRC: UINT16);

This procedure constructs and sends a successful telecommand acceptance
packet to the telemetry queue.
where:

TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
telecommand being verified.

procedure UNSUCCESSFUL_ACCEPTANCE
(TC_SEQ_COUNT_AND_SRC: UINT16;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY);

This procedure constructs and sends an unsuccessful telecommand
acceptance packet to the telemetry queue.

where:

TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
telecommand being verified.

ERROR_CODE specifies the reason for failure
PARAMS specify any parameters associated with the
error code (NOTE - unlike other routine in the

ICU code, the first index of this array must be 1)

procedure UNSUCCESSFUL_EXECUTION
(TC_SEQ_COUNT_AND_SRC: UINT16;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY);

This procedure constructs and sends an unsuccessful telecommand
execution packet to the telemetry queue.

where:

TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
telecommand being verified.

ERROR_CODE specifies the reason for failure
PARAMS specify any parameters associated with the

error code (NOTE - unlike other routine in the
ICU code, the first index of this array must be 1)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.48 tc_verify.adb

Extracted from file "tc_verify.adb"

Function

This file contains the body for the TC_VERIFY package.

That package supplies the routines that construct and send the
telecommand verification packets.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

The specification for this package's internal routine follows:

procedure UNSUCCESSFUL (

SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
TC_SEQ_COUNT_AND_SRC: UINT16;
ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY) ;

where:

SUB_TYPE is the packet sub-type being created

TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
telecommand being verified.

ERROR_CODE specifies the reason for failure
NO_PARAMS specifies how many params are supplied
PARAMS specify any parameters associated with the

error code

The body for this package's internal routine follows:

procedure UNSUCCESSFUL (

SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
TC_SEQ_COUNT_AND_SRC: UINT16;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;

PARAMS : UINT16_ARRAY) 1is

Create verification packet of requested sub-type

Get the time and place it in packet

Flag CRC as present

Store the number of parameters supplied

Calculate and load packet length

Copy originating sequence count and source flag into packet
Copy error code into packet

and then copy in the associated parameters

Place packet in queue

The bodies for this package's externally visible routines follow:

procedure UNSUCCESSFUL_EXECUTION

122

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 123

(TC_SEQ_COUNT_AND_SRC: UINT16;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY) 1is

Call UNSUCCESSFUL with sub-type specifying Unsuccessful Execution

procedure UNSUCCESSFUL_ACCEPTANCE
(TC_SEQ_COUNT_AND_SRC: UINT1l6;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY) 1is

Call UNSUCCESSFUL with sub-type specifying Unsuccessful Acceptance

procedure SUCCESSFUL_ACCEPTANCE
(TC_SEQ_COUNT_AND_SRC: UINT16) is

Create verification packet of sub-type Succesful Acceptance

Get the time and place it in packet

Flag CRC as present

Calculate and load packet length

Copy originating sequence count and source flag into packet

Place packet in queue

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 124

6.3.2.49 tcq.ads
Extracted from file "tcg.ads"

Function

This file contains the specification for the package TCQ.
That package supplies the low level routines that manipulate the
telecommand queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010.
The OBDH protocol is defined in XM-IF-DOR-0002.

procedure RESET;
This procedure resets (i.e. clears) the telecommand queue

procedure GET (PCK : in out PACKET.TC_TYPE;
GOOD_PACKET : out BOOLEAN) ;

This procedure returns the next valid telecommand packet received
to the caller
where:
PCK is the returned packet.
GOOD_PACKET - always returns TRUE.
procedure ADD renames TC_Q.ADD;
The procedure is called when an EOTC Instruction to User
interrupt is received (i.e. that a TC packet has been added to the
TC queue) .
NOTE: This routine is now obsolete and should have been removed.

Its function is now handled by a low level assembler routine
in package RBI_IH.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 125

6.3.2.50 tcq.adb
Extracted from file "tcg.adb"

This package body implements the specification given in TCQ.ADS

Dependencies

with TC_Q;

with TMQ;

with TC_VERIFY;

with TYPES; use TYPES;
with CRC;

with HK;

with DEBUG;

Data Global to this package

As this package only returns valid packets, it holds a table
of types and subtype, and any associated error conditions,
as follows:

Subtype 0 1 2 3 4 5 * Comments
Type
1 7?7?2222
2 I ooITITITI Device Commanding
3 7?7?2222
4 7?2?22
5 I oo oo oI Task Management
6 I oooITITI Memory Maintenance
7 7?7?2222
8 7?2?2222
9 I oI ooolI Telemetry Maintenance
10 I TIToolIolI Time Management
11 7?7?2222
12 7?7?2220
13 I oITITITITI Test Commands
14 7?7?2220
15 7?7?2222
where:

o = valid type/subtype, i = invalid subtype, ? = invalid type

function VALID_PACKET (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

If a good packet
Perform Valid APID check
If not, note and flag it
If still a good packet
Perform Packet Length Check (is it in a valid range)
If not, note and flag it
If still a good packet
Perform CRC check
If the CRC check fails
Note and flag it
If still thought to be OK

Look up error condition, if any, as a function of packet type
and subtype, from the table described above.

Select next action on the basis of the value returned.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

When packet OK
Return a value of TRUE
When an invalid packet is present
Determine correct error code

Load up the packet type and subtype into the parameter
array

Finally flag as bad
If it's not a good packet so far

Construct and place Unsuccessful Acceptance
Telemetry Packet in the telemetry queue.

and count the bad packets
Return status of packet

procedure RESET is

Perform Reset of the TC queue.
procedure GET (PCK : in out PACKET.TC_TYPE;
GOOD_PACKET : out BOOLEAN) is
Commence loop
If the telecommand queue is empty
then wait a while
otherwise
Remove a packet from the queue
Use function VALID_PACKET to check the packet.
If it returns a value of TRUE
(i.e. we have a valid packet).
then exit from this procedure, indicating success

End Loop

126

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 127

6.3.2.51 time_man. ads

Extracted from file "time_man.ads"

Function

The file contains the specification for the Time Manager Package TIME_MAN.
This package, together with the package BCP4_IH, supplies routines to
support On-Board Time Management.

function REQUEST (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN;

This routine implements the On-Board Time Management Packets TC (10, x)
contained in TC_PACKET. The format of these packets is defined in
the Packet Structure Definition document PX-RS-0032. Of those, only
the following are required to be supported.

TC(10,2) - Enable Time Synchronization.
TC(10,3) - Add Time Code.
TC(10,5) - Enable Time Verification.

In this release, the function always returns TRUE.

function VERIFICATION_ACTIVE return BOOLEAN;

Returns TRUE if time verification is active
function SYNCHRONISATION_ACTIVE return BOOLEAN;
This function returns TRUE if the process of synchronizing the time
is in progress.
function TIME_STAMP return PACKET.TIME_TYPE;
This function returns the current on-board time in a format suitable

for direct insertion into a packet.
(see the RBI package for details of the format).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.52 time_nan. adb

Extracted from file "time_man.adb"

Function

The file contains the body for the Time Manager Package TIME_MAN.
This package, together with the package BCP4_IH, supplies routines to
support On-Board Time Management.

function REQUEST (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

Determine action on the basis of the packet sub-type.
If we have received a Time Sync Packet

Inform world that we are synchronising by setting
the appropriate flag.

Enable time synchronisation by commanding the
RBI configuration register appropriately.

If we have received an Add Time Code Packet

Remember the most significant byte from the time information
supplied by the packet.

Copy remaining significant 4 bytes into work array

Convert them to RBI OBT (On-Board Time) format and
load into RBI registers

Now disable Time synchronisation by commanding the RBI
configuration register accordingly.

Finally, tell world we are no longer synchronising by resetting
the appropriate flag.

and ensure other flag is set off to indicate time is now valid
If we have received an Enable Time Verification Packet

Inform world we are verifying the time by setting the
appropriate flag

Start BCP4 processing task (see below)
and leave it to do the work
For any other packet sub-types.
Do nothing.
In this release, always return success.

task body BCP4 is

Begin looping
Wait until a call to start the task occurs
Enable BCP4 processing at interrupt level

then wait for bcp4 int to be processed by code in
package RBI_IH (i.e. load up the OBT)

Correct the On Board Time obtained from RBI
Create instance of a Time Management Report packet
Now build Time Verification Packet

Flag CRC as present

128

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 129

Calculate and load packet length

Construct Most Sig Byte of time stamp from value
extracted from Add Time Code packet and held in memory.

Construct remaining bytes from corrected OBT
And send it to to TM queue.
and disable BCP4 processing
and inform world we have finished verifying the time.

function SYNCHRONISATION_ACTIVE return BOOLEAN is

Return the value of the synchronising flag

function VERIFICATION_ACTIVE return BOOLEAN is

Return the value of the verification flag

function TIME_STAMP return PACKET.TIME_TYPE is
Construct Most Sig Byte of time stamp from value extracted
earlier from the Add Time Code packet and held in memory
Get current corrected On-Board Time from the RBI
Construct remaining bytes of time stamp from it;

Return the time stamp.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 130

6.3.2.53 tm.man. ads

Extracted from file "tm_man.ads"

Function

This file contains the specification for the telementry manager package, TM_MAN.

Reference

function REQUEST (TM_MAN_PACKET : PACKET.TC_TYPE) return BOOLEAN;
This function provides the means of passing the telecommand
to the package for action.
where

TM_MAN_PACKET contains the tc packet to be interpreted and executed.
function SID_STATUS(SID : PACKET.SID_TYPE) return BOOLEAN;

This function reports on the TM packet generation status of a
packet with the corresponding packet type specified by SID.

where
SID is the tm packet sid to be reported

If the generation of a TM packet with this SID is enabled then
the function will return TRUE, FALSE otherwise.

function REPORT_STATUS (SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

This procedure is responsible for generation of a TM(9,1) packet in
response to a TC(9,1) packet.

where

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if command was successfully accepted

—--—— function CHANGE_ALL (ENABLE_DISABLE : BOOLEAN;
- SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

This procedure changes the generation status of all applicable

TM packets to that specified by ENABLE_DISABLE. The
SEQUENCE_COUNT_AND_SRC parameter is needed in case of unsuccessful
command execution

—-——— function CHANGE_SPECIFIC (ENABLE_DISABLE : BOOLEAN;
- SID : PACKET.SID_RECORD_ARRAY;
- SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

This procedure changes the generation status of the TM packets
specified by the SID parameter to that specified by ENABLE_DISABLE.
SEQUENCE_COUNT_AND_SRC parameter is needed in case of unsuccessful
command execution

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.54 tmman. adb

Extracted from file "tm_man.adb"

Function

This file implements the body of the package TM_MAN for BASIC

Reference

Create the enabled array which contains true if a particular
sid is to be enabled (ie a tm packet with that sid can be
generated)

Create the valid array which contains true if a particular
sid is defined

function REQUEST (TM_MAN_PACKET : PACKET.TC_TYPE) return BOOLEAN is

Check whether CRC is present

Now determine packet subtype and act accordingly
1 for a Report TM Packet Generation Status
2 for an enable Generation of all TM Packets
3 for a Disable Generation of all TM Packets
4 for an Enable Generation of Specific Packets
5 for a Disable Generation of Specific Packets
Any other value return false

function SID_STATUS(SID : PACKET.SID_TYPE) return BOOLEAN is

Return the SID value in the valid sid array
or'ed with the value in the enables array

function REPORT_STATUS (SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN is

Loop over the valid sid array, getting all SID enabled status
and put them in an array making up the data portion of the
telemetry packet
Now create rest of the telemetry packet
Now put complete packet into the tm queue

function CHANGE_ALL (ENABLE_DISABLE : BOOLEAN;

SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN is

Loop over the enabled sid array

Record enabled status in the array

function CHANGE_SPECIFIC (ENABLE_DISABLE : BOOLEAN;

SID : PACKET.SID_RECORD_ARRAY;

SEQUENCE_COUNT_AND_SRC : UINT16;

PKT_LENGTH : UINT16) return BOOLEAN is

131

ICU FM Software Detailed Design

Calculate

XMM OM/MSSL/SP/0205.3

the number of sids to change

If valid number of sids then

Set up

error parameters just in case

Test whether sid to change is a wvalid one

If this is a valid sid

If enabling this sid

incorrect

Cannot

If status

Record

else

Determine sid type is
When fast hk
If slow hk is already enabled then
cannot enable fast hk
When slow hk
If fast hk already enabled then
cannot enable slow hk
number of sids
change any sids
of the sid can be changed then

changed sid status

send unsuccessful acceptance packet

132

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 133

6.3.2.55 tmg. ads
Extracted from file "tm_g.ads"

Function

This file contains the specification for package TM_Q.

That package supplies the low level routines that manipulate the
telemetry queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010
The OBDH protocol is defined in XM-IF-DOR-0002

Two pointers are used to indicate the 'occupation' of the queue.

The Input Pointer indicates the packet slot into which the
the next packet will be written.

The Output Pointer indicates the packet slot from which the
the next packet should be taken.

Define the input and output pointers at a fixed location in memory.

procedure RESET;

This procedure resets (i.e. clears) the TM queue

procedure ADD (PCKT : in PACKET.TM_TYPE);

This procedure adds a packet to the TM queue
where:
PCKT is the packet to be added to the TM queue.

function IS_FULL return BOOLEAN;

This function determines whether the TM queue is full
where IS_FULL returns TRUE if the queue is full
procedure REMOVE;
This procedure remove a packet from the telemetry queue after
the s/c indicates it has taken a copy with an
EOTM Instruction to User.

NOTE: This routine should have been removed as its function is now
performed by a low-level assembler routine in package RBI_IH.

function PACKET_COUNT return UINT16;

Returns current packet sequence count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.56 tmg. adb
Extracted from file "tm_g.adb"

Function

This file contains the body for package TM_O.

That package supplies the low level routines that manipulate the
telemetry queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010.

The OBDH protocol is defined in XM-IF-DOR-0002

The telemetry queue is a area of memory defined as follows:

Description Size (Words)

R R

* Packet Slot 0 * 259
o *
* and so on until... * 259
o *
* Packet Slot n-1 * 259

R R

Two pointers are used to indicate the 'occupation' of the queue.

The Input Pointer indicates the packet slot into which the
the next packet will be written.

The Output Pointer indicates the packet slot from which the
the next packet should be taken.

In addition, there is a communication area which the spacecraft examines

to determine the location of a TM packet to be collected or into which
a TC packet should be loaded.

KA Ak A Ak ko k

* RBI Status Word *

* Start Address of TC Source Packet *

KA Ak ko k

Create instance of Q data structure, and fix at location in memory
function IS_EMPTY return BOOLEAN is
Return TRUE if Start of Data Pointer equals End of Data
pointer
otherwise return FALSE

Specify bodies for routines visible externally

procedure RESET is

Set the start and end pointers to the lst packet
Reset the sequence count to zero

procedure ADD (PCKT : in PACKET.TM_TYPE) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 135

If the queue is full

Then raise a TM Q Overflow exception (This should never happen
as TMQ package should guard against this?)

Otherwise
Store packet at next free slot
Store sequence count in packet

Prepare sequence count for next packet, performing 'wraparound'
if necessary

If CRC required
Convert packet to an array of 16 bit word
Calc CRC location in words from pre calc. packet length in bytes
Calculate CRC value
and place it at CRC location
Check here whether queue is now shown as empty.
If it is then the
queue was empty prior to packet insertion.
(Note: this is so because we haven't updated the pointers yet
and so still reflect pre-insertion status.)
If so, we need to inform s/c of the new packet address
(derived from the Output Pointer) which is now available.
Also tell the spacecraft its length.
Note that the INPUT_POINTER = OUTPUT_POINTER at this stage.

Finally, ensure TM_READY bit is up,
to let spacecraft know about there are packets to take.

Otherwise
Do nothing, because there are still packets to be
removed and therefore the spacecraft has the information

it needs from a previous pass.

Finally, calculate next slot index by incrementing the
input pointer (and 'wrapping around' if necessary).

procedure REMOVE is
NOTE: This routine should have been removed as its function is now
performed by a low-level assembler routine in package RBI_IH.
Ensure TM_READY bit is down while we process this
Calculate new output index following packet removal
If the queue is now empty
Leave TM_READY bit low to inform s/c of the fact
Otherwise, inform s/c of packet info for next packet fetch
Ensure TM_READY bit is up, to let s/c more packets to come

function IS_FULL return BOOLEAN is

Calc index of next (after current) packet slot to be written
Return TRUE if same as next location to be read

function PACKET_COUNT return UINT16 is

Return the current packet sequence count

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.57 tnpsu.ads

Extracted from file "tmpsu.ads"

Function

This file contains the specification for the TMPSU package. The package
contains the software to control and monitor the Telescope Module Power
Supply. It is based on document XMM-OM/IALS/SP/0002 -

"TMPSU Electrical Specification".

procedure SEND (
SUBADR : in SUB_ADDRESS_TYPE;
DATUM : in UINT1l6;
OK : out BOOLEAN) ;

Sends the data value DATUM to the MACS subaddress SUBADR of the
TMSPU. OK is set to TRUE if no errors occur.

procedure ACQUIRE (SUBADR : in SUB_ADDRESS_TYPE;
DATUM : out UINT16;
OK : out BOOLEAN) ;

Reads the data value DATUM from the MACS subaddress SUBADR of the
TMSPU. OK is set to TRUE if no errors occur.

function SET_SECONDARY_VOLTAGES (ON_OFF : BOOLEAN;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Enables or disables (ON_OFF = TRUE or FALSE respectively)

the secondary

voltages that power the blue electronics.
SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function SECONDARY_VOLTAGES_ENABLED return BOOLEAN;

Returns the status of the Secondary Voltages (TRUE = ON) for display
in Housekeeping.

function SET_COARSE_POSITION_SENSOR_CURRENT (CURRENT : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Sets the current for the coarse sensor illuminating LED in 'raw' units
to be used when moving the filter wheel. The value is not used until

a call to COARSE_SENSOR is made.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function COARSE_SENSOR_CURRENT return UINT16;

Returns the current for the coarse sensor illuminating LED
in 'raw' units
that is used when moving the filter wheel.

procedure COARSE_SENSOR(ON_OFF : BOOLEAN) ;

Turns on/off (ON_OFF = TRUE/FALSE) the illuminating LED used
by the filter wheel coarse sensor. It uses the current specified in an
earlier call to SET_COARSE_POSITION_SENSOR_CURRENT.

function SET_PHASE (DEVICE : in DEVICE_TYPE;
PHASE : in UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

136

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Enables the phase coils for the stepper motor driving DEVICE
(FILTER_WHEEL or DICHROIC) as specified by the bit pattern contained
in PHASE (1 = enabled) as follows:

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function FW_PHASE return UINT16;
Returns a bit pattern specified by earlier calls to SET_PHASE
commanding the filter wheel stepper motor for which the bit pattern
PHASE was non zero. As before, the bits are defined as follows
(1 = enabled)

function DM_PHASE return UINT16;

Returns the last commanded dichroic phase

Returns a bit pattern specified by ealier calls to SET_PHASE
commanding the dichroic stepper motor for which the bit pattern
PHASE was non zero. As before, the bits are defined as follows
(1 = enabled)

function SET_HEATER CONFIG(CONFIG : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)

The bit pattern in CONFIG specifies which heater should be on or off

(1 =on) as follows:

L.S.B
| Temperature Control | Focussing
| Main | Forward | Metering | Secondary |
| | | Rods | Mirror |
| (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4)

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function HEATER_CONFIG return UINT16;

Returns a bit pattern specifying the current heater configuration
as follows:

L.S.B
| Temperature Control | Focussing
| Main | Forward | Metering | Secondary |
| | | Rods | Mirror |
| (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4)

function CURRENT (SECONDARY_VOLTAGE : UINT16) return UINT16;

Returns the current (in 'raw' units) for the secondary supply circuit
specified by SECONDARY_VOLTAGE as follows:

+25 VvV : 0
+15 Vv : 1
+11 VvV : 2

137

return BOOLEAN;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 138

+5.3 V 3
-5.3 Vv 4
-15 Vv 5
+28 V 6
+ 5 V 7

The values returned are used in the Housekeeping.

function COARSE_POSITION_SENSED return BOOLEAN;

Returns TRUE if the filter wheel coarse sensor is currently detected.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 139

6.3.2.58 tnpsu.adb
Extracted from file "tmpsu.adb"

Function

This file contains the body for the TMPSU package. The package
contains the software to control and monitor the Telescope Module Power
Supply. It is based on document XMM-OM/IALS/SP/0002 -

"TMPSU Electrical Specification".

procedure SEND (
SUBADR : in SUB_ADDRESS_TYPE;
DATUM : in UINT1l6;
OK : out BOOLEAN) is

Send the DATUM to MACS sub-address SUBADR at the MACS address
corresponding to the TMPSU on the Instrument Control Bus.

OK is TRUE if no errors occur.
procedure ACQUIRE (SUBADR : in SUB_ADDRESS_TYPE;

DATUM : out UINT16;
OK : out BOOLEAN) is

Gets the DATUM at MACS sub-address SUBADR at the MACS address
corresponding to the TMPSU on the Instrument Control Bus.

OK is TRUE if no errors occur.
function SET_SECONDARY_VOLTAGES (ON_OFF : BOOLEAN;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Remember the last commanded secondary status.

As the bit defining the status of the secondaries is

combined with other bits, construct the bit pattern from the

requested status of the secondaries and the last known values

of the other bits.

The layout is as follows:

MSB

where CS0->CS2 specify which secondary circuit is being monitored.
SC0->SC1 specify the coarse sensor illuminating current.
SE specifies whether the secondaries are enabled.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus).

Allow electronics to settle.
If we had a macsbus error
Restore record of current status to that of the last status.

Always return OK as the ICB routines inform the ground if there
was an error.

function SECONDARY_VOLTAGES_ENABLED return BOOLEAN is

Return the recorded status of the secondary supplies.

function SET_COARSE_POSITION_SENSOR_CURRENT (CURRENT : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 140

Store the sensor current for later use (note that unlike
operational mode code there is no check on the value).

Always return OK.

function COARSE_SENSOR_CURRENT return UINT16 is
Return the 'raw' current to be used when powering the illuminating
LED for the filter wheel coarse sensor.

procedure COARSE_SENSOR (ON_OFF : BOOLEAN) is

If the LED is to be turned on

Determine the current value from the earlier value(given by
SET_COARSE_POSITION_SENSOR_CURRENT or a default value).

otherwise

specify it as zero
As the bits defining the 'raw' current to drive the illuminating
LED of the filter wheel coarse sensor is combined with other bits,
construct the bit pattern from the determined value of current and

the last known values of the other bits.

The layout is as follows:
MSB

where CS0->CS2 specify which secondary circuit is being monitored.
SC0->SC1 specify the coarse sensor illuminating current.
SE specifies whether the secondaries are enabled.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus).

function SET_PHASE (DEVICE : in DEVICE_TYPE;

PHASE : in UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

It should be noted that the same TMSPU MACSbus sub address
is used to command the stepper motor phases for both the
filter wheel and dichroic as follows

where D1->D4 are the dichroic motor phases.
F1->F4 are the filter wheel motor phases.

Determine which device is being commanded.
If the filter wheel is being commanded
Insert the requested phase bit pattern into the
the appropriate part of the command word to be

to be sent to the mechanisms.

If it's a non zero phase, remember for recall
as last active phase for the filter wheel.

If it's the dichroic that's being commanded
Insert the requested phase bit pattern into the
the appropriate part of the command word to be

to be sent to the mechanisms.

If it's a non zero phase, remember for recall
as last active phase for the dichroic.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus).

Always return OK as the ICB routines inform the ground if there

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 141

was an error.

function FW_PHASE return UINT16 is

Return the last non zero phase pattern sent to the filter wheel.

function DM_PHASE return UINT16 is

Return the last non zero phase pattern sent to the dichroic.
function SET_HEATER_CONFIG(CONFIG : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
Loop over permitted heater configurations

If the request heater configuration is one of them

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus).

Remember the requested heater configuration for
HK and heater control purposes.

and exit with a success flag.
Otherwise exit (in this release, also with a success flag).

function HEATER_CONFIG return UINT16 is

Return the last commanded heater configuration.

function CURRENT (SECONDARY_VOLTAGE : UINT16) return UINT16 is

If the requested circuit is outside the allowed range of circuits
return 0

As the bits defining which secondary circuit is to be monitored are

combined with other bits, construct the bit pattern from the

requested secondary circuit and the last known values

of the other bits.

The layout is as follows:
MSB

where CS0->CS2 specify which secondary circuit is being monitored.
SCO0->SC1 specify the coarse sensor illuminating current.
SE specifies whether the secondaries are enabled.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus) .

Wait for electronics to settle.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus) to initiate an analogue to digital conversion.

Wait a bit

Get datum containing the value from the appropriate address
on the MACSbus.

The format of the datum now received is as follows:

where C0->C7 is the 'raw' current of the requested secondary circuit.
XX is "don't care".
CS is coarse sensor status, 1 = 'seen'

Extract current value from the C0->C7 field within the datum

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 142

and return it.

function COARSE_POSITION_SENSED return BOOLEAN is
Get datum containing the value from the appropriate address
on the MACSbus.

The format of the datum now received is as follows:

where C0->C7 is the 'raw' current of the requested secondary circuit.
XX is "don't care".
CS is coarse sensor status, 1 = 'seen'.

Extract sensor status from the CS field within the datum
and return it.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 143

6.3.2.59 tny. ads

Extracted from file "tmg.ads"

Function

This file contains the specification for the TMQ package.
The function of that package is to provide routines to control
access to the telemetry queue

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

The protocol it implements is defined in the OBDH Bus Protocol
Requirement Specification XM-IF-DOR-0002

procedure RESET;

The procedure RESET resets (i.e. clears) the telecommand queue
procedure REMOVE;

The procedure REMOVE is called upon receipt of an EOTM Instruction to

User from the spacecraft. This indicates that a TM packet has been

taken

NOTE: This routine should be removed as its function is now
performed by a low-level assembler routine in package RBI_IH.

task GUARDED is
pragma PRIORITY (IMPORTANCE.TMQ_GUARDED) ;

entry PUT(PCK : in PACKET.TM_TYPE);
end GUARDED;

PUT access to the telemetry queue is via the above task GUARDED
to force queuing for access to the TM queue.
The task entry PUT places a packet in the telemetry queue
where:
LEVEL indicates the priority
PCK is the packet to be inserted into the queue.

function PACKET_COUNT return UINT16
renames TM_Q.PACKET_COUNT;

Rename (for convenience) the PACKET_COUNT function of package TM_OQ.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.3.2.60 tny.adb
Extracted from file "tmg.adb"

Function

This file contains the body for the TMQ package.

The function of that package is to provide routines to control

access to the telemetry queue. It, in turn, call lower level routine in
package TM_O.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

The protocol it implements is defined in the OBDH Bus Protocol
Requirement Specification XM-IF-DOR-0002

where:
PCK is the packet to be inserted into the queue

procedure SEND_TO_TM_Q (PCK : in PACKET.TM_TYPE) is

Commence infinite loop
If the telemetry queue is full
Wait a bit
Otherwise
Place packet in queue (via TM_Q.ADD)
and exit from loop
end infinite loop

task body GUARDED 1is

First, reset the telemetry queue.
Then commence infinite loop
Now wait on a rendevous at the PUT entry point

Send the packet to the telemetry queue
(via SEND_TO_TM_Q)

End of infinite loop

procedure RESET is

Reset the telemetry queue

procedure REMOVE is

Call the 'remove packet' routine for the telemetry queue.

NOTE: This routine should have been removed as its function is now
performed by a low-level assembler routine.

144

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 145

6.3.2.61 types.ads
Extracted from file "types.ads"

Function

The function of this package specification is to define the basic data
types used throughout the ICU ADA code.

Definitions
Define Unsigned Byte type UBYTE
Define Signed Byte type BYTE
Define Unsigned 16 bit integer type UINT16
Define Signed 16 bit integer type INT16
Define Signed 32 bit type INT32
Define Unsigned Byte Unconstrained Array type UBYTE_ARRAY
Define Signed Byte Unconstrained Array type BYTE_ARRAY
Define Unsigned 16 bit Integer Unconstrained Array type UINT16_ARRAY
Define Signed 16 Bit Integer Unconstrained Array type INT16_ARRAY
Define Unsigned Nibble type
Define Unsigned Nibble Array Type
Define single bit Integer Unconstrained Array type BIT_ARRAY

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 146

6. 3. 2. 62 USERDEFS. asm
File is USERDEFS. asm

ICU FM Software Detail ed Design

6.4 Operational Code

Operational code is built from the foll owing fil es:-

XMM OM/MS4./SP/02053

ADA Assenbl er
Speci fications Bodi es
bcpd4_ih.ads bcpd4_ih.asm
crc.ads crc.adb
debug.ads debug.adb
dempsu.ads dempsu.adb

detanalog.ads

detanalog.adb

detdigital.ads

detdigital.adb

detector.ads

dpu.ads

dpu.adb

dpu_mem_manager.ads

dpu_mem_manager.adb

dpu_mnemo.ads

heater.ads heater.adb
hk.ads hk.adb
icb.ads icb.adb

icb_driver.ads

icb_driver.adb

icu.ada

icu_mem_manager.ads

icu_mem_manager.adb

INTVEC.ASM

importance.ads

mechanism.ads

mechanism.adb

mem_manager.ads

mem_manager.adb

memdpu .ads

memdpu.adb

memloc.ads

modeman.ads

modeman.adb

mutex.ads

mutex.adb

nhk.ads nhk.adb

packet.ads

peek_poke.ads peek_poke.asm
rbi.ads rbi.adb

rbi_ih.ads rbi_ih.asm

reset.ads

reset.asm

science_fm.ads

science_fm.adb

ssi_driver.ads

ssi_driver.adb

ssi_ih.ads

ssi_ih.asm

ssi_in.ads

ssi_in.adb

ssi_out.ads

ssi_out.adb

task_report.ads

task_report.adb

taskman.ads

taskman.adb

tc_g.ads tc_g.adb
tc_verify.ads tc_verify.adb
tcg.ads tcqg.adb

time_man.ads

time_man.adb

timer_a_ih.ads

timer_a_ih.adb

tm_man.ads

tm_man.adb

tm_g.ads tm_g.adb
tmpsu.ads tmpsu.adb
tmg.ads tmg.adb
types.ads

USERDEFS.ASM

The foll owing pages contains ‘ Structured English’ extraded from comments in the file. They should be studied in
conjunction with the ade listings as they have alditional comments regarding implementation detail s but are omitted
in this document for clarity.

e The comments extraded from the spedfication files (*.ads) describe ‘what’ a given padkage does.
* The comments extraded from the ssciated bod files (*.ads or *.asm) describe ‘how’ a given padkage
performs the operations defined by the spedfication.

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 148

In addition, thefile icu. xtof can be supplied. It may be used in conjunction with the TARTAN utility
adaref1750a to extrad the dependencies, list of cdlsand inverse cdlsand crossreferenceinformation.

To extrad the cdl graph (of ‘cdlers).

adarefl750a —-input icu.xtof -call_graph

To extrad the cdl graph (of ‘cdled by’).

adarefl750a -input icu.xtof -call_graph -reverse

To extrad the cdl graph (of ‘cdlers’) from one padkage.

adarefl750a —input icu.xtof -call_graph —-from package_namne

To extrad alist of dependent relationships.

adarefl750a —-input icu.xtof -dependency_graph

To extrad alist of dependent relationships from one padkage.

adarefl750a —-input icu.xtof -dependency_graph —-from package_nane

To extrad a dphabeticd li st of user defined entiti es, containing sourcelocation of dedaration, source location of
whereit is st and used.

adarefl750a —-input icu.xtof -xref

To extrad a dphabeticd li st of user defined entiti es, containing sourcelocation of dedaration, source location of
whereit is st and used for one padkage.

adarefl750a -input icu.xtof -xref —-about package_nane

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 149

6.4.1 Main Program

6.4.1.1 icu.ada

Extracted from file "icu.ada"

Function

This procedure is the 'main' program for the ICU. It

1) Initialises the ICU then...
2) Routes all valid received telecommand packets as appropriate

procedure ICU is

Initializations

Initialise RBI related matters
(including the communications area and TC and TM ready bits)

Start the RBI Watchdog.
Reset the ICB interface

Wait a bit, then turn on secondary power,
thus enabling the blue electronics.

Once secondaries settled, we now initialise the mechanism
package (primarily to ensure we have an initial value of the
coarse and fine sensors to be used in housekeeping)

First ensure actual initial configuration is the same as default
assumed in code.

Then start the automatic heater algorithms
Then start the automatic heater control algorithms
Ensure that telemetry queues are initialised

Ensure the telecommand queues are initialised (after which we can
receive telecommands

Now start the DPU processing package.
Now start the Housekeeping.
Now begin the endless control loop
Wait for a valid telecommand packet (via TMQ.GET procedure)

When a valid packet is obtained, route it to the appropriate package
on the basis of the packet type

For a Task Management Packet
Send it to the TASKMAN package
For a Memory Maintenance Packet
Send it to the MEM_MANAGER package.
For a Telemetry Management Packet
Send it to the TM_MAN package.
For a Time Management Packet
Send it to the TIME_MAN package.
For a Test packet
do nothing

For all other packet types

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

do nothing (as this shouldn't happen)
end of selection by packet type
If nothing has indicated that the packet was bad

Place a Successful Acceptance Telemetry Packet in the
telemetry queue.

Increment the 'Good Packet' counter (modulo 65536) for
inclusion in the HK.

Otherwise

Increment the 'Bad Packet' counter (modulo 65536) for
inclusion in the HK.

End the controlling loop

150

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 151

6. 4.2 Packages

6.4.2.1 bpc4_ih. ads
Extracted fromfile "bcp4_ih. ads"

Function

This file merely contains the specification for the XMM-OM bcp4 interrupt
handler. It specifies that the body of bcp4_ih is written in assembler

and therefore directs the linker to link it as foreign.

The interrupt handler had to be written in assembler for speed so as not to
block other interrupts for too long.

package BCP4_1IH is
pragma FOREIGN_BODY ("ASM") ;
end BCP4_TH;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.2 bcp4.ih.asm
File is bcp4_ih.asm

Save some space for the Linkage Pointer
Save some space for the Stack Pointer
Registers r0-rl can be trashed.
All other registers must be preserved.
So save RO and R1 on the stack
Fetch the interrupt counter
Check for impending overflow (is it 7fffh)
If it's OK (not 7fffh), increment it
otherwise avoid an overflow by setting it to 8000h
Then write it back to memory
Check the BCP flag and if it is not 1, we don't have to bother doing any
work so jump to to the cleanup and end
"Freeze" the current time by reading the "freeze_obt_instr" register
and writing the value to the config register.
Perform dummy xio to give the RBI time to freeze (just a delay)
Read bits 0-15
and write to memory
Read bits 16-31
and write to memory
Read remaining bits 32-42 (result in high order bits)
and write to memory
Set the BCP flag (in memory) to 2 to show we've now got a time available
Recover registers
Turn interrupts back on
Return back from whence we came

152

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 153

6.4.2.3 crc. ads

Extracted from file "crc.ads"

Function

This file contains the specification for the CRC package.
This contains the CRC algorithms for XMM which
are based on the algorithm described in ESA technical note PX-TN-00540

function CALC (DATA : UBYTE_ARRAY; NUMBER : UINT16) return UINT1l6;

This function returns the unsigned 16 bit integer checksum of the
first NUMBER locations in unsigned byte array DATA.

function CHECK_TC(TC : PACKET.TC_TYPE) return UINT16;

This function calculates the checksum of a whole TC packet,

using the packet length stored within the packet to determine its
length. Returns value of zero if as expected, otherwise returns
value of checksum found, NOT including the 2 byte checksum

field at the end of the packet.

It thus checks whether that packet TC contained a valid CRC.

function CALC_TM(TM : PACKET.TM_TYPE) return UINT16;

This function calculates the value to be inserted into

the checksum field of packet TM, using the packet length stored

within the packet to determine the length of the data to be checksumed
(i.e. NOT including the checksum field at the end of the packet).

function CALC_MEM (CURRENT_CRC : UINT16;
MEM : UINT16_ARRAY;
NO_WORDS : INTEGER) return UINT16;

This function is used to calculate a checksum for a large block

of data on the assumption that not all the data will be available

at once. Therefore, it uses the CURRENT_CRC value returned by a prior
call as input to the current call and then calculates the CRC of the
NO_WORDS 16-bit words of data contained in MEM. The result is the CRC
for all blocks of data supplied (NOTE: the sequence is restarted by
supplying a value of all binary ones for CURRENT_CRC) .

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.4 crc.adb

Extracted from file "crc.adb"

Function

This file contains the body for the CRC package.
This contains the CRC algorithms for XMM which
are based on the algorithm described in ESA technical note PX-TN-00540

function CLC (SYNDROME : UINT16; DATA : UBYTE_ARRAY; NUMBER : UINT16)
return UINT16 is

This function returns the unsigned 16 bit integer checksum of the
first NUMBER locations in unsigned byte array DATA. An initial wvalue
of the currently 'running' checksum is contained in SYNDROME.

It is a function internal to this package.

The following test data was used (taken from the reference above).

DATA CRC
e+t e+
00 00 1D OF
00 00 00 CC 9cC
AB CD EF 01 04 A2
14 56 F8 9A 00 01 7F D5

First define the lookup table for efficient calculation (equivalent of
routine InitLtbl in above reference.

loop over NUMBER data points
Calculate RHS term by
1) Shift right the input checksum by 8.
2) Exclusive Or result with current datum.
3) Mask off the 8 least significant bits of the result.
4) Use result to index into table of pre-calculated coefficients.
Calculate LHS term by
1) Shift left the input checksum by 8.
2) Mask off the 8 most significant bits of the result.
Calculate checksum by Exclusive Oring the two terms.
Return final value of the checksum.

function CALC(DATA : UBYTE_ARRAY; NUMBER : UINT16) return UINT16 is

Call the CLC routine with SYNDROME set to all binary 1's.

function CHECK_TC(TC : PACKET.TC_TYPE) return UINT16 is

This function calculates the checksum of a whole packet,

using the packet length stored within the packet to determine its
length. Returns value of zero if OK, otherwise returns

value of checksum found, NOT including the 2 byte checksum

field at the end of the packet.

It thus checks whether that packet contained a valid CRC.

Call routine CALC (using the whole packet as data and deriving
its length from internal length information) to check that the result
(i.e. the checksum of whole packet) is zero

If it is, return zero

Otherwise

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Return checksum found (not including the CRC field).

function CALC_TM(TM : PACKET.TM_TYPE) return UINT16 is

This function calculates the value to be inserted into

the checksum field of packet TM, using the packet length stored

within the packet to determine the length of the data to be checksumed
(i.e. NOT including the checksum field at the end of the packet).

Calculate the appropriate length to be used from the length
field in the packet, then use routine CALC to calculate the
checksum of packet TM and return the value.

function CALC_MEM (CURRENT_CRC : UINT16;

MEM : UINT16_ARRAY;
NO_WORDS : INTEGER) return UINT16 is

This function is used to calculate a checksum for a large block
of data on the assumption that not all the data will be available
at once. Therefore, it uses the CRC value returned by a prior
call as input to the next one.
Loop over the block of data, 1 16 bit word at a time.
Call function CLC to calculate the 'running' CRC for just 1 word.

Return the resulting CRC.

155

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.5 debug. ads
Extracted from file "debug.ads"

Function

This file contains the specification and body for the package DEBUG.
As its name implies, it contains a collection of routines useful
for debugging.

Dependencies

with TYPES; use TYPES;
with SYSTEM;
with MEMLOC;

Where ITEM is the progress number to write to memory

This procedure writes the number "ITEM" to a fixed location in memory
and is used to keep a record of how far the running code has progressed.
When this memory location is read later, after a crash, it will provide

good idea as to what was running as the code crashed.

Where ITEM is the progress number to write to memory
This is another progress indicator like the above.

Where ITEM is the exception number to write to memory

When the running code produces an Ada exception, the Ada exception

handler should call this procedure which will write the exception

number to a special known location in memory that can be read afterwards

to help understand why the code crashed.

Define some constants for the progress and exception numbers.

In this way, the high order bits of the code numbers used indicate the

package involved. These are detailed in the introduction to the
Detailed Design Document.

156

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.6 debug. adb
Extracted from file "debug.adb"

Function

This file contains the specification and body for the package DEBUG.
As its name implies, it contains a collection of routines useful
for debugging.

with PACKET;
with NHK;
package body DEBUG is

procedure PROGRESS (ITEM : UINT16) is

Where ITEM is the progress number to write to memory

ITEM identifies which part of the code is running: the package and

a location in that package
If we haven't had an Ada exception

Write ITEM to the FIRST_EXCEPTION standard memory location

ITEM identifies which part of the code is running: the package and

a location in that package
After an Ada exception the value stored at this address
will not change

Write ITEM to the LAST_PROGRESS memory location
This will continue to update after an Ada exception

procedure PROGRESS_SPECIAL(ITEM : UINT16) is

Where ITEM is the progress number to write to memory

Like procedure package, this writes a vaule to a special location

in memory for debug purposes. It is used so as not to interfere
with the location used by procedure PROGRESS.

Write ITEM to a standard memory location
(also called PROGRESS_SPECIAL)

procedure PROGRESS_SPECIAL2 (ITEM : UINT16) is

Where ITEM is the progress number to write to memory

Write ITEM to a standard memory location
(also called PROGRESS_SPECIALZ2)

procedure EXCEPTION_REPORT (ITEM : UINT16) is

Where ITEM is the progress number to write to memory
If this is the first exception trapped
Write ITEM to the fixed memory location FIRST_EXCEPTION

reserved to store the first exception.
This will not be overwritten.

ITEM identifies in which part of the code the exception occured:

the package and which exception was handled

Then write ITEM to the fixed memory location reserved to store the

last exception (LAST_EXCEPTION) .
This is overwritten at each exception.

157

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 158

6.4.2.7 denpsu. ads

Extracted from file "dempsu.ads"

Function

This file contains the specification for the DEMPSU package
It provides routines to control the Digital Electronics Module
Power Supply Unit.

procedure DPU_RESET;

Resets the DPU after a 'latch-up' or turns it on again if it is
powered down.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 159

6.4.2.8 denpsu. adb

Extracted from file "dempsu.adb"

Function

This file contains the body for package DEMPSU
It provides routines to control the Digital Electronics Module
Power Supply Unit.

procedure DPU_RESET is

To reset/turn on the DPU, write a "don't care" bit
pattern to the DPU Reset Register of the DEMPSU control card.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 160

6.4.2.9 detanal og. ads

Extracted from file "detanalog.ads"

Function

This file contains the specification for the detanalog package. It
controls the analogue card of the detector electronics. This card is
described in document XMM-OM/MSSL/SP/81.2, "Blue Detector Analogue Card
Requirement Specification”

function SET_FINE_POSITION_SENSOR_CURRENT (CURRENT : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

CURRENT specifies the illuminating LED current (in 'raw' units)
to be used for the filter wheel fine position sensor when the filter
wheel is moved.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns TRUE if the command is accepted.
function FINE_SENSOR_CURRENT return UINT16;
Returns the current (in 'raw' units) for the fine sensor
specified by an earlier call to SET_FINE_POSITION_SENSOR_CURRENT.
procedure FINE_SENSOR (ON_OFF : BOOLEAN) ;
If ON_OFF is TRUE, turns on the illuminating LED of the Filter Wheel Fine
Sensor using a 'raw' current value supplied by an earlier call to
SET_FINE_POSITION_SENSOR_CURRENT.
If ON_OFF is FALSE, the current is set to zero.
function FINE_POSITION_SENSED return BOOLEAN
renames TIMER_A_TIH.FINE_POSITION_SENSED;
Returns TRUE when the filter wheel fine position sensor is detected
function SET_FLOOD_LED_BIAS_CURRENT (LED : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Sets the flood led's bias current to the value in LED ('raw' units).

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns TRUE if the command is accepted.

procedure SET_HV_ENABLE (ENABLED : BOOLEAN) ;

Enable or Disables (ENABLED = TRUE or FALSE respectively) the High Voltage
Facility on the analogue card.

NOTE: This is done by writing to the appropriate ICB MACSbus port
with the relevant bit set.

It should be noted that this port is also used to set the value for
Vmcpl. Consequently, the last value of Vmcpl requested is resent.

procedure SET_HV (HV : HV_TYPE;
VALUE : UINT16);

Sets the High Voltage HV to 'raw' bit pattern VALUE.
The raw bit pattern is obtained from CONVERT_HV_TO_BITS.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 161

HV specifies one of mcp23 (DETECTOR.V_MCP23)
mcpl (DETECTOR.V_MCP1l) or
Vcathode (DETECTOR.V_CATHODE,

function LOAD_HV_RAMP_PARAMETERS (VOLTAGE : UINT16;
VALUE : UINT16;
RAMP_RATE : UINT16;
FORCE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Loads and checks the ramp parameters for a single mcp voltage
where

VOLTAGE specifies one of mcp23, mcpl or Vcathode

VALUE is the voltage level required
RAMP_RATE is the rate of ramping in volts/second
FORCE causes the hv ramp task to ignore errors

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if the command was successfully accepted
function HV_RAMP_START (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;
Starts the hv ramp task
where

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if the command was successfully accepted
function HV_RAMP_STOP (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;
Stops the hv ramp task
where

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if the command was successfully accepted

function PERFORM_HV_SAFING(LEVEL : UINT16; SRC_SEQ COUNT : UINT16) return BOOLEAN;

Performs safing of the high voltages

where

LEVEL determines whether to perform full (DETECTOR.FULL_SAFE)

or intermediate safing (DETECTOR.HALF_SAFE) .
SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field

of the associated telecommand.

Returns TRUE if the function was successfully executed

function SAFE_ONE_HV (VOLTAGE : HV_TYPE; SRC_SEQ COUNT : UINT16) return BOOLEAN;

Safes one high voltage

where

VOLTAGE specifies one of mcp23 (DETECTOR.V_MCP23)
mcpl (DETECTOR.V_MCP1l) or
Vcathode (DETECTOR.V_CATHODE,

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 162

Returns TRUE if the function was successfully executed
function GET_SET_GO (VOLTAGE : HV_TYPE) return INTEGER;

Checks that value is between the upper and lower ranges (obsolete)

function CONVERT_HV_TO_BITS (VOLTAGE : HV_TYPE; VALUE : INTEGER) return UINT16;

Converts the value of voltage to a bit pattern suitable for output to the hv card
where
VOLTAGE specifies one of mcp23 (DETECTOR.V_MCP23)

mcpl (DETECTOR.V_MCP1l) or

Vcathode (DETECTOR.V_CATHODE,

VALUE is the voltage level requested in engineering units (volts)

Returns UINT16 bit pattern representing VALUE
function GET_CONVERTED_HV (VOLTAGE : HV_TYPE) return INTEGER;

Gets the hv level of voltage in engineering units
where
VOLTAGE specifies one of mcp23 (DETECTOR.V_MCP23)
mcpl (DETECTOR.V_MCP1l) or
Vcathode (DETECTOR.V_CATHODE,

Returns the voltage level

procedure SET_ADC_ACCURACY (ACCURACY : UINT16);

Sets the analogue to digital accuracy of the card as follows:

5=1%
7=0.1%
9 = 0.01%

function GET_ADC_ACCURACY return UINT16;

Gets the analogue to digital accuracy of the card as specified by SET_ADC_ACCURACY

function GET (ADC_ITEM : UINT16)
return UINT16;

Initiates an analogue to digital conversion of channel ADC_ITEM to collect and
returns its value measured to accuracy ACCURACY set by SET_ADC_ACCURACY.
The items are as follows:

Channel Description

0 Thermistor 0 - BPE

1 Thermistor 1 - Reference B
2 Thermistor 2 - Reference C
3 Thermistor 3 - Main

4 Thermistor 4 - Forward 1

5 Thermistor 5 - Forward 2

6 Thermistor 6 - CCD

7 Thermistor 7 - Reference A
8 Vcathode

9 Vmcpl
10 Vmcp23
11 +5V
12 +15V
13 -15v
14 Precision Reference Voltage
15 Filter Wheel Analogue Reference

Note - due to noise 'spikes' on the returned values, 5 readings are taken
in quick succession and an average of the middle 3 in value is returned.

function HV_ENABLED return BOOLEAN;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 163

Returns the status of the HV enabled flag from the status word.

function FLOOD_LED_BIAS_CURRENT
return UNIBBLE ;

Returns the value of the last commanded flood led current

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 164

6.4.2.10 detanal og. adb
Extracted from file "detanalog.adb"

Function

This file contains the body for the detanalog package. It

controls the analogue card of the detector electronics. This card is
described in document XMM-OM/MSSL/SP/81.2, "Blue Detector Analogue Card
Requirement Specification”. This defines the data structures used in this
package.

function SET_FLOOD_LED_BIAS_CURRENT (LED : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
If the ICU is not in engineering mode
Send ground an appropriate command rejection message
And return a failure condition of FALSE.
Update the record of data about to be written to port
and ensure it is within range (max value 15).
Note - as the flood LED port is also used to control the Fine Sensor LED
Current for the filter wheel, we must merge the supplied flood LED bit
pattern with last recorded value used to command the fine sensor LED.
Write result to appropriate port on the ICB MACSbus.
Return a success condition of TRUE.
Note, in the event of a ICB error at this point,
the ground should notice that the ICB error
count has increased.
procedure SET_HV_ENABLE (ENABLED : BOOLEAN) is
Update the data to be written to port (this is a merging of the
requested HV enable setting and the last Vmcpl commanded (as they
share the same port).
(Note, no failsafe commanding of voltage levels, we assume
user knows what they're doing!)
Write result to the port on the ICB MACSbus.
procedure SET_HV (HV : HV_TYPE;
VALUE : UINT16) is
Examine which HV is being commanded.

If it is Vcathode

Merge with previous value used for Vmcp23
(as they share the same port)

Make a note we are to write to that port
If it is Vmcpl

Merge with previous value used for HV enable
(as they share the same port)

Write result to the port on the ICB MACSbus.
If it is Vmcp23

Merge with previous value used for Vcathode
(as they share the same port)

Make a note we are to write to that port

If we noted that we are to write to the Vcathode/Vmcp23 port

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Write the merged values to that port on the ICB MACSbus.

function GET (ADC_ITEM : UINT16)
return UINT16 is

Ensure exclusive use of the MUX channel using a mutex semaphore

(this is to prevent other routines

selecting another channel while we are still processing this one).

Specify required MUX Channel by writing the channel number
to the appropriate 'Set MUX Address' ICB MACSbus port.

Allow analogue voltage to settle.

Repeat the following 5 times.
Start ADC Conversion by reading from the 'Start ADC' port.
Wait 10 ms

Read from the 'ADC Read' port

Extract data bit field from returned datum and store it in a table.

Sort into order the 5 returned values.

Release MUX channel for use by others by clearing MUTEX semaphore.

Return average of the middle 3 of the sorted values.

function HV_ENABLED return BOOLEAN is

Get Datum from the appropriate MUX port on the ICB MACSbus.

Extract the bit from the datum corresponding to the HV Enabled status

and return it.

procedure SET_ADC_ACCURACY (ACCURACY : UINT16) is

Note requested accuracy in variable ADC_ACCURACY.

function GET_ADC_ACCURACY return UINT16 is

Return requested accuracy stored in variable ADC_ACCURACY.
function FLOOD_LED_BIAS_CURRENT
return UNIBBLE is
Return the value of the last flood LED value written.
function SET_FINE_POSITION_SENSOR_CURRENT (CURRENT : UINT16;

SRC_AND_SEQUENCE_COUNT
return BOOLEAN is

Ensure that value supplied does not exceed maximum,
then store its value in variable SENSOR_CURRENT,
but perform no other action.

Always return success (TRUE).

function FINE_SENSOR_CURRENT return UINT16 is

Return the last value of the Fine Sensor current supplied

to SET_FINE_POSITION_SENSOR_CURRENT stored in variable SENSOR_CURRENT.

procedure FINE_SENSOR (ON_OFF : BOOLEAN) 1is

If the sensor is to be turned on

UINT16)

Construct the datum to be used to write to the appropriate port
using the last supplied value of Fine Sensor current stored in

SENSOR_CURRENT with the last recorded Flood LED current

(this is because it shares the port with the Flood LED control port).

165

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 166

Otherwise

Construct the datum to be used to write to the appropriate port
using a zero value for Fine Sensor current

and the last recorded Flood LED current

(this is because it shares the port with the Flood LED control port).

Write the datum to the appropriate port on the ICB MACSbus.

function LOAD_HV_RAMP_PARAMETERS (VOLTAGE : UINT16;
VALUE : UINT16;
RAMP_RATE : UINT16;
FORCE : UINT16;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

then send 'busy' error report and return false
If the requested mcp voltage is in range

then check rest of the tcCc parameters
If requested voltage is Vcathode
Cathode must be less than Oor equal to Vmcpl or zero
If requested voltage is Vmcpl
Vmcpl must be for turn on
below V mcp23
greater than V cathode
V mcp23 must be greater than the mcp23_lower_limit for mcpl to rise
For turn off, V cathode must already be off
If requested voltage is Vmcp23
If not turning off, mcp23 must be
greater than mcpl
gretaer than the mcpl collapse voltage if mcpl is on
If turning off, both mcpl and cathode must already be off
Also check ramp rate is valid and that the FORCE parameter is valid.

If parameters check OK

then save copy of parameters in a table for later use
by HV_RAMP_START and HV_RAMP_STOP.

and return success (TRUE)
else error in parameters
so mark all parameters as undefined
and send an illegal parameters values error packet
and return a failure condition (FALSE).
function HV_RAMP_START (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
If in safe mode
then send 'invalid mode' error report and return false
If already ramping, we cannot start another ramp
then send 'busy' error report and return false
If the HV ramp parameters are not already defined
then send 'parameters not loaded' error report and return false
All seems to be in order, lets hope it's not going to blow the instrument up
Start the HV ramping task by calling HV_PROCESS entry START
and return true

function HV_RAMP_STOP (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 167

Pass the stop message onto ramp task HV_PROCESS by calling entry STOP.

task body HV_PROCESS is

Start infinite loop
Await...
1) a call to START entry point
Copy current settings so that load task won't interfere

Determine direction of ramp and
set up controlling parameters accordingly

But if we are ramping up and filter wheel is not in blocked
Issue appropriate execution failed message
and return without setting task running flag.

Otherwise
Initialize current value to previous level
If Vmcp23 is not off then ensure HV enabled bit is set
Initialize variables for actual HV task
Set task running flag

2) a call to the STOP entry point
Set running flag to false
Record voltage attained before being stopped
Set HV parameters to undefined
Send unsuccessful execution packet to ground
Otherwise, if task 1is enabled to run
wait a bit
Loop 10 times
Get current voltage setting
Set ramped ok flag if voltage in range
Force exit from loop if ramped ok flag set
Force exit from loop if call to STOP entry received
Set the STOPPED flag if forced exit.
or
wait a second.
If voltage level is OK
Calculate next voltage level
Perform range check and adjust if necessary
Convert voltage level to bits using CONVERT_HV_TO_BITS
Output bits
else either error in ramping or voltage level reached
Set up error codes
Ensure HV parameters are not defined and stop task

If not ramped ok

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 168

Send unsuccessfull execution packet
else either ramp stopped or completed successfully
If ramp stopped
Send unsuccessfull execution packet
Else ramped ok
If turning off Vmcp23
Then disable HV
Send blue event report
only if source sequence count is not FFFF
because internal commands have a source and sequence
count of this value
function CONVERT_HV_TO_BITS (VOLTAGE : HV_TYPE;
VALUE : INTEGER)
return UINT16 is
If voltage level in the lower band then
Convert convert voltage
If channel is primary then
Perform rounding and adjust if necessary

Else voltage level is in higher band
Convert to bit pattern

If channel is primary
Perform rounding and adjust if necessary
Return bit pattern

function GET_CONVERTED_HV (VOLTAGE : HV_TYPE) return INTEGER is

Return the value read in from the adc, converted to a voltage level

function GET_SET_GO (VOLTAGE : HV_TYPE) return INTEGER is

Now obsolete
function PERFORM_HV_SAFING (LEVEL : UINT16;
SRC_SEQ_COUNT : UINT16)
return BOOLEAN is

If the safing level is a full safe

then loop through voltages setting them to zero
using SAFE_ONE_HV

Return false if safing failed
else safe only the cathode with SAFE_ONE_HV
function SAFE_ONE_HV (VOLTAGE : HV_TYPE;
SRC_SEQ_COUNT : UINT16)
return BOOLEAN is

If hv is not enabled then do nothing and return true

Set up the ramp parameters with appropriate values
using LOAD_HV_RAMP_PARAMETERS

Start the hv ramp task HV_RAMP_START
Wait for the hv ramp task to finish

If voltage ramped OK return true else return false

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 169

Else if we couldn't load the ramp parameters

return FALSE.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 170

6.4.2.11 detdigital.ads
Extracted from file "detdigital.ads"

Function

This file contains the specification for the detdigital package.
This package controls the digital card of the blue processing
electronics (BPE).

function LOAD_CENTROID_TABLE (START : BOOLEAN;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Starts or stops (START = TRUE/FALSE respectively) the loading of the
Centroid Lookup Table. The table contents are derived from parameters
supplied by an earlier call to SET_TABLE_BOUNDARIES.

Returns TRUE if the command is accepted.

function SET_TABLE_BOUNDARIES (X_AND_Y_TABLES : PACKET_CENTROID_TYPE;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Specifies the parameters to be used by LOAD_CENTROID_TABLE.
where:

X_AND_Y_TABLES(0) = 0 /1 (Disable/Enable) and requests whether the
table contents should be verified after loading.

X_AND_Y_TABLES (1->9) contain the X centroid table boundaries.
X_AND_T_TABLES (10->18) contain the Y centroid table boundaries.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function LOAD_WINDOW_TABLE (START : BOOLEAN;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Starts or stops (START = TRUE/FALSE respectively) the loading of the
Window Bitmap Table. The table contents are derived from parameters
supplied by an earlier call to SET_WINDOW_DESCRIPTION.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns TRUE if the command is accepted.
function SET_WINDOW_DESCRIPTION (WINDOW_TABLE : PACKET_WINDOW_TYPE;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN ;

Specifies the parameters to be used by LOAD_WINDOW_TABLE.

where:

WINDOW_TABLE (0) = 0 /1 (Disable/Enable) and requests whether the
table contents should be verified after loading.

WINDOW_TABLE (1) - the number of windows (N) to be loaded (1->15)
WINDOW_TABLE (2+ (n-1) *4) - the Xlow coordinate (CCD pixels), window n.
WINDOW_TABLE (3+ (n-1) *4) - the Ylow coordinate (CCD pixels), window n.
WINDOW_TABLE (4+ (n-1) *4) - the Xsize coordinate (CCD pixels), window n.
WINDOW_TABLE (5+ (n-1) *4) - the Ysize coordinate (CCD pixels), window n.

NOTE: n is in the range 1->N.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns TRUE if the command is accepted.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 171

function INTEGRATION (ENABLE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

ENABLE = TRUE/FALSE will enable/disable the blue detector integration
(i.e. when events are sent to the DPU). The start is synchronised to
the next end of frame transfer phase of the CCD.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns a TRUE value of no errors occur during commanding.

function SET_ACQUISITION_MODE (MODE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Sets the acquisition mode of the detector.
MODE can one of the following values:

Value Meaning

Low Resolution, Windowed.
Low Resolution Full Frame.
High Resolution, Windowed.
High Resolution, Full Frame.
Engineering, x m/n data.
Engineering, y m/n data.
Engineering, event height.
Engineering, event energy.

o b W O

NOTE: 4 and 5 are equivalent, 6 and 7 are equivalent.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns a TRUE value of no errors occur during commanding.
function SET_EVENT_THRESHOLD (THRESHOLD : UINT16;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Sets the threshold of events the detector will accept.

THRESHOLD gives the value of the peak CCD pixel value above which
events are detected.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function GET_EVENT_THRESHOLD return UINT16;
Returns the value for THRESHOLD (for HK purposes) supplied by an earlier
call to SET_EVENT_THRESHOLD.

function DISABLE_FRAME_TAG (ON_OFF : BOOLEAN;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Controls the insertion of frame tag words into the data stream sent to
the DPU.

ON_OFF = TRUE/FALSE = Do NOT Insert/ Do Insert respectively
(note inversion of normal conventions).

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns TRUE if the command is accepted.
function RESET_CAMERA_HEAD_ELECTRONICS (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;
This commands resets the camera head electronics.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 172

associated telecommand.
Returns TRUE if the command is accepted.
function CAMERA_RUNNING (RUNNING : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN ;

If RUNNING is TRUE, the camera mode is set to 'Started'
If RUNNING is FALSE, the camera mode is set to 'Standbye'. In this mode
it is possible to load the window bitmap RAM.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns TRUE if the command is accepted.
function STATUS return UINT16;

Returns the Blue Processing Electronics status word.
The contents are as follows:

LSB
\ \ \ \ \ \ \ \ \
| IA | Int Mode | FE | XX | TE | ME |
IA - Integration Active = 1.
Int Mode - as per SET_ACQUISITION_MODE.
FE - Frame Tag, 1 = No Frame Tags
XX - "Don't Care"
TE - 0/1 = BPE/ICU can access Centroid Tables

ME - 0/1 = Clocks halted, ICU access Window Bitmap/ Camera Started

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 173

6.4.2.12 detdigital.adb
Extracted from file "detdigital.adb"

Function

This file contains the body for the detdigital package.
This package controls the digital card of the blue processing
electronics (BPE).

This algorithms used here are derived from the document "Software
Setup of the Blue Detector Electronics", XMM-OM/MSSL/SP/77.

package body DETDIGITAL is

The following routines are totally internal to detdigital.
function MIC_OUT (MACS_ACTION : INTEGER;

SUBADR : ICB.SUB_ADDRESS_TYPE;

DATUM : UINT16) return BOOLEAN;
function TABLE_ADDRESS (M : INTEGER; N : UINT16) return UINT16;
function MAP_ADDRESS (X : UINT16; Y : UINT16) return UINT16;
function TABLE_DATA (XSUB : INTEGER; YSUB : INTEGER) return UINT16;

The following tasks are totally internal to detdigital.

task LOAD_CENTROID_TABLE_TASK;
task type LOAD_WINDOW_TABLE_TASK_TYPE;

function MIC_OUT (MACS_ACTION : INTEGER;

SUBADR : ICB.SUB_ADDRESS_TYPE;
DATUM : UINT16) return BOOLEAN is

This routine performs those functions associated with reading
or writing to the Instrument Control Bus using the MACSbus protocol.
Delay a bit if this routine is called a lot to allow other tasks to run
If the requested action is to write data.
Write the datum to the supplied sub-address.
If there was a MACSbus error.
Increment the error count.
Otherwise, the action is to verify the datum.
If it is a request to write to the centroid lookup table.
Read back the datum from the supplied sub-address instead.
If the value read back is not the same as the supplied datum.
Increment the verification error count.
else if it is a request to write to the window bitmap table.
Read back the datum from the supplied sub-address instead.
If the value read back is not the same as the supplied datum.
Increment the verification error count.

otherwise, we treat the request as a normal write to the supplied
sub-address.

Count any macsbus errors that occurred as well.
Always return OK.

function TABLE_ADDRESS (M : INTEGER; N : UINT16) return UINT16 is

Construct a centroid lookup table address from the supplied M,N values

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 174

Address = N ored with (M shifted left by 8 places)

function MAP_ADDRESS (X : UINT16; Y : UINT16) return UINT16 is
Construct a window bitmap table address from the supplied X,Y values
Address = X ored with (Y shifted left by 8 places)

function TABLE_DATA (XSUB : INTEGER; YSUB : INTEGER) return UINT16 is
Construct a centroid lookup table datum from the supplied x and y
Sub Pixel values (XSUB and YSUB) .
Datum = XSUB ored with (YSUB shifted left by 4 places)

task body LOAD_CENTROID_TABLE_TASK is

This ADA task loads up the centroid lookup table in the BPE.
Commence infinite loop
Await a request to start processing.
Convert stored uplinked boundary values to actual values
Determine if we are also verifying the data
Zero error counts
Now start a maximum of 2 passes (write + optional verify)
First enable the centroid lookup table for ICU access using MIC_OUT
Now begin outer loop over all values of M
Check whether an abort instruction has come in
If it has
exit from loop over M
Otherwise, do nothing

Load the initial table address to write to using MIC_OUT
and TABLE_ADDRESS (and rely on auto-inc AFTERWARDS)

Now commence loop over all useful values of N

Calculate equivalent fractional position (with blurring)
for this M,N combination.

Find the sub-pixel values for the x table
Find the sub-pixel values for the y table
Output the resulting sub-pixel data (using MIC_OUT and TABLE_DATA)
to the current table location (note that the location written to will
auto icrement by one after this write).
Finally, disable for ICU access using MIC_OUT
If there were no errors during the load
Send Ground an appropriate event packet.
Otherwise
Send an appropriate exception packet to ground.

task body LOAD_WINDOW_TABLE_TASK_TYPE is

This ADA task loads up the window bitmap table in the BPE.

This code is based on the algorithm described in "software Setup
of the Blue Detector Electronics", XMM-OM/MSSL/SP/77.

Await Start request
Initialise counters and assume default minimum and maximum row pairs.

Loop over all possible windows

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 175

if window active
Increment count of active windows

Scale, copy and convert uplinked window info to
high, low pixel pair units for this window.

Assign Window ID to this window.
Check whether this is minimum row pair so far.
Check whether this is the maximum row pair so far.
We have now
1) Determined the number of valid/active windows,
2) Scaled window parameters to pixel pair units
3) Determined the maximum and minimum row pair used
Now proceed to load the window bitmap table.
Zero error counts
If we have no active windows, exit from task
Determine if we are also verifying the data
Now start (maximum 2) passes (write + optional verify)
Perform initialisations prior to table loading
Enable MIC table for loading using MIC_OUT
Begin loop over used row pairs
First check whether an abort instruction has come in
If it has
exit from loop over row pairs.
Otherwise, do nothing.
Load up default window of zero (i.e no window) for all of this row pair.

Set default row action of vertical transfer if this row pair
does not intersect any windows.

If current row pair is greater than or equal to the
minimum row pair used by the windows

We can now look for windows intersected by this row pair
Loop over all active windows */
If this window is intersected by the current row pair
Loop over the column pairs within crossed window
If we are at 1lst row pair of a window, ...
Do nothing
Otherwise assign the window ID to this column pair.
Change the row action code to indicate the presence of a window.
If the row action code indicates a window intersection.
Calculate where the row pair is in the block of window intersections.
otherwise, we have left a block, so reset the calculation.

now write appropriate action code for current row pair using MIC_OUT
and MAP_ADDRESS.

Determine if we need to rewrite PRIOR row pair action code

If we are at the 1st row pair within a window intersection block,
and it's not the first row pair overall

We are about to rewrite a value in a table.
However, if we are in the compare phase

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 176

Cancel the previous error caused by an earlier mismatch
caused by the next instruction.

Rewrite action code as 'readout and dump' for prior row using MIC_OUT
and MAP_ADDRESS.

Now, if it's a a READOUT row, output the window ID's noted earlier using MIC_OUT
and MAP_ADDRESS.

Move on to next row pair

Finally, load final 2 rows of action codes (always 'Vertical Transfer'
followed bt 'Terminate and Skip') using MIC_OUT and MAP_ADDRESS.

Make MIC ready for use by starting the camera using MIC_OUT.
If there are no errors.
Send ground a suitable event report.
Otherwise
Send ground a suitable exception report.
function LOAD_CENTROID_TABLE (START : BOOLEAN;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Attempt to start the load centroid table task
LOAD_CENTROID_TABLE_TASK
Return a success condition if it is accepted.
send the ground an unsuccessful command message.
and return a failure exit condition.
function SET_TABLE_BOUNDARIES (X_AND_Y_ TABLES : PACKET_CENTROID_TYPE;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
Save the supplied params
In this release, simply return TRUE. Future releases should check
validity of params and return FALSE and issue an invalid command
acceptance packet
function LOAD_WINDOW_TABLE (START : BOOLEAN;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Attempt to start the load window bitmap table task
LOAD_WINDOW_TABLE_TASK
Return a success condition if it is accepted.
but if there is no response after a while
Send the ground an unsuccessful command message.
and return a failure exit condition.
function SET_WINDOW_DESCRIPTION (WINDOW_TABLE : PACKET_WINDOW_TYPE;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
Save the supplied params
Set up valid window flags for windows for which data was supplied.
In this release, simply return TRUE. Future releases should check
validity of params and return FALSE and issue an invalid command
acceptance packet
function INTEGRATION (ENABLE : UINT16;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 177

Note: We allow integration enabling only if in science or engineering mode
but always allow disabling

If the above conditions are true, perform the requested action
using MIC_OUT.

Return a success condition (TRUE) .
Otherwise
Send a suitable command execution failure
Return a failure condition (FALSE).

function SET_ACQUISITION_MODE (MODE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Ensure supplied acquisition mode is in range and merge with
last value of frame tag requested (because they share the same port).

Send the appropriate command the detector electronics
using MIC_OUT.

In this release, return success flag.
In the event of a MACSbus error, we should send a command

failure , however the MACSbus error count in HK will increase
instead.

function SET_EVENT_THRESHOLD (THRESHOLD : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Load up 2's complement of supplied threshold (as required by Detector
electronics) wvia the ICB MACSbus using MIC_OUT.

If no errors
Store the threshold value requested.

In this release, always return success flag.
In the event of a MACSbus error, we should send a command

failure message, however the MACSbus error count in HK will increase
instead

function GET_EVENT_THRESHOLD return UINT16 is

Return the threshold value store by SET_EVENT_THRESHOLD.

function DISABLE_FRAME_TAG (ON_OFF : BOOLEAN;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Merge frame tag setting requested with last value of acquisition
(because they share the same port).

Send to the appropriate port via the ICB MACSbus using MIC_OUT.

In this release always return a success condition.
(In the event of a MACSbus error, we should send

an execution failure message, however the MACSbus error count in HK
will increase instead)

function RESET_CAMERA_HEAD_ELECTRONICS (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Send the appropriate command to the appropriate port via the ICB MACSbus
using MIC_OUT.

In this release always return a success condition.
(In the event of a MACSbus error, we should send

an execution failure message, however the MACSbus error count in HK will
increase instead)

function CAMERA_RUNNING (RUNNING : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

If the request is to start the camera.

Send the appropriate command to the appropriate port via the ICB MACSbus
using MIC_OUT.

Otherwise

Send the appropriate command to the appropriate port via the ICB MACSbus
using MIC_OUT to place it in standby.

In this release always return a success condition.
(In the event of a MACSbus error, we should send
an execution failure message, however the MACSbus error count in HK
will increase instead)
function STATUS return UINT16 is
Get the Word containing the status word from the appropriate sub-address

on the ICB MACSbus.

Extract and return the relevant bits.

178

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 179

6.4.2.13 detector. ads

Extracted from file "detector.ads"

Function

This file contains the specification for the detector package.

It effectively acts as a 'wrapper' for two other packages,

DET_DIGITAL controlling an monitoring the digital functions

of the detector electronics, while DET_ANALOG is the analogue equivalent.
This is to provide a common interface.

function SET_FINE_POSITION_SENSOR_CURRENT (CURRENT : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETANALOG.SET_FINE_POSITION_SENSOR_CURRENT;

function FINE_SENSOR_CURRENT return UINT16
renames DETANALOG.FINE_SENSOR_CURRENT;

function SET_FLOOD_LED_BIAS_CURRENT(LED : in UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETANALOG.SET_FLOOD_LED_BIAS_CURRENT;

procedure SET_HV_ENABLE (ENABLED : BOOLEAN)
renames DETANALOG.SET_HV_ENABLE;

procedure SET_HV (HV : HV_TYPE;
VALUE : UINTL16)
renames DETANALOG.SET_HV;

function LOAD_HV_RAMP_PARAMETERS (VOLTAGE : UINT16;
VALUE : UINT16;
RAMP_RATE : UINT16;
FORCE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETANALOG.LOAD_HV_RAMP_PARAMETERS;

function HV_RAMP_START (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETANALOG.HV_RAMP_START;

function HV_RAMP_STOP (SRC_AND_SEQUENCE_COUNT : UINTL16)
return BOOLEAN
renames DETANALOG.HV_RAMP_STOP;

function PERFORM_HV_SAFING (LEVEL : UINT16;
SRC_SEQ_COUNT
UINT16)
return BOOLEAN
renames DETANALOG.PERFORM_HV_SAFING;

function SAFE_ONE_HV (VOLTAGE : HV_TYPE;
SRC_SEQ_COUNT : UINT16)
return BOOLEAN
renames DETANALOG.SAFE_ONE_HV;

function GET_SET_GO (VOLTAGE : HV_TYPE) return INTEGER
renames DETANALOG.GET_SET_GO;

procedure SET_ADC_ACCURACY (ACCURACY : UINT16)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 180

renames DETANALOG.SET_ADC_ACCURACY;

function GET_ADC_ACCURACY
return UINT16
renames DETANALOG.GET_ADC_ACCURACY;

function GET_ANALOG (ADC_ITEM : UINT16)
return UINT16
renames DETANALOG.GET;

function FINE_POSITION_SENSED
return BOOLEAN
renames DETANALOG.FINE_POSITION_SENSED;

function FLOOD_LED_BIAS_CURRENT
return UNIBBLE
renames DETANALOG.FLOOD_LED_BIAS_CURRENT;

function HV_ENABLED
return BOOLEAN
renames DETANALOG.HV_ENABLED;

function LOAD_CENTROID_TABLE (START : BOOLEAN;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETDIGITAL.LOAD_CENTROID_TABLE;

function SET_TABLE_BOUNDARIES (X_AND_Y_TABLES : PACKET_CENTROID_TYPE;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETDIGITAL.SET_TABLE_BOUNDARIES;

function LOAD_WINDOW_TABLE (START : BOOLEAN;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETDIGITAL.LOAD_WINDOW_TABLE;

function SET_WINDOW_DESCRIPTION (WINDOW_TABLE : PACKET_WINDOW_TYPE;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETDIGITAL.SET_WINDOW_DESCRIPTION;

function INTEGRATION (ENABLE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETDIGITAL.INTEGRATION;

function GET_EVENT_THRESHOLD return UINT16
renames DETDIGITAL.GET_EVENT_THRESHOLD;

function DISABLE_FRAME_TAG (ON_OFF : BOOLEAN ;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETDIGITAL.DISABLE_FRAME_TAG;

function RESET_CAMERA_HEAD_ELECTRONICS (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETDIGITAL.RESET_CAMERA_HEAD_ELECTRONICS;

function CAMERA_RUNNING (RUNNING : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN
renames DETDIGITAL.CAMERA_RUNNING;

ICU FM Software Detailed Design

function DIGITAL_STATUS
return UINT16
renames DETDIGITAL.STATUS;

procedure FINE_SENSOR (ON_OFF : BOOLEAN)
renames DETANALOG.FINE_SENSOR;

XMM OM/MSSL/SP/0205.3

181

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 182

6.4.2.14 dpu. ads
Extracted from file "dpu.ads"

Function

This file contains the specifications for the DPU package. That package
controls and monitors the DPU via commands and data records described in
the ICU-DPU Protocol Document (XMM-OM/MSSL/ML/0011).

function COMMAND (WORD : UINT16_ARRAY;
SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

where the array WORD contains the DPU command to be sent to the DPU
via the SSI interface.

function HEARTBEATS return UINT16;

returns DPU heartbeat count since startup. It 'wrapsaround' at 65535.
function STATUS return UINT16;
returns the DPU Status word contained in the DPU heartbeat.
The contents of the status word are defined in the ICU-DPU
Protocol Document (XMM-OM/MSSL/ML/0011) in the section describing thr
DA_HBEAT record.
function DRIFT_X return LONG_INTEGER;
Returns the drift in x extracted from the most recent DA_TRK record.
The units are 1/1000 centroided pixels.
function DRIFT_Y return LONG_INTEGER;
Returns the drift in y extracted from the most recent DA_TRK record.
The units are 1/1000 centroided pixels.
function ROLL return LONG_INTEGER;
Returns the drift in roll extracted from the most recent DA_TRK record.
The units are 1000000*sin(roll) .
function FRAME_COUNT return UINT16;
Returns the frame count for this exposure extracted from the most
recent DA_TRK record.
function FRAMES_PER_EXPOSURE return UINT16;
Returns frames so far for this exposure extracted from
the most recent DA_BEGOF_EXP record.

function EXPOSURE_ID return LONG_INTEGER;

Returns the Exposure ID contained in the most recent DPU heartbeat.
function DATA_ALERTED return UINT16;

Returns the ID of the type of science data (DD_xxx records) that

is currently being processed. This information is extracted from

the DA_DATA_ALERT record.

task HEARTBEAT_WATCHDOG is

entry START;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 183

entry STOP;
entry RESET;

end HEARTBEAT_WATCHDOG;
This task monitors the DPU heartbeat and issues an appropriate Exception
if it stops.
HEARTBEAT_WATCHDOG.START starts the heartbeat monitoring task.
HEARTBEAT_WATCHDOG.STOP stops the heartbeat monitoring task.
HEARTBEAT_WATCHDOG.RESET effectively stops then starts the heartbeat
monitoring task in order to reset its internal timout timers.

procedure INIT;
Initialises the SSI hardware interface and starts the data monitoring
task.

procedure BENT_PIPE (ENABLE : BOOLEAN) ;
Enable/disables the 'bent-pipe' diagnostic - this ensures that all
DPU data records are sent out as packets, even when the corresponding
packets types are disabled.

procedure ENABLE_REQ_DATA (ACTION : BOOLEAN) ;
Enable/disables (ACTION = TRUE = Enabled) the icu-dpu 'handshake'
which automatically ensures that DD_xxx blocks and DR_xxx blocks are

send on to ground as soon as they are available.

procedure SET_FILTER(MODE : UINT16);

Inform DPU of current filter MODE in use.

procedure POWER_DOWN;

Power Down the DPU.

procedure SYNCH_CLOCK (SECS : UINT16);

Inform DPU of spacecraft time to the nearest second (contained in
SECS) on the occurence of next BCP2/4 pulse.

procedure ABORT_EXP;

Abort current exposure

procedure INIT_DPU;

Init DPU (zeroes memory, readies swap units - a "Dave"

procedure DISABLE_SSI_OUTPUT (DISABLED : BOOLEAN) ;

Disable all SSI output except Heartbeats

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 184

6.4.2.15 dpu. adb
Extracted from file "dpu.adb"

Function

This file contains the body for the DPU package. The package
controls and monitors the DPU via commands and data records described in
the ICU-DPU Protocol Document (XMM-OM/MSSL/ML/0011). All data structures
used in this package are implicitly defined inthat document.

Create buffer to hold all data received from DPU
Create buffer to hold DP_WDW derived info
Create buffer to hold DD_ENG derived info
Define routines/tasks specifications internal to the package.
task DATA_MANAGER 1is
pragma priority (IMPORTANCE.DPU_DATA_MANAGER) ;

entry START;
end DATA_MANAGER;

where the DATA_MANAGER task monitors ALL data from the DPU
and takes appropriate action (e.g. counts heartbeats etc).
procedure REQ_DATA;

where REQ_DATA causes a request for 1 block of data to

be sent to the DPU. This is only meaningful after receiving a
DA_DATA_ALERT from the DPU

Define the bodies of internal routines/tasks

task body HEARTBEAT_WATCHDOG is

Start infinite loop
Await a call to an entry point.

If a call to the RESET entry is made,
this resets the timout count.

Or

If call to the START is made, start the
DPU heartbeat watchdog monitor.

Or
If call to STOP is made, stop the DPU heartbeat watchdog.
Otherwise
Provided the task is set to be running
and nothing is done for timout period (30 sec)
send a DPU Heartbeat Exception packet.
procedure REQ_DATA is
causes a request for 1 block of data to
be sent to the DPU. This is only done after receiving a
DA_DATA_ALERT from the DPU
If the ICU-DPU science data 'handshake' is enabled (the default)

Send an IC_REQ_DATA command to the DPU via the SSI interface.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 185

Wait a bit
Otherwise
Set the data pending flag.

procedure ENABLE_REQ DATA (ACTION : BOOLEAN) 1is

If we are enabling the science data handshake and data is pending
Request it using aan IC_REQ_DATA DPU command.
and clear the data pending flag

Store requested state (enable/disable) of handshake
for later comparison.

task body DATA_MANAGER is

This task monitors ALL data from the DPU
and takes appropriate action (e.g. counts heartbeats etc).

In order to follow the logic of this code, you must be aware that
the data block received from the DPU via the SSI interface has the
following format

e ot S R S
+ Word 0 + Word 1 + Word 2 -> Word N+2 +
e o o e R

+ Block + Word + +
+ Type + Count + DPU Data Block +
+ + N + +

e

Wait for start instruction from main program to synchronize with
other code.

Start DPU Heartbeat Watchdog using HEARTBEAT_WATCHDOG.START.
Begin infinite loop
Begin second infinite loop
Get the next DPU block using SSI_IN.GET
only exit from loop if it's a valid block.
Extract the block type from the 1st word
If it's priority science data block (i.e. DP_xxx block type)
If appropriate SID for this block type is enabled

Forward to the priority data output routine in
the SCIENCE_FM package.

If it's a DP_WDW record
and the ICU is not in engineering mode

Provided we have between 1 and 15 windows
(some DPU eng modes have > 15)

Then we need to set up the detector electronics
from information stored in the DP_WDW record.

1) loop over the windows decribed in the record,
extracting the x0, y0, xsize, ysize

parameters for the detector windows contained in the
DP_WDW record

2) scale them to CCD pixels (which is a

function of the BPE binning to be used in the exposure
and was extracted earlier from a IC_BPE_BINNING command)
3) add the active area offset (which is a function of
whether this is the prime or redundant half).

4) Load up the Window Bitmap tables in MIC
to correspond to these detector windows using
the DETECTOR package.

If it's regular science data (i.e. a DD_xxx block type)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 186

Determine SID associated with this particular DD_xxx block
from a lookup table.

Forward Regular data if appropriate SID is enabled

Forward to the regular data output routine in
the SCIENCE_FM package.

If it's a DD_ENG record
Count how many DD_ENG records so far.
If it's the 1st DD_ENG record after a DA_ALERT saying
DD_xxx data is available, then check if it's the
channel boundary data (sub-type 3).
Set flag forcing data will be verified

Extract the channel boundaries from the DP_XXX record

Load up the MIC centroid tables accordingly using the
DETECTOR package.

If it's an alert (i.e. a DA_xxx record)
Determine default NHK sub-type (event or exception)
from command code
and SID associated with this DA_xxx block from look-up table.
(Now perform actions that are alert specific)
If it's a heartbeat

Count heartbeats (wrapping around if necessary)

Reset heartbeat watchdog to prevent a timout
using HEARTBEAT_WATCHDOG.RESET.

Extract DPU Status Word from heartbeat and store.
Correct for DPU ROM bug (as per NCR 89)

Determine from status word which DPU code we are running.
(i.e. '"Fred' (ROM code) or 'Jim' (Uplinked Code))

Extract Exposure ID from the heartbeat record.
Inform waiting filter wheel movement request
(if any) that h/beat has occurred
using MECHANISM. AWAIT_DPU_HEARTBEAT.

If it's a 'Fred' (DA_DPU_BOOT_READY)

i.e. we have just started running the

the DPU ROM code.

If we were not expecting one (i.e. no preceding IC_RESET_DSP)

Note that the NHK packet will be a major anomaly,
and change the SID accordingly

Ensure any prior mem dumps that might have been in
progress are flushed (NCR 182) using MEMDPU.FLUSH.

Similarly, ensure any science data group currently
being dumped is flushed (NCR 182) using SCIENCE_FM.FLUSH.

If it's a 'Jim' (DA_DPUOS_READY) - i.e. we have just started
running the uplinked DPU code.

Ensure engineering record (DD_ENG) data counters are reset.
If it's a clock sync error (DA_CLK_SYNCH_ERROR) block
Extract the commanded and previous times from DPU block
If the commanded time is the same as the old time
we will note that its associated NHK packet event will be
an event rather than an exception (and modify SID accordingly)

If it's a data alert (DA_DATA_ALERT)

Note which type of regular data we have an alert for

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

for use when we process the DA_DATA_END block later.
Request 1 block of data via the REQ_DATA routine
If it's a data_end (DA_DATA_END)

If it's the end of regular science data
(deduced when we processed the DA_DATA_ALERT)

Flush the current science packet group buffer
(via SCIENCE_FM.FLUSH)

and also reset the DD_ENG record counter as failsafe.
If it's the end of RAM/ROM dump packets (DR_xxx blocks)

Flush out the current memory dump packet buffer
(via MEMDPU.FLUSH) .

Otherwise, do nothing

Clear the datatype flag which notes which type of regular
data is being processed.

If it's a DPU_MNEMO.DA_TRK alert
Extract the current frame count from the record.
Extract the drift information from the record.
If it's a DA_BEGOF_EXP
Extract the frames for this exposure from the record.
If it's a ENDOF_EXP

Ensure detector integration is turned off
using DETECTOR.INTEGRATION.

If it's a multi-bit error
Reset level of associated NHK report to Major Anomaly
(Now do things that are generic to all alerts)

Forward all alerts as auxiliary data packets if enabled
via SCIENCE_FM.AUXILIARY_DATA

Possibly send to ground as an NHK packet (event or exception)

via NHK.PUT but only if SID is enabled

(whether a given SID is enabled is decided internally by

the package NHK, and thus whether the packet is actually sent)
If they are memory dump blocks (DR_xxXx)

Output them (via MEMDPU.PUT) as memory
Dump packets

If they are anything else
Do nothing.
Define bodies of externally visible tasks/procedures
function COMMAND (WORD : UINT16_ARRAY;
SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN 1is
Reserve memory for command buffer.

Loop over the number of words in the command
(derived from the second location of the input command)..

and copy the command words into a temporary command buffer
If it's a zero length IC_SYNCH_CLK time sync command.

Wait for next BCP4 pulse, and get On-Board-Time
(via Time Manager package)

Extract Secs field from the On-Board-Time

187

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 188

Add one to it, with possible wraparound, to deduce time at next BCP4.
Modify the IC_SYNCH_CLK command in the temporary command buffer
accordingly by restoring it to its correct length and adding in
the least 14 sig bits of the seconds field derived above.
If it's a 'Fred' (IC_RESET_DSP) command.
Reset DPU heartbeat watchdog using HEARTBEAT_WATCHDOG.RESET.
Set a flag indicatiing we now expect a 'Fred' (DA_DPU_BOOT_READY)
If it's a 'Jim' (IC_LOAD_DPUOS) command.
Reset heartbeat watchdog using HEARTBEAT_ WATCHDOG.RESET.
If it's an engineering mode command (IC_ENBL_ENG)
Check whether the ICU is not in engineering mode
and reject with a "Invalid for this Mode" message.
Return with a failure condition of FALSE.

If it's an Set BPE Binning command (IC_BPE_BINNING)

Extract the requested BPE binning for later use
when processing the DP_WDW record..

Send temporary command buffer to the DPU via SSI.PUT.
Return a success condition.

function HEARTBEATS return UINT16 is

Return the heartbeat count deduced when processing the heartbeats.

function DRIFT_X return LONG_INTEGER is

Return the drift in X extracted from DA_TRK.

function DRIFT_Y return LONG_INTEGER is

Return the drift in Y extracted from DA_TRK.

function ROLL return LONG_INTEGER is

Return the drift in Roll extracted from DA_TRK.

function FRAME_COUNT return UINT16 is

Return the frame so far this exposure extracted from DA_TRK.

function FRAMES_PER_EXPOSURE return UINT16 is

Return the Total Frames for this exposure extracted from DA_BEGOF_EXP.

function EXPOSURE_ID return LONG_INTEGER is

Return the Exposure ID extracted from the heartbeat record.

function STATUS return UINT16 is

Return the DPU Status Word extracted from the heartbeat record.
function DATA_ALERTED return UINT16 is
If the Block ID of the regular data currently being 'handshaked'
corresponds to regular science (DD_xxx)
Return that ID

Otherwise

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Return 0O

procedure INIT is
Initialize the SSI Card and Controlling Software
using SSI_OUT.RESET.

Start the DPU Data Manager processing the DPU output
using DATA_MANAGER.START.

procedure SET_FILTER(MODE : UINT16) is
Construct an IC_LOAD_FILT_CONF with filter set according to
the value MODE.
Provided the DPU is not in boot mode
Send the command to the DPU.

procedure POWER_DOWN is

Construct an IC_POWER_DOWN_DOWN command.

Send the command to the DPU via the SSI interface
using SSI_OUT.PUT.

procedure SYNCH_CLOCK (SECS : UINT16) is

Construct an IC_SYNCH_CLK using the value SECS accordingly.
Send it to the DPU using SSI_OUT.PUT.

procedure ABORT_EXP is

Construct an IC_ABORT_DPU command.

procedure INIT_DPU is

Construct an IC_INIT_DPU command.

procedure DISABLE_SSI_OUTPUT (DISABLED : BOOLEAN) is

Construct an IC_LOCAL_RAM command.

189

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 190

6.4.2.16 dpu_nem nmanager . ads

Extracted from file "dpu_mem_manager.ads"

function LOAD_MEMORY (MID: UINT16;
START_ADDRESS: LONG_INTEGER;
DATA: UINT16_ARRAY;
LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

where MID is the MID

where START_ADDRESS is the start address of the load

where DATA is the data to load as an array of unsigned 16 bit words

where LENGTH is the length of the data in words

where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
returns a boolean: true on success and false on failure

function LOAD_MEMORY loads memory corresponding to the MID

function DUMP_MEMORY (MID: UINT16;
ADDRESS: LONG_INTEGER;
LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

where MID is the MID

where ADDRESS is the address of the dump request

where LENGTH is the length of the requested memory dump in words

where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
returns a boolean: true on success and false on failure

function DUMP_MEMORY dumps memory corresponding to the MID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 191

6.4.2.17 dpu_nem manager . adb

Extracted from file "dpu_mem_manager.adb"

Dependencies

with INTRINSICS;
with UNCHECKED_CONVERSION;
with ARTCLIENT;
with SYSTEM;
with PACKET;
with TC_VERIFY;
with TMQ;

with PEEK_POKE;
with CRC;

with DPU_MNEMO;
with SSI_OUT;
with DEBUG;

with NHK;

with MEMLOC;

function DUMP_MEMORY (MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is
returns array 0 .. packet.MAX_TM_MEM_ PARAMS_M1

DPU local RAM
If length is out of range, send an error packet

If address is out of range, send an error packet
If the address is OK, form an SSI block
and send block down SSI

DPU global memory 24-bit words
If address is out of range, send an error packet

If the address is OK, form an SSI block
and send block down SSI

DPU global memory 1l6-bit words
If address is out of range, send an error packet

If the address is OK, form an SSI block
and send block down SSI
When the MID is 20-27
(length is a 16-bit number of 24-bit words to dump)
If address is out of range, send an error packet
If the address is OK, form an SSI block
and send block down SSI
For other MIDs send unsuccessful acceptance
function DPU_CHECKSUM (DPU_ARRAY: UINT16_ARRAY) return UINT16 is
where DPU_ARRAY is an array of words to load into the DPU
returns the checksum as an unsigned 16-bit integer
Start with checksum of 0
For each word starting with the third to the end
Add each byte of the current word to the checksum

At the end of the block, xor with Oxffff

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 192

Return the checksum
function LOAD_MEMORY (MID: UINT16; START_ADDRESS: LONG_INTEGER; DATA: UINT16_ARRAY; LENGTH:
UINT16; SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is
LENGTH is in 16-bit words
If the MID is 16#13# load local memory
For each DPU-word of data
Form the DPU block

Remember to convert because DPU uses 3-byte words and we're loading with 2-byte
words

Put the DPU block down the SSI
If the MID is 1l6#14# load global memory (24-bit words)
For each DPU-word of data

Form the DPU block

Remember to convert because DPU uses 3-byte words and we're loading with 2-byte
words

Put the DPU block down the SSI
If the MID is 16#15# load global memory (l6-bit words)
For each DPU-word of data
Form the DPU block
Put the DPU block down the SSI
If the MID is 20-27 load program RAM
Select EEPROM
Unlock
For each word of data
Form the DPU block

Remember to convert because DPU uses 3-byte words and we're loading with 2-byte
words

Put the DPU block down the SSI
Lock
When the MID is wrong

send unsuccessful acceptance (illegal mid) packet

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 193

6.4.2.18 dpu_mmeno. ads

Extracted from file "dpu_mnemo.ads"

This specification only package contains the values of Command and Data
mnemonics as defined in the ICU-DPU Protocol Definitions
XMM-OM/MSSL/ML/0011

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 194

6.4.2.19 heater. ads

Extracted from file "heater.ads"

Function

This file contains the specification for the HEATER package.
The algorithms implemented therein are outlined in document
XMM-OM/MSSL/SP/165. "OM Heater Control"

function SET_MARK_SPACE (HEATER_NO : UINT16;
ON_TIME : UINT16;
TOTAL_TIME : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN;
where
HEATER specifies heater to be controlled by the open loop algorithm
ON_TIME specifies the number of 10 seconds the heater should be on

OFF_TIME specifies the number of 10 seconds the heater should be off

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns TRUE if the command is accepted.

NOTE : This function has been superceded by SET_FUNCTION and is no longer
used.

function SET_FUNCTION (FID : UBYTE;

PARAM1 : UINT16;
PARAM2 : UINT16;
PARAM3 : UINT16;

SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN;

This function specified how each heater is to be controlled by which
automatic algorithm as follows:

FID Heater Description PARAM1 PARAM?2 PARAM3
1 Interface Closed, Free Tmin Tmax -
2 Interface Open, Free On Time Cycle Time -
3 Forward Closed, Synched Tmin Tmax Thermistor
4 Forward Closed, Free Tmin Tmax Thermistor
5 Forward Open, Synched On Time Cycle Time -
6 Forward Open, Free On Time Cycle Time -
7 Focussing -/+ Focussing On Time Cycle Time Direction
8 - Set Sample Time Sample Time - -
Notes:
1) On Time and Cycle Time are in units of Sample Time.
2) Thermistor = 0/1 = Prime/Redundant forward thermistor.
3) Tmin and Tmax are in 'raw' units.
4) Focus Direction = -ve = HTR4 (Secondary)
= 0 = HTR3 and HTR4 off.
= +VE = HTR3 (Metering) powered.

5) Sample Time is in units of seconds.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Returns TRUE if the command is accepted.

function START return BOOLEAN;

Starts the automatic heater control algorithms.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 195

function STOP return BOOLEAN;

Stops the automatic heater control algorithms

function LOAD_CONFIG_DIRECTLY (CONFIG : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

The bit pattern in CONFIG specifies which heater should be on or off

(1 =on) as follows:

L.S.B
| Temperature Control | Focussing
| Main | Forward | Metering | Secondary |
| | | Rods | Mirror |
| (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4)

NOTE: This command is ignored if the automatic heater algorithms
are running.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

Return TRUE in this release

procedure BRIEF_DISABLE (ENABLE : BOOLEAN) ;

If ENABLE = TRUE, turns off all heaters.
If ENABLE = FALSE, restores prior configation of heaters if the
automatic algorithms are NOT running, otherwise resumes the automatic
algorithms.
function CONFIG return UINT16
renames TMPSU.HEATER_CONFIG;
Renames, for convenience, the TMPSU package function that returns

the current heater configuration.

The bit pattern in CONFIG specifies which heater is on or off

(1 =on) as follows:
L.S.B
| Temperature Control | Focussing
| Main | Forward | Metering | Secondary |
| | | Rods | Mirror |
(HTR 1) (HTR 2) (HTR 3) (HTR 4)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.20 heater.adb

Extracted from file "heater.adb"

Function

This file contains the body for the HEATER package.
The algorithms implemented therein are outlined in document
XMM-OM/MSSL/SP/165. "OM Heater Control"

Define Specification for Tasks and Procedures used internally.
task CONTROL is

pragma priority (IMPORTANCE.THERMAL_CONTROL) ;

entry START;

entry STOP;

entry SET_ON_OFF (HEATER_NO : UINT16;
ON_TIME : UINT16;
TOTAL_TIME : UINT16);

end CONTROL;

START starts automatic heater control (open or closed loop)
STOP stops automatic heater control (open or closed loop)
SET_ON_OFF specifies on/off time when in open loop control
Note: Default heater/algorithm settings are:
I/F Heater limits are 19.5 +/- 0.5 under closed loop control
Forward Heater limits are 19.5 +/- 1.5 under closed loop control
Focussing heaters are off under open loop control.

procedure CHANGE_CONFIG (NEW_CONFIG : UINT16);
Changes the heater configuration to 4 1lsb of NEW_CONFIG
(1 = ON) .

Now specify bodies for internal routines and tasks.

task body CONTROL is

Begin infinite loop
If a call to the START entry point is made
Get current time.
Start task running.

Reset the 'cycle' counter.

Obtain last known heater configuration using TMPSU.HEATER_CONFIG.

Or if a call to the STOP entry point is made
Ensure all heaters off using CHANGE_CONFIG.
Remember that configuration.
Then stop algorithm
Or if a call to the heater parameter entry point is made
store length of ON time for specified heater.
store length of duty cycle for specified heater.
Or, provided heating algorithm is already running
delay until start of next 'Sample Time'.

Commence loop over the heaters

If the open loop algorithm is active for this particular heater

196

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 197

Provided we have a non-zero 'cycle time'
Determine where we are in the cycle for this heater.
Set flag indicating whether the heater should be on or off.
otherwise
Set flag indicating that the heater is off.
Otherwise we have a closed loop algorithm

Determines whether the heater is already on from the last
known configuration.

If we are dealing with the forward heater.
Get the control temperature from the specified thermistor
Otherwise

Get the control temperature from an average of
MAIN, REF A and REF B thernistors.

If heater was on
and control temperature is above maximum allowed.
Set flag indicating that the heater should be turned off.
Otherwise
If the control temperature is below minimum allowed.
Set flag indicating that the heater should be turned on.
If synchronisation of heaters is enabled

Enable forward switch on if interface heater is flagged as being
about to be switched off

If a switch on (from off) of the forward heater has been
requested by the automatic algorithm.

Only flag as allowed if forward switch on is enabled
Determine resulting heater configuration from flags set.

Request the TMPSU to command the heaters accordingly
using CHANGE_CONFIG.

Remember this configuration for comparison next time.
Calculate time of next sampling of thermistors
Count no of heater cycles
Now specify bodies for external routines and tasks.
function SET_MARK_SPACE (HEATER_NO : UINT16;
ON_TIME : UINT16;
TOTAL_TIME : UINT16;

SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN is

Specify On time within Cycle Time for specified heater.
NOTE: This function now obsolete and no longer called.

function SET_FUNCTION (FID : UBYTE;

PARAM1 : UINT16;
PARAM2 : UINT16;
PARAM3 : UINT16;

SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN is
If the function specified is "Interface, Closed Loop, Free Running"
then store that fact together with the temperature limits.

If the function specified is "Interface, Open Loop, Free Running"

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 198

Then store that fact together with the on and total times.
If the function specified is "Forward, Closed Loop, Synched"

Then store that fact together with the temperature limits and thermistor
to be used.

If the function specified is "Forward, Closed Loop, Free Running"

Then store that fact together with the temperature limits and thermistor
to be used.

If the function specified is "Forward, Open Loop, Synched"
Then store that fact together with the on and total times.
If the function specified is "Forward, Open Loop, Free Running"
Then store that fact together with the on and total times.
If the function specified is "Focussing"
If the focus direction is zero
Then ensure both focussing heaters will be off.
If the focus direction is greater than zero

Then store that the metering rods heater will be on for
the specified times.

If the focus direction is less than zero

Then store that the secondary mirror heater will be on for
the specified times.

Otherwise, if we a resetting the sample time.
Store the new value.

And for any other values of FID
Return a failure condition of FALSE.

The above stored values will be acted upon
at the start of the next 'Sample Time'

Return a Success condition of TRUE.
function START return BOOLEAN is
Start the automatic heater control algorithms
using CONTROL.START.
Return Success condition.
function STOP return BOOLEAN is
Stop the automatic heater control algorithms
using CONTROL.STOP.
Return Success condition.
function LOAD_CONFIG_DIRECTLY (CONFIG : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
Provided the automatic heater algorithms are not running

Load the supplied heater configuration via the TMPSU using
TMPSU.SET_HEATER_CONFIG.

Return a Success condition.

procedure BRIEF_DISABLE (ENABLE : BOOLEAN) is

Provided we did not perform the requested action last time

If we wish to pause the heater algorithm(s)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 199

Note whether automatic version is running
If the automatic version is running
then stop it using CONTROL.STOP.
but if we are relying on ground control
Remember the current config using TMPSU.HEATER_CONFIG.
Then turn all heaters off
If we wish to unpause the heater algorithms
and the automatic version was running
Restart it using CONTROL.START.
But if we were relying on ground control
restore old config using CHANGE_CONFIG.
Finally, remember what action was requested ready for next call.

procedure CHANGE_CONFIG (NEW_CONFIG : UINT16) is

Remember current config to compare against
Initialise working config to that of current
Loop over all heaters
If this heater has changed in requested configuration
Wait a bit to avoid switching two heaters together
Change record of working configuration to new value for this heater

Now request (via TMPSU.SET_HEATER_CONFIG) the real heater configuration
become that of the working configuration, thus updating the actual
configuration for just this heater.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.21 hk. ads
Extracted from file "hk.ads"

Function

This file defines the specification for the HK package. The package
acquires and sends the Housekeeping Packets (HK), the contents of
which are defined in the XMM-OM Telecommand and

Telemetry Specification document, XMM-OM/MSSL/ML/0010

procedure ON;

This procedure enables the acquisition of the HK packet type

procedure OFF (HK_WAS_RUNNING : out BOOLEAN) ;

This procedure disables the acquisition of the HK.

procedure BLOCK(ACTION : BOOLEAN) ;

if Action = TRUE, Blocks the HK if active

if Action = FALSE, restore HK condition to the last call with ACTION set to TRUE

200

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 201

6.4.2.22 hk.adb
Extracted from file "hk.adb"

Function

This file defines the body for the HK package. The package
acquires and sends the Housekeeping Packets (HK), the contents of
which are defined in the XMM-OM Telecommand and

Telemetry Specification document, XMM-OM/MSSL/ML/0010

task PROCESS is
pragma priority (IMPORTANCE.HK_PROCESS) ;
entry ON;
entry OFF (HK_WAS_RUNNING : out BOOLEAN);
end PROCESS;

The above is the specification for the internal task that performs the HK
acquisition

Entry ON starts the task.

Entry OFF stops the task

and returns whether or not it was already stopped.

Default to current SID is that associated with 10 second interval between
packets.

task body PROCESS is

Default that the task is running.
Default requested next HK packet to be acquired at current time.
Create an instance of an HK packet

Set up initial time delay interval by subtracting current time from next
requested HK acquisition time.

Commence infinite loop
Await for either:

1) A request to start HK acquisition (already on by default)
If ON request comes in
then enable HK acquisition
Initiliase the next time for HK acquisition to be now

2) A request to stop HK acquisition
If OFF request comes in
then disable acquisition

3) otherwise, provided HK is enabled (the default)
and no ON or OFF requests pending

Wait for the calculated time delay before
starting to acquire the next HK packet

Provided the wait interval was not too negative and HK is not blocked
Ensure HK packet contents zeroed
If TMPSU secondaries enabled

Get detector ADC accuracy from DETECTOR.GET_ADC_ACCURACY
and store in packet.

Get Thermistor readings from DETECTOR.GET_ANALOG
and store in packet.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 202

Get HV enabled status from DETECTOR.HV_ENABLED and store in packet.

Get Fine Pos Sensor Status from MECHANISM.AT_FINE_SENSOR
and DETECTOR.FINE_SENSOR_CURRENT
and store in packet.

Get HV values from DETECTOR.GET_ANALOG
and store in packet.

Get Low Voltage values from DETECTOR.GET_ANALOG
and store in packet.

Get fine pos current from DETECTOR.GET_ANALOG and store in packet.

Get Flood LED Reading from DETECTOR.FLOOD_LED_BIAS_CURRENT
and store in packet.

Get Detector Electronics Status Word from DETECTOR.DIGITAL_STATUS
and store in packet.

Get

Get
and

Get
and

Get
and

Get
and

Get

Get

Get
and

Get
and
and

Get
and

Get

Get

Get

Get

Set

Get
and

Get
and

Get

heater status from HEATER.CONFIG and store in packet.

coarse sensor current info from TMPSU.COARSE_SENSOR_CURRENT
MECHANISM.AT_COARSE_SENSOR and store in packet.

secondary Voltage status from TMPSU.SECONDARY_VOLTAGES_ENABLED
store in packet.

f/w phase and position info from TIMER_A_TIH.FW_PHASE
MECHANISM.FW_POSITION and store in packet.

dichroic info from TIMER_A_IH.DM_PHASE and MECHANISM.DM_POSITION
and store in packet.

TMPSU Secondary Currents from TMPSU.CURRENT and store in packet.
status of ICB from ICB.STATUS and store in packet.

SSI I/F error count from SSI_DRIVER.ERROR_COUNT
store in packet.

Timing status's from TIME_MAN.SYNCHRONISATION_ACTIVE
TIME_MAN.VERIFICATION_ACTIVE
store in packet.

RBI Status's from RBI.STATUS_REGISTER and RBI.CONFIG_REGISTER
store in packet.

ICB Error Count from ICB.ERROR_COUNT and store in packet.
TC Good Packet Counter from HK.TC_GOOD and store in packet.
TC Bad Packet Counter from HK.TC_BAD and store in packet.
OM Mode from MODEMAN.MODE and store in packet.

ICU State to operational (=1) and store in packet.

Which chain from value stored in ROM (i.e Prime or Redundant)
store in packet.

S/W Version from value stored in ROM
store in packet.

DPU Info from the DPU package and store in packet.

then set the HK Packet SID field accordingly

Get

the current time and store in packet.

Indicate CRC present

Calculate and set the packet length field in the packet.

Provided one of the 2 possible SID's are enabled

Send packet to telemetry queue

Check
using

whether currently enabled HK SID has changed
TM_MAN.SID_STATUS.

Calculate the next HK sample time

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 203

(derived by adding last start of acquition time
to the time interval between packets implied by the SID).

Subtract it from the current time and delay the
code by the result, thus ensuring the average time interval
between HK packets is the expected time interval.

end of infinite loop

procedure OFF (HK_WAS_RUNNING : out BOOLEAN) is

Disable the HK acquisition program by calling the PROCESS.OFF entry point.

procedure ON is

Ensure HK program is running by calling the PROCESS.ON entry point.

procedure BLOCK (ACTION : BOOLEAN) is

Block HK by setting an appropriate flag.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.23 ich. ads

Extracted from file "icb.ads"

Function

This file contains the specification for the ICB package. The package
controls access to lower-level routines that interface directly with
the Instrument Control Bus (ICB). The ICB is implemented using the
MACSbus protocol.

Define SUBADDRESS_TYPE

procedure PUT (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUB_ADDRESS_TYPE;
DATUM : UINT16;
OK : out BOOLEAN) ;

Writes DATUM to sub-address SUBADR at MACSbus destination DEST.

Returns OK = TRUE if no errors occur.

procedure GET (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUB_ADDRESS_TYPE;
DATUM : out UINT16;
OK : out BOOLEAN) ;

Reads DATUM from sub-address SUBADR at MACSbus destination DEST.
Returns OK = TRUE if no errors occur.

procedure RESET;

Resets the ICB MACSbus interface.

function REPORT (TID : UBYTE;
FID : UBYTE)
return BOOLEAN;

The function implements the "Read ICB Address Directly" command
as described in section 2.2.5 of the Telecommand and Telemetry
Specification, XMM-OM/MSSL/ML/0010.

Specifically, it constructs a Task Parameter Report [TM(5,4)] containing

the datum read back from subaddress FID at destination TID-40 (hex),
documented in section 3.5 of the above document.

In this release, it always returns TRUE.

function STATUS
return UBYTE
renames ICB_DRIVER.HK_STATUS;

For convenience, renames a low-level routine which returns
the ICB interface status word - see package ICB_DRIVER for
more details.

function ERROR_COUNT
return UBYTE
renames ICB_DRIVER.ERROR_COUNT;

Returns the ICB error count (modulo 256) since the ICU was started.

function BUSY return BOOLEAN;

Returns TRUE if the ICB interface is being used by other code.

as

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 205

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.24 icb.adb
Extracted from file "icb.adb"

Function

This file contains the body for the ICB package. The package
controls access to lower-level routines that interface directly with
the Instrument Control Bus (ICB). The ICB is implemented using the
MACSbus protocol.

The following procedures are internal to this package.

procedure SEIZE;
procedure RELEASE;

SEIZE does not exit until it has seized the ICB interface
for exclusive use.

RELEASE release the ICB interface for use by other code.

N.B. As the ICB interface code might be
called at interrupt level, the required semaphore mechanism
is implemented using critical sections
(which are valid at interrupt level) in these procedures
whilst manipulating a BUSY flag.
The alternative of using the MUTEX package is not valid
at interrupt level as it uses ADA tasking.

Specify a default BUSY flag status of FALSE.

procedure RESET is

If we are not already at interrupt level (failsafe test)

Ensure that this routine has exclusive use of the MACSbus interface

using SEIZE.
Call the ICB driver low level reset function

If we are not already at interrupt level (failsafe test)

Release the MACSbus interface for use by other code using RELEASE.

procedure PUT (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUB_ADDRESS_TYPE;
DATUM : UINT16;
OK : out BOOLEAN) is

If we are not already at interrupt level (failsafe test)

Ensure that this routine has exclusive use of the MACSbus interface

using SEIZE.
Send the datum to the low level ICB PUT routine

If we are not already at interrupt level (failsafe test)

Release the MACSbus interface for use by other code using RELEASE.

procedure GET (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUB_ADDRESS_TYPE;
DATUM : out UINT1é6;
OK : out BOOLEAN) is

If we are not already at interrupt level (failsafe test)

Ensure that this routine has exclusive use of the MACSbus interface

using SEIZE.

Obtain a datum via the ICB low level driver GET function

206

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 207

If we are not already at interrupt level (failsafe test)
Release the MACSbus interface for use by other code using RELEASE.
function REPORT (TID : UBYTE;
FID : UBYTE) return BOOLEAN is
Get the datum at the address and sub-address corresponding

with the supplied TID and FID.

Supply the datum to the TASK_REPORT package to construct
and send the aappropriate Report Task Parameters Packet.

Return Success.

procedure SEIZE is

Begin infinite loop

Enter critical section

If the BUSY flag is set
Leave critical section

Otherwise
Set BUSY flag
Leave critical section.
Exit procedure.

Wait a bit

Then try again.

procedure RELEASE is

Enter Critical Section.
Set the BUSY flag to false.
Leave Critical Section.

function BUSY return BOOLEAN is

Return status of BUSY flag.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 208

6.4.2.25 icb_driver.ads

Extracted from file "icb_driver.ads"

Function

This file contains the specification for the ICB_DRIVER package.

The package provides the lower-level routines that interface directly
with the Instrument Control Bus (ICB). The ICB is implemented using the
MACSbus protocol.

procedure PUT (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUBADR_ADDRESS_TYPE;
DATUM : UINT16;
OK : out BOOLEAN) ;

This procedure write the datum DATUM to sub-address SUBADR at
MACSbus destination DEST. OK is set to TRUE if no errors occur.

procedure GET (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUBADR_ADDRESS_TYPE;
DATUM : out UINT16;
OK : out BOOLEAN) ;

This procedure gets the datum DATUM from sub-address SUBADR at
MACSbus destination DEST. OK is set to TRUE if no errors occur.

procedure RESET;

This procedure resets the MACSbus interface.

function HK_STATUS return UBYTE;
This procedure returns the status word of the ICB MACSbus interface
BUT only for the last occurring error.

function ERROR_COUNT return UBYTE;
This returns the (modulo 256) error count of MACSbus errors since
the ICU code started running.

Provide a flag to be set when ICB_DRIVER is being called at interrupt level
but default it to FALSE.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.26 icb_driver.adb

Extracted from file "icb_driver.adb"

Function

This file contains the body for the ICB_DRIVER package.

The package provides the lower-level routines that interface directly
with the Instrument Control Bus (ICB). The ICB is implemented using the
MACSbus protocol.

Dependencies

| msb | | | | | | | 1sb |
\ 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15

\ DEAD BITS \ | TX | EXT | SYNC | END |
\ \ | ERR | ERR | ERR | COMM |

function GET_STATUS return ICB_STATUS_TYPE is

Read the ICB MACSbus status register port.
Extract and return the status word

function HK_STATUS return UBYTE is

Return the last noted status word ** at the last error **.

procedure PUT (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUBADR_ADDRESS_TYPE;
DATUM : UINT1l6;
OK : out BOOLEAN) is

Construct command word to be written to command register
based on supplied DEST and SUBADR
(Note, Instr = RD = 010 binary, Ext = 101 binary)

Write Datum to datum register port

Write command word to command register (thus initiating transfer)
Poll status word using GET_STATUS and then

wait for completion of command (END COMM bit set),

an error (i.e. TX ERR, EXT ERR or SYNC ERR bit set) or a timout, and
remember the resulting status.

Flag an error if any error bit was set , a timout or all 'dead bits' set.

Otherwise, assume OK.
If no error
Do nothing.

Otherwise

209

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Hand status, command word and datum over to be
processed by the ANALYSE_ERRORS procedure.

Finally, ensure interface is reset prior to next operation by
calling procedure RESET

procedure GET (DEST : DEST_ADDRESS_TYPE;
SUBADR : SUBADR_ADDRESS_TYPE;
DATUM : out UINT1é6;
OK : out BOOLEAN) is

Construct command word to be written to command register
based on supplied DEST and SUBADR
(Note, Instr = TI = 100 binary, Ext = 101 binary)

Write command word to command register port
(which initiates transfer).

Poll status word using GET_STATUS and then
wait for completion of command (END COMM bit set),

an error (i.e. TX ERR, EXT ERR or SYNC ERR bit set) or a timout, and

remember the resulting status.

Flag an error if error bit set or a timout or all 'dead' bits set.
Otherwise assume OK.

Get datum (this will be bad data if there was an error)
If no error

Do nothing.
Otherwise

Hand status, command word and datum over to be
processed by the AANALYSE_ERRORS procedure.

Finally, ensure status register is reset prior to next operation by

calling procedure RESET.

procedure RESET is

Reset the ICB interface by writing a "don't care" bit (i.e. any)
pattern to the Status Register Port

Note new status.

procedure ANALYSE_ERRORS (COMMAND_WORD : UINT16;

DATUM : UINT16;
STATUS : ICB_STATUS_TYPE) is
Remember this error status for reporting by HK_STATUS.
Increment the error count (modulo 256)
Construct the appropriate 'MACSbus Error' Exception Report.
Provided the 'at interrupt level' flag is not set

send the appropriate 'MACSbus Error' Exception Report.

function ERROR_COUNT return UBYTE is

Return the (modulo 256) error count.

210

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 211

6.4.2.27 icu_nmem nmanager . ads

Extracted from file "icu_mem_manager.ads"

Dependencies

with TYPES; use TYPES;
with SYSTEM;

function LOAD_MEMORY (MID: UINT16;
START_ADDRESS: LONG_INTEGER;
DATA: UINT16_ARRAY;
LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

where MID is the MID

where START_ADDRESS is the start address of the load

where DATA is the data to load as an array of unsigned 16 bit words

where LENGTH is the length of the data in words

where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count
returns a boolean: true on success and false on failure

function LOAD_MEMORY loads memory corresponding to the MID

and source

function DUMP_MEMORY (MID: UINT16;
ADDRESS: LONG_INTEGER;
LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

where MID is the MID

where ADDRESS is the address of the dump request

where LENGTH is the length of the requested memory dump in words
where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the
sequence count and source

returns a boolean: true on success and false on failure

function DUMP_MEMORY dumps memory corresponding to the MID

function CALCULATE_MEMORY_CHECKSUM (MID: UINT16;
ADDRESS : LONG_INTEGER;
LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

where MID is the MID

where ADDRESS is the address of the crc request

where LENGTH is the length of the requested block of memory to crc in words

where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
returns a boolean: true on success and false on failure

function CALCULATE_MEMORY_CHECKSUM calculates the checksum of the memory

region corresponding to the MID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 212

6.4.2.28 icu_nmem nmanager. adb

Extracted from file "icu_mem_manager.adb"

Dependencies

with UNCHECKED_CONVERSION;
with ARTCLIENT;

with SYSTEM;

with INTRINSICS;

with MEMLOC;

with TYPES; use TYPES;
with PACKET;

with TC_VERIFY;

with TMQ;

with PEEK_POKE;

with CRC;

with DEBUG;

with TIME_MAN;

with NHK;

with ICB;

task MEMORY_DUMP is

procedure SEND_PACKET (SUB_TYPE: PACKET.TELEMETRY_SUBTYPE; ADDRESS: LONG_INTEGER; DATA
UINT16_ARRAY; LENGTH : UINT16; MID: UINT16) is
Flag CRC as present
Check if CRC is present
If subtype is for a memory_dump
Write the address into the packet
Write the packet_length into the packet
Write the data into the packet
If subtype is for a memory_checksum_report
Write the address into the packet
Write the packet_length into the packet
Write the memory_length into the packet
Send the packet
procedure READ_BLOCK (MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: INTEGER; DATA: in out
UINT16_ARRAY; SEQUENCE_COUNT_AND_SOURCE: UINT16) is
returns array 0 .. PACKET.MAX_TM_MEM_ PARAMS_M1
Check the MID
Check whether we want ICU, Window Bitmap Table or Centroid Lookup Table

When the MID is 0: icu operand/data space
For each word of data to be read

Calculate the address state
Enter critical section

Read from the address

Leave critical section

Read status

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3

If not accessible by ICU
make it so

Set the start address
Be careful: only least sig 8 bits autoincrement

Send the address again if the least sig 8 bits are 0
Restore status
Read status
If not accessible by the ICU

make it so
If not accessible enable for ICU access

Set the start address
The 16 bits autoincrement

Finally, disable for ICU access

When the MID is 1: icu instr space
For each word of data

Calculate the address_state
Enter critical section
Read from the address

Leave critical section

When the MID is wrong
Send unsuccessful acceptance packet

task body MEMORY_DUMP is

function LOAD_MEMORY (MID: UINT16; START_ADDRESS: LONG_INTEGER; DATA: UINT16_ARRAY;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

UINT16;

begin an infinite loop

if a call to start is made

Finish when there's nothing left

If there's more than a packet left
Read the memory
Send the data in a packet
Recalculate the no of words left

If there's less than or just one packet left
Read the memory

Send the data in a packet

When the MID is 0: icu operand/data space
For each word to be loaded

if address is in the interrupt vector table - don't write it

Calculate address state and address offset

Enter critical section to
protect from address state change

Write

Leave critical section

When the MID is 1: icu instruction space
For each word to be loaded

Calculate address state and address offset

213

LENGTH:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 214

Protect from address state change by entering critical section
Write the value to memory
Leave critical section

Otherwise the MID must be wrong
put params in array

Send unsiccessful acceptance (illegal mid) packet
function DUMP_MEMORY (MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is
Remember the dump parameters
Try to ask for dump
for 0.5 second
if can't dump, return false so that an unsuccessful execution can be sent
function CALCULATE_MEMORY_CHECKSUM(MID: UINT16;
ADDRESS: LONG_INTEGER;
LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is
Set crc syndrome to ffff to start with
loop
until there's nothing left to crc
If there's more than or just one packet's worth left
Read a block of memory
crc it
recalculate length remaining

If there's less than a packet's worth left
Read a block of memory

crc it
finish

Send a memory checksum report with the checksum Jjust calculated

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 215

6.4.2.29 inportance. ads

Extracted from file "importance.ads"

Function

This file contains the specification only package IMPORTANCE.
This package defines the priority of tasks

The range of priorities is 10..200
The default is SYSTEM.DEFAULT_PRIORITY := 10;

Priorities are allocated in bands as follows:-

H/W Simulators (for debugging) 191 -> 200
RBI Watchdog reset 190

S/W Watchdogs 171 —-> 189
"Semaphore" Tasks 131 —-> 140
"Monitor Tasks" (eg. DPU, TM) 111 —> 130
"Working Tasks" e.g. HK, Science, Blue 11 -> 110
"Idle" Task 10

Priority Definitions

CPU Watchdog Reset

CPU_RESET : constant SYSTEM.PRIORITY := 190;
Software Watchdogs
DPU Heartbeat Watchdog Task

DPU_HEARTBEAT : constant SYSTEM.PRIORITY := 171;

"Semaphore" Tasks

Priority of Mutual exclusion semaphore task type

MUTEX_SEMAPHORE : constant SYSTEM.PRIORITY := 132;

Timer A Resource

TIMER_A : constant SYSTEM.PRIORITY := 133;
"Monitor Tasks" (eg. DPU, TC)
Priority of Task to monitor DPU data for events
DPU_DATA_MANAGER : constant SYSTEM.PRIORITY := 111;
Priority of Task to monitor Telecommand queue
TCPROC : constant SYSTEM.PRIORITY := 113;
SAFING : constant SYSTEM.PRIORITY := 112;
"Working Tasks" (e.g. HK, Science, Blue)

Load Blue Centroid Table

LOAD_CENTROID_TABLE : constant SYSTEM.PRIORITY 91;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 216

Load Blue Window Table

LOAD_WINDOW_TABLE : constant SYSTEM.PRIORITY := 92;

Priority of task that collects and send HK data

HK_PROCESS : constant SYSTEM.PRIORITY := 93;

HV ramp task

HV_RAMP_TASK : constant SYSTEM.PRIORITY := 94;

Priority of task to perform Thermal Control

THERMAL_CONTROL : constant SYSTEM.PRIORITY := 95;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 217

6.4.2.30 |INTVEC. asm
File is I NTVEC asm

; Interrupt Vectors

; This file defines the statically initialized interrupt vectors

; for the Tartan runtimes. It also defines the starting address of the
; program image. Users may wish to add interrupt vector definitions or
; modify the startup sequence as their applications evolve. NOTE: when
; using TLC or Adascope, unused interrupt vectors may be uninitialized;
; the debug kernel will intercept such unused interrupts.

; TAKE CARE to set the following configuration flags properly!

ehkkhkhkhkhkhkkhkhhkhhhhhhhhhhhhkhhhhhhhhhhkhhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhk
’

EXPANDED_MEM EQU O ; ONE => Set up for expanded memory runtimes
DEBUG_VERSION EQU 1 ; ONE => Set up for use with debug kernel
TASM EQU O ; ONE => Tartan Assembler (do not set)

; end of configuration flags

REFER NUMERIC_O_LP ; integer overflow linkage ptr
REFER NUMERIC_O_SP ; integer overflow service ptr
REFER TIMER_B_LP ; timer B linkage ptr
REFER TIMER_B_SP ; timer B service ptr
REFER ADAROOT ; starting point of Ada runtimes
REFER BCP4_1P
REFER BCP4_SP
REFER SSI_LP
REFER SSI_SP
REFER RBI_LP
REFER RBI_SP
IF EXPANDED_MEM HIREN
REFER BEX_STATE ; "branch to executive" linkage ptr
REFER BEX_TABLE ; "branch to executive" service ptr
ENDIF HIREN
ABSOLUTE

ehkkhkhkhkhkhhhhhhkhhhhhhhhkhhkhhhhhhhhhhkhkhhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhk
’

; The Ada runtime startup is at ADAROOT. How it is started depends upon
; the boot sequence for your system. Bare hardware starts up at O,

; the debug kernel obeys the specified starting address. Expanded

; memory with the Tartan toolset uses a more careful init sequence.

;**
IF DEBUG_VERSION ;!!!!1
; kernel uses power-up vector
ELSE ;e
; start by power-up sequence, Jjump to initialization code
ORIGIN 0
Jc 7, INIT_RT
ENDIF HIREN

IF EXPANDED_MEM HIREN
; see exciting init code at the end of the file

ELSE ;e
; debug kernel starts us, just avoid overwriting his vectors
ORIGIN 01lE
INIT_RT Jc 7,ADAROOT ; jump to real start addr
ENDIF HIREN

,-**
2

; MIL-STD-1750 Interrupt vectors. Only those needed by a debug version

; are initialized below.

’
;**

ORIGIN 020 ; MIL-STD-1750 start of vectors
DEFINE ART1750VEC ; runtimes refer by this name
ART1750VEC EQU $
; DATA ?,7? ; (0) Power Down
; DATA 2,7 ; (1) Machine Error
; DATA ?2,? ; (2) Spare
ORIGIN 026
DATA NUMERIC_O_LP,NUMERIC_O_SP ; (3) Floating point overlow
DATA NUMERIC_O_LP,NUMERIC_O_SP ; (4) Fixed point overflow
IF EXPANDED_MEM & (DEBUG_VERSION==0) HIREW
DATA BEX_STATE,BEX_TABLE ; (5) BEX
ENDIF ;LI

; DATA 2,7 ; (6) Floating point underflow

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 218

; DATA ?,°? ; (7) TIMER A
ORIGIN 030
DATA BCP4_LP,BCP4_SP ; (8) BCP4
ORIGIN 032
IF TASM ;!!!!
DATA WEAKSTIMER_B_LP, WEAKSTIMER_B_SP ; (9) TIMER B
ELSE HEREN
DATA TIMER_B_LP, TIMER_B_SP ; (9) TIMER B
ENDIF HIREN
ORIGIN 034
DATA SSI_LP,SSI_SP ; (10) SSI interrupt
; data ?,7? ; (11) Spare
; DATA ?,°? ; (12) IN/OUT 1

ORIGIN 03a

DATA RBI_LP,RBI_SP ; (13) RBI interrupt
; DATA 2,7 ; (14) IN/OUT 2
; DATA ?,7? ; (15) Spare

;**

; Program startup in expanded memory is more interesting because the

; world comes up in an unmapped state, but the image is linked to run

; in a mapped environment. Thus we must (carefully) at startup initialize
; the page registers. The code below solves this problem. The placement
; 1s selected to avoid the debug kernel.

;**
IF EXPANDED_MEM HIRRN
REFER SEGMENTSTABLE ; page table built by the linker
AS1REGS EQU 010 ; offset for AS1 page registers
RO EQU 0
R1 EQU 1
R2 EQU 2

ORIGIN 0240
; We are started here by the debug kernel, or power-up.
; We assume that virtual I and D page 0 point to this code.
INIT_RT XIO RO,RIPR+0 ; get mapping for this page (ASSUMES VIRT 0!)

XIO RO,WIPR+AS1REGS ; init AS1 I page 0 to point here
XIO RO, WOPR+AS1REGS ; init AS1 D page 0 to point here
LISP R2,1 ; AS1
XIO R2,WSW ; now we are executing in AS1
DL R0O,ART_SEGLOC ; get PHYSICAL address of segment table
DSLL RO, 4 ; move page number bits to RO
XIO RO,WOPR+AS1REGS+15 ; set into AS1 D page 15
SRL R1,4 ; rejustify page offset
ORIM R1,0F000 ; page offset in page 15
Vvi0 R2,0,R1 ; load up ASO I pages
VIO R2,18,R1 ; load up ASO D pages
LST TOADA ; go back to ASO and ADAROOT
; associated data
ART_SEGLOC EQU $
PHYSICAL SEGMENTSTABLE
TOADA DATA O ; mask
LOGICAL ADAROOT ; sw, ic (ADAROOT must be in seg 0)
ENDIF HIREN

END INIT_RT

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 219

6.4.2.31 nechani sm ads

Extracted from file "mechanism.ads"

Function

This file contains the specification for the MECHANISM package. This
represents the Filter Wheel and Dichroic mechanism objects

function MOVE_FILTER_WHEEL (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Instructs filter wheel to perform the movement specified
by SET_FILTER_WHEEL_MOVEMENT

where

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if command was successfully accepted

function SET_FILTER_WHEEL_MOVEMENT (FW_MOVEMENT : FW_MOVEMENT_TYPE;
VALUE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Informs package of what type of filter wheel movement is to be performed
by the next call to MOVE_FILTER_WHEEL.

where

FW_MOVEMENT specifies the type of filter wheel movement required.
4 : To the filter number (0 -> 11) given by VALUE
: To the absolute position given by VALUE (0->2199 steps from datum)
To the relative number of steps from the current one
To VALUE number of fine sensor pulses
To the Datum position
To the first sensing of the coarse sensor.

O o0 J oy U

VALUE specifies any numerical value (e.g. how many steps) associated
with the type of movement (only examined if relevant)

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if command was successfully accepted

function SET_DICHROIC_DIRECTION(DIRECTION : INTEGER;
METHOD : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Informs the package of the direction and type of dichroic motion
to be executed on the next call to MOVE_DICHROIC.

where

DIRECTION specifies the direction (-ve = Redundant to Primary, +ve
Primary to Redundant) and, in the case of METHOD = 1, the number of
steps the dichroic is to move.

METHOD specifies the type of dichroic movement required:
0 = Dichroic is moved to its maximum excursion in the direction
indicated by the sign of DIRECTION
1 = Dichroic is moved by the magnitude of DIRECTION in the direction
indicated by the sign of DIRECTION

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Returns TRUE if command was successfully accepted
function MOVE_DICHROIC (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;
Requests the dichroic to move as specified by the priorn call to
SET_DICHROIC_DIRECTION

where:

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if command was successfully accepted
function CHANGE_FW_STEP_RATE (PULL_IN_RATE : UINT16;

CRUISE_RATE : UINT16;
ACCELERATION : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Changes the acceleration parameters for the filter wheel.

where:

PULL_IN_RATE is the startup pulse rate (hz)

CRUISE_RATE is the maximum pulse rate (hz)

ACCELERATION is the acceleration used to go from PULL_IN_RATE
to CRUISE_RATE (hz/sec)

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if command was successfully accepted
function CHANGE_DICHROIC_STEP_RATE (NEW_RATE : UINT16;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Changes the acceleration parameters for the dichroic.
where:
NEW_RATE is the new step rate (hz)

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if command was successfully accepted

function STOP_FILTER WHEEL (SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

Stops the filter movement (if active).
where:

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if command was successfully accepted

function FW_POSITION return UINT16;

Returns the current fw position for HK display
0 => 2199 : Number of steps from datum

2200 : Filter Wheel position unknown

2201 : Filter Wheel Moving

function LAST_FW_MOVEMENT_OK return INTEGER;

Returns result of last f/w movement

-1 : Still Moving

220

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 221

0 : Unsuccessful
1 : Successful

function DM_POSITION return INTEGER;

Returns the current dichroic position for HK display

-32 -> 31 : Number of steps from position at start of operational mode
(-ve : toward Primary; +ve : Towards Redundant)

function AT_COARSE_SENSOR return BOOLEAN;
Returns TRUE if filter wheel coarse sensor was detected when
last examined.

function AT_FINE_SENSOR return BOOLEAN;
Returns TRUE if filter wheel fine sensor was detected when
last examined.

procedure INIT;

Initialises the mechanisms package

procedure AWAIT_DPU_HEARTBEAT;

This procedure is a rendevous point. It is called by the DPU package to
inform the mechanism package that a DPU heartbeat has been received.
It times out after 11 secs.

function PERFORM_FW_SAFING (SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

Request the Filter Wheel to move to a 'Safe' position.
where:

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if command was successfully accepted

The block of variables are now declared as part of the specification

so that they are 'visible' to the TIMER_A_IH package which actually
performs the movement. That package is compiled separately as it is run
at interrupt level and therefore a different set of compilation flags
must be used.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.32 nmechani sm adb

Extracted from file "mechanism.adb"

Function

This file contains the body for the MECHANISM package. This
represents the Filter Wheel and Dichroic mechanism objects

The following are specifications for functions, procedures and
tasks internal to the package.

procedure TERMINATE_MOVEMENT;

function CHANGE_PULSE_RATE (DEVICE : in DEVICE_TYPE;
PULL_IN_RATE : in UINT16;
CRUISE_RATE : in UINT16;

ACCELERATION : in UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

task MECH is

pragma priority (IMPORTANCE.TIMER_A) ;

entry AWAIT_DPU_HEARTBEAT;

entry ACTIVATE;

entry DEACTIVATE;

end MECH;

where

entry AWAIT_DPU_HEARTBEAT pauses the task until the next DPU heartbeat.
entry ACTIVATE starts moving the specified mechanism

entry DEACTIVATE aborts the mechanism movement

Now commence descriptions of bodies.

function SET_FILTER_WHEEL_MOVEMENT (FW_MOVEMENT : FW_MOVEMENT_TYPE;
VALUE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
Examine the requested filter wheel movement.
If we are specifying a move to a filter position

Provided we are not in safe mode

Store the parameters
Set up exit condition as 'after required steps commanded’

Else
Inform ground that this is not valid for this mode
and return an error flag.
If we are specifying a move to an absolute position

Store the values
Set up exit condition as 'after required steps commanded’

If we are specifying a move to an relative position

222

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 223

Store the wvalues
Set up exit condition as 'after required steps commanded’

If we are specifying a move to fine sensor

Store the values
Set up exit condition as 'at next fine sensor detection'

If we are specifying a move to datum

Store the wvalues
Set up exit condition as 'at detection of coarse and fine sensor’

If we are specifying a move to the coarse sensor

Store the values
Set up exit condition as 'at detection of coarse sensor'

Otherwise
Do nothing
Remember which type of movement was requested in FW_MOVEMENT_REQUESTED.
Return without error
function MOVE_FILTER_WHEEL (SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
First get current position
Is the F/W moving
If so, tell ground it is busy
and exit as an error
Now set up f/w move on the basis of movement type stored in FW_MOVEMENT_REQUESTED.
If it's a move to a filter position
and if we are in safe mode
tell the ground that this is invalid
Store in LAST_FW_MOVEMENT that the last f/w movement was invalid
and return with an error condition.
(Re) Set up focussing heaters for this filter
and the sample time
Set parameter allowing acceleration of filter wheel at start

If the f/w current position is unknown
(e.g. not been to datum yet)

Tell the ground
Remember that this f/w movement was invalid
and return with an error condition
Determine the final step position the requested filter corresponds to
If we are already at the requested position
Send message to ground signifying success
Store in LAST_FW_MOVEMENT that this f/w movement was valid
Re-inform DPU of position of f/w (part of NCR 166) via DPU.SET_FILTER
and return without error
Otherwise
Determine how many steps have to be moved from current position

Store in INFORM_DPU that we must interact with the DPU when moving

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

If

If

If

If

If

Also determine if it is wvalid to check fine sensor for this

filter after movement (i.e. if final position is a multiple of 200)

its a move to an absolute position
Set parameter allowing acceleration of filter wheel at start

If the f/w current position is unknown
(e.g. not been to datum yet)

Tell ground about it
Store in LAST_FW_MOVEMENT that this f/w movement was invalid
and return and error condition.
If we are already at requested position
Send message to ground signifying success
Store in LAST_FW_MOVEMENT that this f/w movement was a success
Return with no error
Otherwise
Determine how many steps are to be moved
we are moving a relative number of steps
Set parameter allowing acceleration of filter wheel at start
we are moving to a fine sensor position
Set parameter NOT allowing acceleration of filter wheel at start
Ensure fine sensor is on via DETECTOR.FINE_SENSOR.
and flag that it should be checked for visiblity after movement
we are moving to the datum position
Set parameter NOT allowing acceleration of filter wheel at start
Flag that we should check fine sensor after movement

Ensure coarse and fine sensors are on using TMPSU.COARSE_SENSOR
and DETECTOR.FINE_SENSOR

Wait a short while to allow them to settle.

Check whether we can already see both the coarse and
fine sensors.

If so, we are already at datum
Ensure fine and coarse sensors are off.
Tell ground we are successful
Flag in LAST_FW_MOVEMENT that this f/w movement was successful
Set f/w position to zero
Return with no error
we are moving to coarse
Set parameter NOT allowing acceleration of filter wheel at start
Ensure coarse sensor on using TMPSU.COARSE_SENSOR
Wait a bit to allow it to settle.
Check whether we can already see the coarse sensor
If we can
Ensure coarse sensor off

Tell ground we are successful

224

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Note in LAST_FW_MOVEMENT that this f/w movement as successful
Return without error.
Otherwise
Set parameter indicating we are about to move the f/w mechanism
Set Initial Phase Increment to 1
Get number of step movements to perform obtained earlier
Get when we must exit determined in SET_FILTER WHEEL_MOVEMENT
Determine if this is an autosafing internally generated command.
Check whether the f/w has not completed any previous commanded movement
If so, issue a 'busy' message to ground.
Otherwise
Activate the movement (but don't wait for completion)
Attempt to start the f/w moving using MECH.ACTIVATE
and return without error
Or timout if the code is busy
and tell ground it is busy.
and return with error flag set.
Return without error.
function MOVE_DICHROIC (
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
If if not in engineering mode
Inform ground the command is invalid for this mode
and return an error condition

Note when commanded movement should cease
(i.e. at requested +ve or -ve excursion)

Set parameter indicating non-accelerating motion (always so for dichroic)
Zero dichroic position counter

Set parameter indicating that we are about to move the dichroic mechanism

Set up iphase increment on basis of movement direction (1 for +ve, 3 for -ve)

Allow no more than 35 steps
Activate the motion (but don't wait for completion) using MECH.ACTIVATE
Return without error

task body MECH is

Now commence main task body
Ensure 31750 Timer A is stopped
Begin infinite loop
Await call to an 'accept' point
allow acceptance of a activate request

accept ACTIVATE do

Inform the TIMER_A_IH package that we are now moving a mechanism

—-—+ Inform the TIMER_A_IH package that we are now moving a mechanism

225

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

TIMER_A_TIH.MO

end ACTIVATE;

VEMENT_FINISHED := FALSE;

Look at which mechanism is being commanded

If it's the
Set flag
Remember
Stop any
Await a D
Stop HK
Turn on t
If the cu

assume
Calc curr

Determine
(as a fun

Assume as

If it's t

(Set Init

If we are
Assume

If we are

Set to

Set braki

Set mechansisms
Disable heaters

And load/start
appropriate to

Then send comma
or allow acceptanc

accept DEACTIVAT

Stop Timer A
Flag that we
Examine whic

If it's t

Determ

filter wheel we are moving

indicating that filter wheel may no longer be in a safe position
current f/w position before moving

DPU science data handshake using DPU.ENABLE_REQ_DATA

PU heartbeat (or timout after 11 secs)

he coase and sensors

rrent f/w position is unknown

we are at the start

ent phase on basis of current position

when we must start braking
ction of acceleration and peak motion)

a default success completion flag
he dichroic we are moving
ial phase value)
moving to the maximum excursion
initial phase to be 1
moving n steps
last value used
ng distance to zero
code as 'in use'
, 1if any are on, to minimise power

timer A with an interpulse gap value
pull-in speed for given mechanism

nd to start Timer A pulse train using TIMER_A_TIH.START
e of an abort request

E do

interrupts procedure via TIMER_A TIH.STOP
are aborting

h device is being commanded

he filter wheel

ine appropriate failure message to send to ground

Set F/W position in HK as unknown

Flag 1
If it’
Determ
Or if mechanisms
Every 1/2 se

Check to see

ast f/w movement as unsuccessful

s the dichroic

ine appropriate failure message to send to ground
are in use

c

if the movement has finished using TIMER_A_TIH.MOVEMENT_FINISHED

226

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 227

And terminate the moevement cleanly using TERMINATE_MOVEMENT

Define procedure internal to the mechanism control task that is
called at the termination of any mechanism movement.

procedure TERMINATE_MOVEMENT is

Ensure Timer A of the 31750 chip is stopped using TIMER_A_TH.STOP.
Ensure all phase lines are set off;
Look at which mechanism is in use.
If it's the filter wheel

Remember that this movement was good.

Wait a bit to allow mechanisms to settle

Get fine and coarse sensor values for HK

(Set up f/w position for HK)

If it was previously flagged as unknown position in HK,
and we have not performed a move to an known position

Ensure it is still flagged as unknown in HK
Otherwise
Make new position visible to HK
If it's a f/w movement to a filter or a fine sensor only,
If we should check the fine sensor but it is not seen
flag it and determine appropriate message
Suppress any later success messages
Remember this movement as unsuccesful
If it was a move to datum
If we can't see both fine and coarse sensors
Set f/w position as unknown in HK
Determine appropriate message to send to ground indicating failure
Suppress any further success messages
and remeber this last f/w movement as unsuccessful

If flagged as appropriate, inform DPU of requested f/w filter
position if all OK using DPU.SET_FILTER

Turn off coarse and fine sensors

Determine whether we should send success message to ground
if not suppressed earlier

Override any message if movement was aborted by ground
Unblock HK

Renable DPU science data handshakes (i.e. restart
downloading data

If it's was a Dichroic motion
Determine message to send to ground
Send out appropriate NHK message determined above
Renable heaters if any
If NHK_MESSAGE = FW_LOST_POSITION

Issue command to go to safe internally

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 228

If it was successful
Send NHK anomaly message to ground saying so
Otherwise
Send NHK message to ground saying an auto-safing attempt failed
Release mechanisms code for use
Return from termination of movement procedure

function FW_POSITION return UINT16 is

Return current value of f/w position counter

function DM_POSITION return INTEGER is

Return current value of Dichroic Position counter

function CHANGE_PULSE_RATE (DEVICE : in DEVICE_TYPE;
PULL_IN_RATE : in UINT16;
CRUISE_RATE : in UINT16;

ACCELERATION : in UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN is
Store the new rate provided it's sensible
Otherwise signal an error
always return success
function CHANGE_FW_STEP_RATE (PULL_IN_RATE : UINT1l6;
CRUISE_RATE : UINT16;
ACCELERATION : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
Attempt to change f/w step rates using CHANGE_PULSE_RATE
function SET_DICHROIC_DIRECTION(DIRECTION : INTEGER;
METHOD : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
If we are not in engineering mode
Inform ground of failure

Return with an error condition

Note which method of movement (step by step or to max excursion)
and which direction

Return success condition.
function CHANGE_DICHROIC_STEP_RATE (NEW_RATE : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Attempt to change dichroic pulse rate

function STOP_FILTER_WHEEL (SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

Attempt to stop the f/w moving
Return TRUE if successful

Or timout if the code is busy
Send Ground a 'busy' message
Return FALSE

procedure SEND_NHK_PACKET (NHK_SID : PACKET.SID_TYPE; CODE : UINT16) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Load up condition code into an NHK packet

Determine whether it's an event or major anomaly on the
basis of the SID

Provided originally this was not an autosafing internally
generated command.

Place an NHK packet in the telemetry queue

function LAST_FW_MOVEMENT_OK return INTEGER is

Return whether last f/w movement was successful

function AT_COARSE_SENSOR return BOOLEAN is

Return whether the coarse sensor was seen when last checked

function AT_FINE_SENSOR return BOOLEAN is

Return whether the fine sensor was seen when last checked

procedure INIT is

Ensure coarse and fine sensors are on
Wait a bit to let them settle
Determine sensor status for HK

Ensure coarse and fine sensors are off

procedure AWAIT_DPU_HEARTBEAT is

Await a heartbeat from the DPU

function PERFORM_FW_SAFING (SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

Set the coarse sensor current to 4

Return FALSE if it fails

Set the fine sensor current to 9

Return FALSE if it fails

If the current filter wheel is already safed
Send message to ground signifying success

else
if the filter wheel position is already known

Then command filter wheel to move to the blocked position (filter 0)
Will not move the filter wheel if already at blocked

else request the filter wheel to find the coarse position
if not already at blocked

Activate the filter wheel movement.
Wait for the movement to complete

If movement was good

Request the filter wheel to move 1258 steps from the coarse position.

This should make it move to the blocked position.
Activate the filter wheel movement.

Record safing outcome

229

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 230

6.4.2.33 nem nmanager. ads

Extracted from file "mem_manager.ads"

Function

This file contains the specification for package mem_manager.
That package calls icu_mem_manager or dpu_mem_manager to load/dump/check memory.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/SP/0061
Dependencies

with TYPES; use TYPES;
with PACKET;

function REQUEST (MEM_MANAGER_PACKET: PACKET.TC_TYPE) return BOOLEAN;

Where MEM_MANAGER_PACKET is a memory management packet

Returns BOOLEAN true success or false on failure

This merely forwards packets onto the ICU_MEM MANAGER package or the
DPU_MEM_MANAGER package

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 231

6.4.2.34 nem nmanager. adb

Extracted from file "mem_manager.adb"

Function

This file contains the body for package mem_manager.
It calls icu_mem_manager or dpu_mem_manager to load/dump/check memory.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/SP/0061

Dependencies

with UNCHECKED_CONVERSION;
with PACKET;

with ICU_MEM_MANAGER;

with DPU_MEM_MANAGER;

with TMQ;

with TC_VERIFY;

with DEBUG;

with MODEMAN;

with NHK;

function REQUEST (MEM_MANAGER_PACKET: PACKET.TC_TYPE) return BOOLEAN is

Find length of CRC (is it there or not)
Calculate length of data in packet
Convert length from bytes to words
Check memory management packet subtype - load/dump/crc
If it is a load command (subtype 1)
Check the MID
When the MID is for the DPU
Call LOAD_MEMORY in DPU_MEM_MANAGER
Otherwise send an unsuccessful acceptance packet
Return FALSE if something went wrong
When it's a dump memory command (subtype 2)
If length is out of range, send an error packet
Check the MID
When the MID is for the ICU (0, 1)
Call DUMP_MEMORY in ICU_MEM_MANAGER
if we had trouble, send an unsuccessful execution packet
When the MID is for the DPU (10h-15h, 20h-27h)
Call DUMP_MEMORY in DPU_MEM_MANAGER
Otherwise send an unsuccessful acceptance packet

When it's a memory crc (subtype 3)
Check the length

Check the MID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 232

If the MID is for the ICU (0, 1)
Call CALCULATE_MEMORY_CHECKSUM in ICU_MEM_MANAGER
Otherwise send an unsuccessful acceptance packet

Otherwise we have a wrong subtype for MEM_MANAGEMENT
So send an unsuccessful acceptance

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 233

6.4.2.35 nendpu. ads
Extracted from file "memdpu.ads"

Function

This file contains the specification for the package MEMDPU. That package
constructs Memory Dump packets from DPU RAM dump blocks (i.e. blocks

of the type DR_xxx) and places them in the telemetry queue. The format of
the DR_xxx blocks are defined in section 6 of the 'XMM-OM ICU-DPU Protocol
Definitions', XMM-OM/MSSL/ML/11.

package MEMDPU is

procedure PUT (DPU_DATA : UINT16_ARRAY) ;

This procedure constructs Memory Dump packets from the supplied

DPU DR_xxx block contained in DPU_DATA. Packets deemed complete (i.e.
when they are the maximum length that can be accomodated for that
particular type of data) are then sent to the telemetry queue..

NOTE: the index of this array must start at 0.

procedure FLUSH;

This procedure causes any memory dump packets not occupying the maximum
length to be flagged as complete and sent on to the telemetry queue.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.36 nendpu. adb

Extracted from file "memdpu.adb"

Function

This file contains the body for the package MEMDPU. That package
constructs Memory Dump packets from DPU RAM dump blocks (i.e. blocks

of the type DR_xxx) and places them in the telemetry queue. The format of
the DR_xxx blocks are defined in section 6 of the 'XMM-OM ICU-DPU Protocol
Definitions', XMM-OM/MSSL/ML/11.

Declare an Instance of the Packet Record
The following specification is for a procedure internal to the package.

procedure OUTPUT_DPUMEM;

Adds header to memory dump packet and sends it to the telemtry queue.
procedure PUT (DPU_DATA : UINT16_ARRAY) is
Assume, by default, the data should be 'packed' into
the packet (see below).
Set up default location of where to copy data from in the DPU block.
Get the DPU DR_xxx block type.
Extract starting address of DPU RAM data from the DPU block.
Calc default number of words to copy from DPU block into packet (s).
If it's a DR_LRM block (a dump from local ram)
For this particular type of DR_xxx data
1) Correct how many words to copy from the DPU block
2) Correct where to copy the words from the block (the 'base')
Because of larger internal header, decrease words to copy by 6.
Set the MID
Extract the DPU local memory address for the start of data.
Derive the 'base'
Else, if its a DR_PROG_DUMP block (Dump of program RAM)

Derive the MID as a function of the start address
contained in the block.

Else, if it's a Global Ram Dump (DR_RAM_DUMP or DR_RAM DUMP_N_ZERO)
If the start address is in small word memory.
Specify the MID accordingly
And flag that the data should not by 'packed'
Otherwise
Specify the MID accordingly.

Loop over data to be copied from the DPU block,
starting at 'base' derived above.

If we are at the start of a packet

Store, in the packet, the DPU memory address corresponding
to the DPU words also about to be copied into the packet.

Copy data into work area one word at a time

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 235

(as data may span DPU blocks we need to keep a copy so we can
join the next block to this one)

Increment how many words we have copied into work area
If we are to 'pack' the words into the packet
If we have accumulated 4 words since the last packing operation, pack again

The DPU words are 24 bit words padded to 32 bits
Therefore we compress 4 16 bit words = 2 padded dpu words
down to 3 by 16 bit words = 2 packed 24 bit words i.e.-

| 0 | 1 | 2 DPU PADDED Words

| O | 1] 2 | 3 | occupy 4 16 BIT words

[01112]314151617| or 8 bytes

[11213151617] which occupy 6 bytes after stripping

[O | 1 | 2| i.e. 3 l6-words

|0 | 1 | resulting in 2 packed DPU words

Copy resulting 2 packed DPU words into the packet (= 3*16 words)

and modify words copied counter accordingly.
Reset the words accumulated counter
increment the DPU address counter of the data that has been copied
If we have accumulated only 2 words
increment the DPU address counter of the data that has been copied
Otherwise, if the data is not to be packed (i.e. 16 bit words)

If we have accumulated 2 by 16 bit words since the last copy
into the packet operation.

16 bit data is still padded to 32 bits
so we extract least significant 16 bit word of the 32 bits
and copy it into the packet.

and modify words copied counter accordingly.

Increment the DPU address corresponding to the DPU data
about to be copied

Reset the words accumulated counter
If the packet is now full (note that the maximum number of words
that will be copied must be a multiple of 3 because of the nature
of the 'packing' operation).
Output it via routine OUTPUT_DPUMEM.
Inc pointer within DPU block
procedure OUTPUT_DPUMEM is
If there are only 2 words in the accumulation buffer
we are midway thru a packing operation
So pack what we have

Copy resulting 1 packed DPU words into the packet (= 1.5 *16 words padded to 2)
and modify words copied counter accordingly.

Reset the words accumulated counter
Calculate and load the packet length.
Load Memory Identifier (MID) into Packet Header
If packet is not empty of RAM data, send it to the telemetry queue.

Reset words copied counter.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 236

procedure FLUSH is

Call OUTPUT_DPUMEM to force output of packet to telemetry queue.

Reset words copied counter.

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3

6.4.2.37 nenl oc. ads

Extracted from file "memloc.ads"

Function

This file contains the specification only package MEMLOC.
This package defines any fixed memory locations.

Define

Define

Define

Define

Define

Define

Define

define

the

the

RBI

the

the

location of the ADASCOPE version ID we are running
size of the telecommand and telemetry queues
Communication Area

location TC_LOC of the telecommand queue area

location TM_LOC of the telemetry queue area

other tc/tm special addresses (e.g.. queue pointers)

the

BCP4 processing addresses

location of the filter wheel parameters table

and ADA routines to communicate with each other).

define

Define

Define

define

RBI

special addresses

Time Control Flag locations.

the

SSI

Bootstrap Parameter Area

processing addresses.

(these are fixed to assist assembler

237

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 238

6. 4.2.38 nodenan. ads

Extracted from file "modeman.ads"

Function

This file contains the specification for the mode manager package.
This implements mode changes and supplies HK status information.

Reference

with TYPES; use TYPES;

function TO_MODE (MODE : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

This function implements the mode change mechanism from the
current mode to the new MODE.

where

MODE is the new mode requested, in the range 0 .. 5
SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field

of the associated telecommand.

Returns TRUE if the command was successfully accepted
function MODE return UINT16;

This function returns the current mode of the ICU.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 239

6.4.2.39 nodenan. adb

Extracted from file "modeman.adb"

ALLOWED TRANSITIONS

To | SAFE | IDLE | SCI | ENG | INT SAFE |
———————— I I I I I

From \ \ \ \ \ \
SAFE | yes | yes | no | no | no |
IDLE | yes | yes | yes | yes | yes |
SCIENCE | yes | yes | yes | no | no |
ENG | yes | yes | no | yes | no |
INT SAFE| yes | yes | no | no | yes |

The following is the specification of a task internal to this package.

task SAFING_TASK is
pragma priority (IMPORTANCE.SAFING) ;
entry START (MODE : UINT16; LEVEL : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16);
end SAFING_TASK;
where START starts the sequence of commands necesary switch to mode MODE at safe level LEVEL
and SRC_AND_SEQUENCE_COUNT is the source and sequence count of the requesting telecommand.
LEVEL can take values DETECTOR.FULL or DETECTOR.HALF_SAFE.
N.B. The parameters MODE and LEVEL are separate even though MODE implies LEVEL, because
in earlier releases of the telecommand specification, LEVEL was a sub parameter of

MODE .

task body SAFING_TASK is

Commence infinite loop
Await a call to the entry point START

Upon such a call
Take a copy of the parameters for local use.

If we are going to full safe
Disable all SSI output except H/B
Abort current DPU exposure

Request HV safing using DETECTOR.PERFORM_HV_SAFING.

If HK safing proceded OK
Request F/W Safing using MECHANISM.PERFORM_FW_SAFING

If we are going to full safe
Re-enable SSI
Init DPU

If all still OK
Set ICU mode to requested mode by storing it in CURRENT_MODE

function TO_MODE (MODE : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
If mode parameter illegal or not in allowed table then
If mode out of range then
Construct illegal mode error packet

Else if illegal transition then

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 240

Construct illegal parameter values error packet
Send unsuccessful acceptance packet and return false
If next mode is a safe mode then
Determine whether it is intermmediate or safe
Initiate the safing sequence using SAFING_TASK.START
But if the task is already in use
Send unsuccessful execution packet indicating 'busy' to ground
Return FALSE
Otherwise
If we are switching to Idle but the f/w is not at blocked
Send 'F/W not at blocked' execution failure message
and return with FALSE
Record mode in CURRENT_MODE and return true

function MODE return UINT16 is

Return the CURRENT_MODE value

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 241

6.4.2.40 nutex. ads

Extracted from file "mutex.ads"

Function

This file contains the specification for the MUTEX package. This provides
a mutual exclusion semaphore emulation;

task type SEMAPHORE is
entry SEIZE;

This entry point acquires the resource

entry RELEASE;

This entry point releases the resource

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.41 nutex.adb

Extracted from file "mutex.adb"

Function

This file contains the body for the MUTEX package. This provides a
mutual exclusion semaphore emulation;

task body SEMAPHORE is

Assume, by default, the resource is not in use.
Begin infinite loop.
Await a call to seize or release a resource.
If resource is flagged as not 'in use'
Allow acceptance of a seize resource request

accept SEIZE do

and set flag as 'in use'
If resource is flagged as 'in use'
Allow acceptance of a release resource request

accept RELEASE do

and set flag as not 'in use'

242

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 243

6.4.2.42 nhk. ads
Extracted from file "nhk.ads"

Function

This file contains the specification for package NHK.
The function of this package is to provide routine(s) to construct and

place Non-Periodic Housekeeping (NHK) packets into the telemetry queue
prior to their being transmitted to the ground.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

procedure PUT (SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;

SID_EX : PACKET.SID_TYPE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) ;

The procedure PUT constructs and places an NHK packet in the telemetry
queue. The interface is as follows:

where:

SUB_TYPE specifies the sub-type of NHK packet to be placed in the queue.
It will take one of the the following values:

PACKET.EVENT_REPORT
PACKET .EXCEPTION_REPORT
PACKET.MAJOR_ANOMALY_REPORT

SID_EX specifies the Structure Identifier (SID) to be loaded into the
packet

PARAMS specifies an array of parameters to be loaded into the packet.
NOTE - the index range of the parameter array should start at O.

SIZE specifies the number of parameters to be loaded from PARAMS.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 244

6.4.2.43 nhk. adb
Extracted from file "nhk.adb"

Function

This package body implements the body for package NHK.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

procedure PUT (SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;

SID_EX : PACKET.SID_TYPE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) 1is

Create an instance of the Packet Data Structure.
If this packet's SID is enabled (use TM_MAN.SID_STATUS)
Place current time (obtained from TIME_MAN.TIME_STAMP) in data field header
Flag presence or absence of CRC in data field header
Calculate and load packet length
Load in the Structure Identifier (SID)
Load Number of Parameters
Load parameters into packet

Put packet record into queue using TMQ.PUT

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 245

6.4.2.44 packet. ads

Extracted from file "packet.ads"

Function

This file contains the specification only package PACKET. This

defines the format of the telecommand and telemetry packets used by the OM
instrument and are derived from the description in the 'Telecommand

and Telemetry Specification', XMM—-OM/MSSL/ML/0010.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 246

6.4.2.45 peek_poke. ads

Extracted from file "peek_poke.ads"

Function

This file contains the specification for the XMM-OM low-level memory read/write.
The program is written in assembler and linked as foreign.

function PEEK (addr: UINT16; addr_state: UINT16) return UINT16;

This function returns the word stored at address addr in
address state addr_state
function POKE (poke_val: UINT16; addr: UINT16; addr_state: UINT16) return UINT16;

This function puts into memory the word poke_val at the location addr in
address state addr_state. It returns the word that was poked.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 247

6.4.2.46 peek_poke.asm
File is peek_poke.asm

Name
peek

Description
Picks up an address to be peeked and the Address State from the stack,
switches to that Address State, peeks the address, selects the
original Address State and exits with the value peeked in r2.

Calling sequence
var := peek(address,address_state);

(All parameters & return type are UINT16)

Input
r0 Link register
r2 Uplevel register (not needed ?)

rl4 Frame pointer (not needed ?)
rl5 Stack pointer

Output
r2 Holds contents of address peeked

Altered
rl, r2, r3, r4

Register map

r0 Link register
rl Holds entry Address State
r2 Return value

r3 Holds address to peek
r4 Holds Address State to switch to

Notes

Assembled for use as a foreign code segment in Ada.
Registers r0-r4 can be trashed.

All other registers must be preserved.

Assumptions
No error checking is performed.
peekaddr

Save the current address state and change address state
Read the memory location

Restore old address state

Return

Name
poke

Description

Picks up an address to be poked, the Address State and the value
to be poked into memory from the stack, switches to that Address
State, pokes the address, selects the original Address State and
exits with the value poked in r2.

Calling sequence
var := poke(value,address,address_state);

(A1l parameters & return type are UINT16)

Input
r0 Link register
r2 Uplevel register (not needed ?)

rl4 Frame pointer (not needed ?)
rl5 Stack pointer

Output
r2 Holds wvalue poked into memory

Altered
rl, r2, r3, r4d

Register map
r0 Link register
rl Holds entry Address State
r2 Holds wvalue to poke and return value

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

r3 Holds address to poke
r4 Holds Address State to switch to

Notes

Assembled for use as a foreign code segment in Ada.
Registers rO-r4 can be trashed.

All other registers must be preserved.

Is a function because procedure definition in Ada appears
not to link properly (doesn't see assembler label).

Assumptions

No error checking is performed.

pokeaddr

Save current address state
Write address with value
Change back to original address state

Return

248

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 249

6.4.2.47 rbi.ads

Extracted from file "rbi.ads"

Function

This file contains the specification for the RBI package. This, in turn,
contains RBI service routines. The package RBI and RBI_INT together
control and monitor the RBI (Remote Bus Interface).

The code in this package is based on the description of the RBI chip
given in "Standard RBI Chip For OBDH Interface

(MC1031 Technical Informations 2.8-01/06/95 and from the
"OBDH Bus Protocol Requirements Specification", XM-IF-DOR-0002.

procedure INIT;

Performs RBI package initialisation.

function UNCORRECTED_OBT return OBT_TYPE;

Returns the uncorrected OBT (On-board Time) from the RBI.

function CORRECT_OBT (UNCORRECTED_OBT_VALUE : in OBT_TYPE) return OBT_TYPE;
Applies the required correction to the OBT documented in the
ADV technical note 2.8-01/06/95

function CORRECTED_OBT return OBT_TYPE;

Combines the functions of UNCORRECTED_OBT and CORRECT_OBT;
procedure SET_OBT (OBT_VALUE : in OBT_TYPE);
Sets the RBI OBT wvalue. This is usually extracted from an Add Time Code
packet TM(10,3).
function "+" (A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE;
Adds OBTs together N.B. only accurate to 2**-8 secs!!!!
Now redundant as never used.
function "-"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE;
Subtract OBTs N.B. only accurate to 2**-8 secs!!!!
Now redundant as never used.

procedure SET_SYNC_READY (SYNC_ENABLE : BOOLEAN) ;

Set/Unset Synchronisation Enable Bit in RBI Configuration Register

task WATCHDOG is
pragma priority (IMPORTANCE.CPU_RESET);

entry PARAMS (TIMOUT : UINT16 ;
RESET_INTERVAL : UINT1l6 ;
OK : in out BOOLEAN) ;

entry ENABLE;

entry DISABLE;

end WATCHDOG;

This task controls the RBI watchdog.

ENABLE starts the task.
DISABLE stops the task.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 250

PARAMS resets the time intervals used to control the watchdog.
TIMOUT specifies what value should be loaded into the
watchdog timer counter.
RESET_INTERVAL specifies how often the software should
reload the time counter with TIMOUT.
function TM_READY return BOOLEAN;
Returns whether TM_READY (telelemetry ready to transmit) bit is set
in the RBI status register
procedure SET_TM_READY (SET_TO_ON : BOOLEAN) ;
Set/Unset TM_READY (telelemetry ready to transmit) bit in the
RBI status register
procedure TOGGLE_TM_READY;
Toggles TM_READY (telelemetry ready to transmit) bit in the
RBI status register
function TC_READY return BOOLEAN;
Returns whether TC_READY (ready to receive telecommand) bit is set

in the RBI status register

procedure SET_TC_READY (SET_TO_ON : BOOLEAN) ;

Set/Unset TC_READY (ready to receive telecommand) bit in status register

procedure SET_COMM_AREA_TM_INFO (START_ADDRESS : UINT16;
PACKET_LENGTH : UINT16);

Store start address and length of a telemetry packet in

the communications area (CCA).
procedure SET_COMM_AREA_TC_INFO (START_ADDRESS : UINT16);

Store start address of where the telecommmand should be stored

in the communication area (CCA).

function STATUS_REGISTER return UINT16;

Returns the RBI Status Register

function CONFIG_REGISTER return UINT16;

Returns the RBI Configuration register

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.48 rhbi.adb
Extracted from file "rbi.adb"

Function

This file contains the body for the RBI package. This, in turn,
contains RBI service routines. The package RBI and RBI_INT together
control and monitor the RBI (Remote Bus Interface).

The code in this package is based on the description of the RBI chip
given in "Standard RBI Chip For OBDH Interface

(MC1031 Technical Informations 2.8-01/06/95 and from the
"OBDH Bus Protocol Requirements Specification"”, XM-IF-DOR-0002.

Contents of RBI OBT (On-Board Time) as follows:

| OBT O | OBT 1 | OBT 2 | OBT location

I ¢ | b 1 E | Register

10 1516 31132-42|xxx| Bits in Counter

| secs | FRAC | Secs/Fractions of sec
123 01-1 -19xxx| 2**? secs

Note the layout of the SCET (Spacecraft Elapsed Time)
in a packet for comparison (and its offset).

Create a semaphore to control access to the freeze register by creating an instance

of the SEMAPHORE task in package MUTEX called FREEZE_REGISTER.

function TO_OBT_TYPE (INPUT : in LONG_INTEGER) return OBT_TYPE;
function TO_LONG_INT (INPUT : in OBT_TYPE) return LONG_INTEGER;

The above internal routines are used to convert an OBT to or from LONG_INTEGER

function UNCORRECTED_OBT return OBT_TYPE is
Ensure exclusive use of RBI configuration register
while we peform a Freeze operation using the SEIZE entry in MUTEX.

"Freeze" the current time by writing appropriate instruction
to the RBI configuration register.

Release the register for use by other code by using RELEASE entry in MUTEX.

Read and store bits 0-15 of the result.
Read and store bits 16-31 of the result
Read and store remaining bits 32-42 (result in high order bits)

Return the stored result (i.e. the OBT as defined above).

function CORRECT_OBT (UNCORRECTED_OBT_VALUE : in OBT_TYPE) return OBT_TYPE is

If bits 32 to 42 of the uncorrected OBT is greater than 3ff hex
subtract 1 from bits 0 to 31
return the result (a corrected OBT).

function CORRECTED_OBT return OBT_TYPE is

251

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Get the OBT and correct it using CORRECT_OBT.
procedure SET_OBT (OBT_VALUE : in OBT_TYPE) is
Prevent use of Freeze register by other code
while we do this using FREEZE_REGISTER.SEIZE

Write the most significant 16 bits of the provided OBT
into the 1lst RBI OBT update register

Write the next 16 bits of the provided OBT
into the 2nd RBI OBT update register

Release Freeze register using FREEZE_REGISTER.RELEASE.

function "+" (A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE is

Prevent Overflows on additions.

Add the two supplied OBT's after conversion using TO_LONG_INT
and return the result as an OBT using TO_OBT_TYPE

function "-"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE is

Prevent Overflows on subtractions.

Subtract the two supplied OBT's after conversion using TO_LONG_INT
and return the result as an OBT using TO_OBT_TYPE

function TO_OBT_TYPE (INPUT : in LONG_INTEGER) return OBT_TYPE is

This routine is used internal to the package to convert

a supplied 48 bit integer (stored in a signed 64 bit integer)
into an OBT format (3*16 bit words).

The value is only accurate to 2**-8 seconds.

Split up the 64 bit word into 3 * 16 words using appropriate bit shifing and masking

The MSW contains the 16 high order bits of the least significant 32 bits

The next word contains the least significant 16 bits
The last word is set to zero as it represents value < 2**-8 seconds

function TO_LONG_INT (INPUT : in OBT_TYPE) return LONG_INTEGER is

This routine is used internally to the package to convert
a supplied OBT (3*16 bit words) into a 64 bit integer.

Ignore the least signifcant word as it represents values < 2**-8 seconds.
Concatenate the Most Signifcant word and the next to form a 32 bit value.

Return the result as a 64 bits signed integer.

procedure SET_SYNC_READY (SYNC_ENABLE : BOOLEAN) is

Get the RBI configuration register value

If its Synchronisation Enable bit is not as requested by SYNC_ENABLE

toggle it

task body WATCHDOG is

Begin infinite loop
Await a call to one of the rendevous points
If a call to the set params entry point PARAMS is made
If the parameters are inconsistent or invalid
Flag as invalid and don't store.
Otherwise

Store the specified timout period (units = 1/256 secs)

252

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 253

and reset interval (units = secs) supplied.

Flag as valid.

If a call to enable the watchdog is made via entry ENABLE

Determine if watchdog is already enabled
from the RBI configuration register

Write the stored timout period to appropriate register
If the watchdog is not already enabled, enable the watchog
by toggling the appropriate bit in the confuration register.
Or
If a call to disable the watchdog is made via entry DISABLE
Determine if watchdog is enabled by examining the RBI configuration register
If it's no aleady disabled, disable it
by toggling the appropriate bit in the confuration register.
Or
Provided the watchdog is enabled
and if no call to a rendevous is made for the stored reset period
Reset counter in watchdog (thus as long as the ICU code
is running, the timout counter is never allowed to get
to zero) by writing to the appropriate RBI register.
procedure INIT is
Set up the communication area by writing its address shifted to the right by 7
to the RBI Base Address Register.

Ensure TC and TM ready flags are disabled for now
using SET_TC_READT and SET_TM_READY.

function TM_READY return BOOLEAN is

Get the RBI Status register value

Extract and return the status of the TM_READY bit
procedure SET_TM_READY (SET_TO_ON : BOOLEAN) is

Use TM_READY to see if

the telemetry ready for transmission bit is not

already in the status requested by SET_TO_ON.

If it isn't
oggle it so it is using TOGGLE_TM_READY.

procedure TOGGLE_TM_READY 1is
Toggle the current RBI TM_READY (telemetry ready for transmission)
flag state by writing the appropriate bit to the RBI configuration register.

function TC_READY return BOOLEAN is

Get RBI status register value

Extract and return the TC_READY
(ready to receive a telecommand) bit status.

procedure SET_TC_READY (SET_TO_ON : BOOLEAN) is

Get current status RBI register.

If its bit 11 (the TC_READY- ready to receive a telecommand) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

already in the status requested by SET_TO_ON
Do nothing
Otherwise if it needs to be on
Set it on within the RBI status word read back earlier
else
Clear it within RBI status read back earlier.

Finally, write back the resulting RBI status word to the
register (NOTE: only bits 11-15 are written to)

procedure SET_COMM_AREA_TM_INFO (START_ADDRESS : UINT16;
PACKET_LENGTH : UINT16) is
Store the start address START_ADDRESS of the TM packet in bytes,

relative to the start adddress of the CCA, in the CCA,

Store the packet length PACKET_LENGTH in the CCA in words but
with 1 subtracted and the MSB set, as per specification.

procedure SET_COMM_AREA_TC_INFO (START_ADDRESS : UINT16) is

Store the TC packet start address START_ADDRESS in bytes relative to the start

of the CCA, in the CCA.

function CONFIG_REGISTER return UINT16 is

Get the RBI configuration register value.

function STATUS_REGISTER return UINT16 is

Get the RBI status register value.

254

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 255

6.4.2.49 rbi_ih.ads

Extracted from file "rbi_ih.ads"

Function

This file contains the specification for the XMM-OM rbi interrupt handler.
The interrupt handler is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 256

6.4.2.50 rbi_ih.asm

File is rbi_ih.asm

This follows closely the document:
OBDH Bus Protocol Requirement Specification
XM-IF-DOR-0002
Fetch the interrupt counter
Check for impending overflow
If it's OK, increment it
otherwise avoid overflow
read config_reg
get the bits we're interested in
is it lossn (0)7?
is it instruction to user (1)°?
is it instruction to rbi (2)7?
is it other_it (3)?

otherwise serious error so safe

Read value from appropriate register
(which also clears the interrupt)

read instruction to user reg

If the register is 0, jump to tcg_add
when it's an Instruction to RBI interrupt

read instruction to rbi reg
This could be caused by warm reset and we
call back into the bootstrap (TBI)

If it's any other sort of interrupt
This is an error (so we safe or discard with exception, TBD)
and finish off

set tc_ready to false
if full
Tell s/c we can't accept packets (This ought never happen as we take packets away in
time?)
read input_pointer from memory
add one
mod it with no_tc_slots
keep for future
store it again
Now set up new address for next packet
start_address = 16#404# + r0*248
if not tc_g.is_full
i.e.
if (input_pointer+1l)&3 != output_pointer
(increment input_pointer)
the required mask is 0
else required mask = set_tc_ready_mask (16#0010#)
Read status
'and' this status with set_tc_ready_mask (16#0010#);
Compare this with the required mask
If they're the same, finish off
if REQUIRED_MASK = SET_TC_READY_MASK (16#0010%#)
'or' the status that was read with set_tc_ready_mask (16#00104#)
else 'and' the status that was read with clear_tc_ready_mask (l6#ffef#)
xio this to the rbi_status reg
finish off
Read status
If the tm_ready bit is set
write a reset output transfer request to the rbi config reg
Increment the output_pointer
Read the input_pointer and compare output_pointer with input_pointer
If they're equal
finish off
Otherwise calculate the address and write it to cca_tm_start
Calculate the length and write it to cca_tm_length
Read the RBI status
'and' it with the tm_ready_mask (16#00804#)
finish off
if zero, write a reset_output_transfer_request to the RBI config reg
finish off
Tidy up after finishing
FINISH OFF:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 257

Recover registers
Turn on interrupts
Back from whence we came

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.51 reset.ads

Extracted from file "reset.ads"

Function

This file contains the specifications for the XMM-OM reset package.

reset itself is written in assembler and linked as a foreign code function.

Reference

with TYPES; use TYPES;

function reset (addr : UINT16) return UINT16;

This function Jjumps to the address given on its argument list
where

addr is the address of a routine to jump to

258

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 259

6.4.2.52 reset.asm

File is reset.asm

Name
reset

Description
When called, enables the start up ROM and jumps to
location zero.

Calling sequence

var UINT16
addr : UINT16;
var := reset (addr);
Input

r0 Link register
r2 Uplevel register (not needed ?)

rl4 Frame pointer (not needed ?)
rl5 Stack pointer
Output
Does not return
Altered
Everything

Register map
r0, rl, r2 Working register
r3 Holds parameter to routine

Notes

Assembled for use as a foreign code segment in Ada.

If addr = 0 then the start up rom is enabled and a Jjump

to 0 is performed.

Any other value for addr and the start up rom is left as it is
and the jump to the address specified is made. 6 words (the
floating pt overflow, fixed pt overflow and timer b interrupt
vectors are copied from a buffer starting at 16#03FA# to their
proper locations (16#0026#,16#0028# and 16#0032# respectively)
before the jump.

Interrupts are disabled during this routine and page 0 is
mapped in.

Assumptions

No error checking is performed.

resetentry

Disable all interrupts
Stop timer B
Make sure we are in address state O
Get parameter from stack
If parameter is equal to zero
then branch to RESTART
Copy new interrupt vectors to data space
Copy new interrupt vectors to page 3
Reselect page 0
Clear all interrupts and machine errors
Now start op code

RESTART

Jump to warm reset code

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 260

6.4.2.53 science_fm ads

Extracted from file "science_fm.ads"

Function

This file contains the specification for the SCIENCE_FM package.

The function of this package is to provide routine(s) to construct and
place Science packets into the telemetry queue prior to their being
transmitted to the ground.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010, Section 3.9.

procedure PRIORITY_DATA (SID_EX : PACKET.SID_TYPE;
DPU_DATA : UINT16_ARRAY);

This routines constructs and places science packets in the telemetry
queue derived from the supplied DPU Priority Data.

where:

SID_EX specifies the Structure Identifier (SID) to be loaded into the
packet

DPU_DATA contains the DPU Priority Data record for loading into the packet.
Note 1) the index range of DPU_DATA should start at 0.
2) the length of data to be loaded in the packet is implied
by the contents of DPU_DATA(l). This states the number
of following words that are to be included i.e. it
conforms to the usual DPU data record conventions.

procedure AUXILIARY_ DATA (SID_EX : PACKET.SID_TYPE;
DPU_DATA : UINT16_ARRAY) ;

This routines constructs and places science packets in the telemetry
queue derived from the supplied DPU Auxiliary Data.

where:

SID_EX specifies the Structure Identifier (SID) to be loaded into the
packet

DPU_DATA contains the DPU Auxiliary Data for loading into the packet.
Note 1) the index range of DPU_DATA should start at O.

2) the length of data to be loaded in the packet is implied
by the contents of DPU_DATA(l). This states the number
of following words that are to be included i.e. it
conforms to the usual DPU data record conventions.

procedure REGULAR_DATA (SID_EX : PACKET.SID_TYPE;
DPU_DATA : UINT16_ARRAY);

This routines constructs and places science packets in the telemetry
queue derived from the supplied DPU Regular Data.

where:

SID_EX specifies the Structure Identifier (SID) to be loaded into the
packet

DPU_DATA contains the DPU Regular Data record to be loaded into the packet.
Note 1) the index range of DPU_DATA should start at O.
2) the length of data to be loaded in the packet is implied
by the contents of DPU_DATA(l). This states the number
of following words that are to be included i.e. it
conforms to the usual DPU data record conventions.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

procedure FLUSH(SID_EX : PACKET.SID_TYPE);

Flushes Regular Science Data Output Buffer upon receipt of the
'end of data' alert from the DPU. This is required because Regular
Science Data is spread across many DPU blocks (i.e. it is not
confined to one DPU block).

261

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.54 science_fmadb

Extracted from file "science_fm.adb"

Function

This package body implements the specification given in SCIENCE_FM.ADS

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010, Section 3.9.

Create Instances of Priority, Auxiliary and Regular Science
Packet Records to be used as working storage.

Specify internal routines used by package.

procedure OUTPUT_SCIENCE (TERMINATE_GROUP : BOOLEAN;

SCIENCE_PACKET : in out PACKET.TM_TYPE;
PACKET_NUMBER : in out UINT16;
DPU_BLOCK : in out UINT16;
WORDS_COPIED : in out INTEGER;

SID_EX : PACKET.SID_TYPE) ;

This procedure constructs the packet header and sends the resulting packet
to the telemetry queue via TMQ.PUT.

TERMINATE_GROUP if true indicates it will be the last packet of a group
SCIENCE_PACKET is the packet to be sent.

PACKET_NUMBER is the number of the packet within a group.

DPU_BLOCK is the number of DPU blocks within a group.

WORDS_COPIED is the number of DPU data words copied into the current packet.

SID_EX is the Structure Identifier to be placed in the Packet.

procedure PRI_REG_DATA (PRI_REG_PACKET : in out PACKET.TM_TYPE;

PACKET_NUMBER : in out UINT16;
DPU_BLOCK : in out UINT16;
WORDS_COPIED : in out INTEGER;
SID_EX : PACKET.SID_TYPE;
DPU_DATA : UINT16_ARRAY) ;

This procedure constructs science data packets from the DPU data blocks
sends the resulting packets to OUTPUT_SCIENCE.

PRI_REG_PACKET is the packet being constructed.
PACKET_NUMBER is the number of the packet within a group.
DPU_BLOCK 1is the number of DPU blocks within a group.

WORDS_COPIED is the number of DPU data words copied into the current packet.

SID_EX is the Structure Identifier to be placed in the Packet.
DPU_DATA is the input DPU block.

procedure REGULAR_DATA (SID_EX : PACKET.SID_TYPE;
DPU_DATA : UINT16_ARRAY) 1is

Simply pass the DPU block to the PRI_REG_DATA routine.
procedure PRIORITY_DATA (SID_EX : PACKET.SID_TYPE;
DPU_DATA : UINT16_ARRAY) 1is

Simply pass the DPU block to the PRI_REG_DATA routine.

procedure PRI_REG_DATA (PRI_REG_PACKET : in out PACKET.TM_TYPE;

PACKET_NUMBER : in out UINT16;
DPU_BLOCK : in out UINT16;
WORDS_COPIED : in out INTEGER;
SID_EX : PACKET.SID_TYPE;

DPU_DATA : UINT16_ARRAY) 1is

262

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Determine whether this is regular or priority data.

DPU priority data blocks are split up and output
across several packets. The resulting collection of packets is
a complete 'group' of packets.

DPU regular data blocks are split up and output

across several packets. The resulting collection of packets is
only part of a 'group' of packets. The FLUSH command terminates
the group.

Calc number of words to copy from DPU block into current packet

If this is the second DPU block to be copied into
the current group of packets

Set up the offset within the science sub-header accordingly.

Count how may DPU blocks we have processed for this group so far.

Loop over data to be copied

Copy a word into the current packet

If the current packet is now full

Flag that we should terminate the group if this is priority
science data and all data has been copied into the packet.

Give the packet to the science output routine with the
terminate group flag appropriately set by calling OUTPUT_SCIENCE.

If it is priority science data

Give the packet to the OUTPUT_SCIENCE routine with
the 'terminate group' flag set.

If it's regular data

Give the packet to the OUTPUT_SCIENCE routine with
the 'terminate group' flag *NOT* set.

procedure AUXILIARY_DATA (SID_EX : PACKET.SID_TYPE;

DPU_DATA : UINT16_ARRAY) 1is

DPU auxiliary data blocks are buffered up into 1 packet.
The result is a standalone packet.

Calc number of words to copy from DPU block into the packet.

If this block will exceed the current packet capacity

Give the packet to the OUTPUT_SCIENCE routine with
the 'terminate group' flag set to true

If this is the 1lst block to be copied into the packet

Set up a dummy offset in science sub-header (offset = FF (hex))

Count the number of auxiliary blocks processed so far.

Loop over data to be copied

Copy (and count) a word into the current packet

procedure OUTPUT_SCIENCE (TERMINATE_GROUP : BOOLEAN;

SCIENCE_PACKET : in out PACKET.TM_TYPE;
PACKET_NUMBER : in out UINT16;
DPU_BLOCK : in out UINT16;
WORDS_COPIED : in out INTEGER;

SID_EX : PACKET.SID_TYPE) 1is

Build the header

Calculate and load the packet length.

If

'terminate the group' flag is set

and it's the first packet so far for the group

flag it as standalone

263

ICU FM Software Detailed Design

XMM OM/MSSL/SP/0205.3

otherwise set segmentation flag to indicate it is the last

packet of

a group.

and also ensure science sub header offset is all 1's

otherwise, if we are not terminating the group

and is the first packet

Set segmentation flag to indicate first packet

otherwise

Set segmentation flag to indicate continuation

Load Structure Identifier (SID) into Packet Header

Load group count with the packet number count within

In the special case of regular data

Change the sub-type as per SID

Send out packet

Modify counters
terminating the

procedure FLUSH (SID_]

to the telemetry queue using TMQ.PUT

etc according to whether we are
group

EX : PACKET.SID_TYPE) 1is

of group

packet of group

the group.

Call OUTPUT_SCIENCE routine with 'terminate group' set to true

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.55 ssi_driver. ads

Extracted from file "ssi_driver.ads"

SSI_INTERRUPT is the SSI interrupt handler (written in Ada but
connected via the assembly code ssi_ih.asm)

This gets one word of data from the SSI (from the DPU)
DATUM is the word

RET is a signed 16-bit word which is

0 if there are no words to read

1 if there is a word to read

<0 if there was an error

This procedure resets the SSI link
(software only-—--there is no hardware reset)

function PUT (BUFFER_DATA : in UINT16_ARRAY) return INT16;

This puts an array of words on the SSI (to the DPU)
BUFFER_DATA is an array of unsigned 16-bit words of data
returns a signed 16-bit integer which is

0 if successful

<0 if there was an error

SSI_INT_COUNT : UINT16 := 0;

This variable is a counter for the number of SSI interrupts received

It wraps back to 0 after Oxffff

ERROR_COUNT : INT16

0;

This variable is a counter for the number of SSI errors that have occured

When it reaches 255 it stays at 255

265

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 266

6.4.2.56 ssi_driver.adb
Extracted fromfile "ssi_driver.adb"

Function

This file contains the body for package ssi_driver.
It writes to and reads from the SSI interface.

Reference

The SSI interface is described in http://mssls7.mssl.ucl.ac.uk/sw/ssi.html
and here

The complete description:

SSI
Serial Synchronous Interface
Overview

The SSI is a bi-directional communications interface between the DPU and ICU
which is carried on the DEM backplane.

The definition of the SSI is in XMM-OM/MSSL/SP/0007 "Electrical Interfaces
Specification".

Hardware

Both the ICU and the DPU can send and receive data on this interface but the
ICU is the master.

The interface consists of:

* SSI_CLK: a continuous clock signal generated by the ICU
* SSI_ENV_TX: active high when data present

* SSI_DATA_TX: 1l6-bit data

* SSI_ENV_RX: active high when data present

* SSI_DATA_RX: 16-bit data

* Signal return

Commands are sent from the ICU to the DPU. Science data is passed from the
DPU to the ICU when demanded by the ICU. Alerts are sent (unrequested) by
the DPU to the ICU. There is no direct feedback as part of the protocol and
there is no error correction nor checksums. The interface can be thought of
as the same irrespective of direction.

The SSI clock frequency is 125 kHz producing a period of 8 us (1
bit-period). The SSI 1l6-bit data words are separated by at least one
bit-period and at most the SSI block gap (defined in software). The SSI data
blocks are separated by at least the SSI block gap (defined in software).

Transmitting data

The words that constitute the block are sent not more than the SSI block gap
apart and, when finished, the software must wait for at least the SSI block
gap before sending more data. The receiving software must wait for a little
longer than the transmitting software's block gap to be sure to see the gap.
A factor of two is sufficient.

Receiving data

The data being received must be read suitably fast and if the time between
any two words is greater than the SSI block gap, the gap will be considered
a block gap. All blocks contain a length as their second word so errors
caused by an accidentally lengthened word gap may be identified (see data
format) .

SSI block gaps
Because the SSI block gaps are defined and used only in software they can be
set to different values in different versions of the code and they can be

different depending on the direction of the data (ICU->DPU or DPU->ICU).

SSI block gaps as defined by the ICU
software

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

EPROM code Uploadable code
ICU -> DPU >4 ms >4 ms
DPU -> ICU 6 ms 4 ms

SSI block gaps as defined by the DPU
software

EPROM code Uploadable code
ICU -> DPU 2 +/- 1 ms 2 +/- 1 ms
DPU -> ICU15 +/- 1 ms 15 +/- 1 ms

The ICU's SSI hardware will give an interrupt (used by the ICU's software)
at the end of the first word of each block. The ICU software must then read
this first word before the end of the second word. The time for this is 16
bit-periods for the word and a minimum of 1 bit-period for the word gap. So
the software must be able to respond to the interrupt and read the word in
136 us.

An overflow (OVF) bit in the hardware SSI status word is made active (low)
if a data word is not read before the arrival of another.

SSI errors

If the DPU resets whilst transmitting the first part of a word, that word
will be truncated and the envelope will be truncated resulting in an earlier
than expected "data receive" flag which will not be able to be processed in
time and cause an overflow on the ICU.

If the DPU resets whilst transmitting the last part of a word, that word and
the envelope will be truncated but not so much that the ICU's software
cannot keep up as in the previous case. This will result in a corrupt last
word and, except in the case of a reset during the last word, a truncated
SSTI block. This will be detected and handled properly by the ICU's software.

Data format

The data format is described in XMM-OM ICU-DPU Protocol Definitions Each SSI
data block consists of

1. 16-bit type - the block type

2. 16-bit length - the number of 16-bit words following this word (i.e.
total length - 2)

3. the rest of the data

The data types are grouped into categories as follows:

Regular DPU to ICU data blocks
Regular science data.
DPU priority data
These contain science data that is sent out as soon as it is available
rather than at the end of an exposure.
DPU RAM dumps
RAM dumps.
DPU to ICU alerts
Alerts from the DPU to signify something is has happened, is ready or
an error has occured.
ICU to DPU commands
Commands to the DPU.

Further detail on the ICU software

The first, fast part of the SSI interrupt handler is written in assembler
(the first word of the SSI block is read) and the rest in written in Ada
(the reading of the rest of the words in the block and the timeout.)

SSI status

register
D_TX 2**4
DATA_FULL2**3
OVF 2**D
D_RX 2**]1
INT 2**0

Sequence of actions

* SSI INTERRUPT happens
* Read first word (from i/o address f241h) into input software fifo in
less than 136 us after the interrupt

267

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 268

* Remember location where next word will be stored for a later check
* Start stopwatch
* Set interrupt mask to only allow RBI interrupts
* Enable interrupts but don't get interrupted for too long!
* loop
o read SSI status (i/o address f240h)
o if the DATA_FULL bit (2**3) is set and there is data to output
+ write a data word to output i/o address (7241h)
o if input software fifo is full
+ error
o if D_RX bit is reset
+ read input word (i/o address f241h) into input software fifo
+ re-start stopwatch because there is still data on input
o else
+ if stopwatch is after 4 ms
+ break out of loop
o read ssi status word (i/o address £240h)
o if OVF bit (2**2) is 0
+ clear overflow (write fffb (hex) to status register i/o
address 7240h)
+ read a word (from i/o address f241h) and dispose of it
* end loop

* read the second word (length) of this SSI block from the software input
buffer
* if it is greater then 1027
O error
* if no of words read doesn't equal the value of the second word (see
above) minus 2
o error
read ssi status word (i/o address £240h)
* 1f OVF bit (2**2) is O
o clear overflow (write fffb (hex) to status register i/o address
7240h)
o read a word (from i/o address f241h) and dispose of it
* clear SSI interrupt by writing fffe (hex) to the SSI status i/o address
7240h

To Reset

* reset software input and output fifos and error value
* write OVR_WR fffb (hex) to status address 7240 (hex)
* write INT_WR fffe (hex) to status address 7240 (hex)

SSI error codes

error = C
The SSI input circular buffer has filled so fast or not been emptied
fast enough and incoming data is about to overwrite outgoing data.
error = 2
The word count is too large while receiving data in the block. The
number of words has exceeded that indicated by the second "block
length" word or has exceeded the maximum allowed (1029).

error = 8

An overflow (OVF) has been indicated by the ICU's SSI hardware.
error = 7

An overflow occured at the end of the block.
error = 11

The second word of the block indicated a length which exceeds the
maximum allowed (1029).

error = 1
The length indicated by the second word is inconsistent with the real
length of the block.

error = 89
An overflow was found during SSI_DRIVER.PUT
error = 9

The length found in SSI_DRIVER.PUT exceeded the maximum allowed (1029).
error = b

The output block length in SSI_DRIVER.PUT exceeded the maximum allowed

(1029) .

Further detail on the DPU software

The DSP converts a serial SSI word to parallel word. Each received word
generates an interrupt. The SSI ISR pushes the word into a circular buffer.
The 1ms ISR checks the COLLECTING_A_COMMAND bit. If it is zero (cleared), it
decrementes the delay count (stopwatch), else the delaycount (stopwatch) is
reset. When the delaycount reaches 0, it is assumed a valid comand has been
received (a full block has been received), and the command interpreter is
called. The command interpreter checks for integrity of command: it checks
the block has:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

* a valid command ID
* a legal length for command ID

It does not count the number of words received and compare this with the
length stored as the second word. The command interpreter is written in C
and the rest of the SSI code in assembler.

On a hardware error the code will:

* Reset fill pointer.
* Send out bad block.

with SYSTEM;

with UNCHECKED_CONVERSION;
with INTRINSICS;

with ARTCLIENT;

with DEBUG;

with MEMLOC;

with NHK;
with PACKET;

Suppress all checks to speed up

The first word of an SSI block read back by the ssi_ih interrupt handler
is stored at MEMLOC.SSI_FIRST_WORD_LOCATION for speed.

procedure SSI_INTERRUPT is

This (Ada code) is called from ssi_ih.asm (assembler code)
interrupts are already disabled by the 31750's microcode
- Read Data -

Read first word of SSI block from the special address that
the assembler code (ssi_ih) wrote to

increment the input buffer pointer
and wrap it round if necessary
set the word count for this block to 1
remember the pointer position for checking the dpu block length later
remember the initial timer B value
Turn on RBI interrupts
loop
get the SSI status
if the status shows !data_full and there's some data to send - send it
and increment the output buffer pointer

Check to see if the input buffer pointer has wrapped right round
to the point at which the same buffer should be read from

If they're too close, store an error "-C" ready for the next time
something is called

If there's more data to read - read it
and increment and wrap round the input buffer pointer

if the count of words in this block gets far too large, store an error

n_omn

269

ICU FM Software Detail ed Design XMM OM/MS4./SP/02053 270

otherwise increment the READ count

reset the old stored value of timer B because we haven't
stopped receiving data yet

but if there's nothing to read this time round
check the timer

if timer B has wrapped round, add on 64K

exit the loop when we've been waiting to read something for
26 timer-B ticks (4 ms) i.e. 40 to-spec ticks

read the SSI status
if there's been an overflow
clear the overflow
do a dummy read to clear
store an error "-8"
end loop
read the SSI status
if there's been an overflow
clear the overflow
do a dummy read to clear
store an error "-7"

get the second word of the SSI block from the output buffer
this contains the number of words minus two that should be in the block

if the number read is just too large
remember an error "-11"

if the length doesn't match the number of words read back
remember an error "-1"

clear SSI interrupt by writing to the SSI interface
as long asthe DPU isn't spewing too-long blocks

procedure GET (DATUM : out UINT16; RET : out INTL6) IS

returns length
If there's been an error in the driver part,
increment the error counter
and return the error
Otherwise, read the SSI status
If there's nothing to read, return O
If there's something to read, read it
incremet the pointer
and wrap it round
return the length (1)

function PUT (BUFFER_DATA : in UINT16_ARRAY) return INT16 is

If there's been an error
increment the error count

Read the SSI status

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 271

6.4.2.57 ssi_ih.ads

Extracted from file "ssi_ih.ads"

Function

This file contains the specification for the XMM-OM ssi interrupt handler.
The interrupt handler is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 272

6.4.2.58 ssi_ih.asm

File is ssi_ih.asm

Sort out the stack
Read first word of SSI block from DPU to ICU and store for Ada
Jump to Ada SSI interrupt handler

Tidy up

Return from interrupt

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.59 ssi_in.ads

Extracted from file "ssi_in.ads"

Function

This file contains the specification for package SSI_IN

The package is used to allow access to the ssi driver code
in order to receive blocks sent from the DPU.

procedure GET (DATA : out UINT16_ARRAY; SUCCESS : out INT16);

where:
DATA contains a DPU block sent from the DPU via the SSI interface
SUCCESS returns the completion code

<0 indicates an error.

>0 indicates success.

procedure RESET;

resets the SSI interface.

273

ICU FM Software Detailed Design

6.4.2.60 ssi_in.adb

Extracted from file "ssi_in.adb"

Function

procedure GET (DATA : out UINT16_ARRAY ; SUCCESS : out INT16)

XMM OM/MSSL/SP/0205.3

is

In order to follow the logic of this code,
following format.
e ot B o e R S

+ Word 0 + Word 1 + Word 2 -> Word N+2 +
e o o R

+ Block + Word + +
+ ID + Count + DPU Data Block +
+ + N + +

L A L T O

Initialise the word count to 2.

you must be aware that
the data block received from the DPU via the SSI interface has the

Initialize the state of the code to be 'at Block ID'

Commence infinite loop

Exit from loop when word count is zero (initialised to 2)

as this indicates we are at end of block.

Get a datum from the SSI interface, noting

completion code, using SSI_DRIVER.GET.

If the completion code indicates a good datum was found

(i.e. it is greater than zero).

Now perform action depending on the 'state' of the routine

(initially at Block 1ID)

When the routine is in state 'At Block ID'

We ought to be at the start of a valid DPU data block

so check the datum received is a valid DPU header code

If it is wvalid, store the datum in the
1st location of the output array

and change state of routine to

Otherwise

'at block size'

Prepare and send and SSI exception report.

Force end of block condition by setting word count to zero

and reset the interface using RESET

When the routine is in state 'at block size'

Reset the word count to be the value of the datum.

Store the datum in the 2nd location in the output array

Change the routine state to 'in block data'

When the routine is in state 'in block data'

Store the datum in successive locations in the output array

Decrement the word count by one.

Else, if no data was found in the SSI driver queue

(i.e. the completion code was zero).

274

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Wait a bit
Else

exit from the loop as we have an error
end of infinite loop

If the completion code indicates an error
(i.e. is less than zero).

Store the completion code in SUCCESS.
Prepare and send appropriate SSI Exception Report NHK packet
Reset the interface using RESET
Otherwise
Set SUCCESS to 1 to indicate all OK.
Return from routine
procedure RESET is

Simply perform a direct call to the low level ssi driver
reset RESET

275

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 276

6.4.2.61 ssi_out.ads

Extracted from file "ssi_out.ads"

Function

The file contains the specification for package SSI_OUT. This package
controls access to the SSI driver for output, allowing only one

external object to access the driver code, and therefore in turn the SSI
interface, at any given moment.

This package will be merged with the SSI_IN package
in the next generation of software

Dependencies

with TYPES; use TYPES;
with IMPORTANCE;
with SSI_DRIVER;

procedure PUT (COMMAND : UINT16_ARRAY; SUCCESS : out BOOLEAN);

where:

COMMAND is the DPU command to be sent via the SSI interface.
LEVEL determines at what priority.

procedure RESET renames SSI_DRIVER.RESET;

performs a reset of the SSI interface and is identical to a call
to the RESET procedure in package SSI_DRIVER

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.62 ssi_out.adb

Extracted from file "ssi_out.adb"

Function

This file contains the body of package SSI_OUT.
It provides routines to send data to the DPU via the SSI.

function PUT_AND_CHECK (COMMAND : UINT16_ARRAY) return BOOLEAN;

where COMMAND contains the DPU command to be transmitted to the DPU.
Any error will cause this routine to issue a message and reset the software.

Create an instance (SSI_PORT) of a mutex semaphore using package MUTEX.
SSI_PORT : MUTEX.SEMAPHORE;

procedure PUT (COMMAND : UINT16_ARRAY; SUCCESS : out BOOLEAN) 1is
seize the SSI for writing using SSI_PORT.SEIZE
send the supplied command to the ssi_driver code using PUT_AND_CHECK.

release the SSI for writing by using SSI_PORT.RELEASE.

function PUT_AND_CHECK (COMMAND : UINT16_ARRAY) return BOOLEAN is
write the SSI block to the DPU using SSI_DRIVER.PUT
check the returned error code
if the error code is OK (i.e. 0) then return true
else if there was an error (error code < 0)
send an exception report packet with the error
and reset the SSI (software reset---no hardware reset) using RESET
then return false indicating an error
Otherwise

Return FALSE indicating and error

277

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 278

6.4.2.63 task_report.ads

Extracted from file "task_report.ads"

Function

This file contains the specification for package TASK_REPORT.

The function of this package is to provide routine(s) to construct and
place Task Parameter Report packets into the telemetry queue
prior to their being transmitted to the ground.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

procedure PUT(TID : UBYTE;
FID : UBYTE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) ;

The procedure PUT constructs and places a Task Parameter Report packet
associated with TID and FID
in the telemetry queue. The interface is as follows:

where:

PARAMS specifies an array of parameters to be loaded into the packet.
Note - the index range of the parameter array should start at O.

SIZE specifies the number of parameters to be loaded from PARAMS.
procedure LOAD (TID : UBYTE;
FID : UBYTE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER);

The procedure LOAD stores the parameters associated with
TID and FID in a standard area. This location is checked if a request
is made to dump those parameters at a later time.

The interface is as follows:

where:
PARAMS specifies an array of parameters to be loaded associated with
TID and FID.
Note - the index range of the parameter array should start at O.
SIZE specifies the number of parameters to be loaded from PARAMS.

NOTE: Alternative 'flavours' of this command now follow:

procedure LOAD (TID : UBYTE;
FID : UBYTE;
PARAM1 : UINT16);

procedure LOAD (TID : UBYTE;
FID : UBYTE;
PARAM1 : UINT16;
PARAM2 : UINT16);

procedure LOAD (TID : UBYTE;
FID : UBYTE;
PARAM1 : UINT16;
PARAM2 : UINT16;

PARAM3 : UINT16);

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 279

These LOAD procedures store 1,2 or 3 parameters respectivley
associated with TID and FID in a standard area.

This location is checked if a request

is made to dump those parameters at a later time.

The interface is as follows:

where:
PARAMS specifies an array of parameters to be loaded associated with
TID and FID.
Note - the index range of the parameter array should start at O.
SIZE specifies the number of parameters to be loaded from PARAMS.
function SEND(TID : UBYTE;

FID : UBYTE;
SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN ;

The FUNCTION SEND constructs and places a Task Param Report containing
the parameters associated with TID and FID saved in the
standard area by the various 'flavours' of LOAD.

Returns TRUE if parameters found and send

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.64 task_report.adb
Extracted from file "task_report.adb"

Function

This file contains the body for package TASK_REPORT.

The function of this package is to provide routine(s) to construct and
place Task Parameter Report packets into the telemetry queue
prior to their being transmitted to the ground.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

Create a table of valid TID/FID combinations, how many expected prameters

and default the location they will be stored to zero.

Set up an area to store the parameters in.

procedure PUT (TID : UBYTE;
FID : UBYTE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) is

Flag presence or absence of CRC in data field header
Calculate and load packet length
Load TID, FID and supplied parameters into packet

Attempt to put packet record into queue using TMQ.PUT.

procedure LOAD (TID : UBYTE;
FID : UBYTE;
PARAMS : UINT16_ARRAY;
SIZE : INTEGER) is

Loop over the table of valid TID/FID combinations.

If it knows about this TID/FID and the size
(i.e. the number of parameters) is correct

If this is the first time these params have been stored
Set up the location to store them

Copy parameters into table at specified location

procedure LOAD (TID : UBYTE;
FID : UBYTE;
PARAM1 : UINT16) is

Perform a call to the general purpose LOAD routine
with 1 parameter

procedure LOAD (TID : UBYTE;
FID : UBYTE;
PARAM1 : UINT16;
PARAM2 : UINT16) is

Perform a call to the general purpose LOAD routine
with 2 parameters.

procedure LOAD (TID : UBYTE;
FID : UBYTE;
PARAM1 : UINT1l6;

PARAM2 : UINT16;

280

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

PARAM3 : UINT16) is
Perform a call to the general purpose LOAD routine
with 3 parameters.
function SEND (TID : UBYTE;

FID : UBYTE;
SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

Loop over the table of TID/FID combinations loaded
so far.

If this is a valid TID/FID combination
and data has been stored

Copy params into a packet and send it using PUT.
Return a success condition.

If no match was found with a previously supplied TID/FID
combination, send an illegal parameters report packet.

Return a failure condition.

281

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 282

6.4.2.65 tasknan. ads

Extracted from file "taskman.ads"

Function

This package contains the specification for the TASKMAN package.
The function of this package is to interpret the Task
Management Telecommands and forward them to the appropriate code.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

function REQUEST (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN;
The function REQUEST provides the means of passing the telecommand
to the package for action.
where:

TC_PACKET contains the packet to be interpreted and executed.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 283

6.4.2.66 tasknman. adb

Extracted from file "taskman.adb"

Function

This package contains the body for the TASKMAN package.
The function of this package is to interpret the Task
Management Telecommands and forward them to the appropriate code.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

function REQUEST (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

Set up default error condition of command not being accepted.
Select action on the basis of packet subtype.
When the packet subtype is Start Task...
Set up default error of Illegal TID
Select Action on the basis of the Task Identifier (TID)
when TID is Blue Load Centroid Table
Start the loading of the Blue Centroid Table
when TID is Blue Load Window Table
Start the loading of the Blue Window Table
when TID is Blue Load DPU Deduced Window
Do nothing is this is now always running.
when TID is Blue Integration
Start the Blue Detector Integration
When TID is start the HV Ramp
Start the HV ramp task
when TID is Blue Camera Head Reset
Reset the Blue Camera Head
When the TID is a Move Filter Wheel Instruction
Start moving the filter wheel
When the TID is a Move Dichroic Instruction
Start moving the dichroic
When the TID is a contingency heater control
Provided normal automatic heater control is disabled
Enable contingency heater control
otherwise
Flag as an error with an unsuccessful acceptance packet.
Flag command as not accepted.

When the TID is an automatic heater control

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 284

Provided contingency heater control is disabled
Enable automatic heater control
Otherwise
Flag as an error with an unsuccessful acceptance packet.
Flag command as not accepted.
When TID indicates a secondary voltage command
Enable the secondary voltage.
When the TID indicates DPU Science
Start automatic 'handshake' of Science Data with DPU.
When the TID indicates the DPU Heartbeat Watchdog.
Ensure DPU Heartbeat watchdog monitor is started.
Enable the Bent Pipe Diagnostic.
When the TID indicates the DEMPSU
Reset/Turn-on the DPU
When the TID indicates an RBI Watchdog.
Ensure the RBI Watchdog is started.
When the TID indicates HK
Ensure HK monitoring is enabled.
When the TID indicates autonomous safing
Ensure Autonomous Task is enabled
When TID indicates ICB Direct Control
Enable the ability to talk to the ICB directly.
when TID is any other value
flag as an invalid task command
End of Selection.
When the packet subtype is Stop Task...
Prepare Default Error of illegal TID
Select Action on the basis of the Task Identifier (TID)
when TID is Blue Load Centroid Table
Stop the loading of the Blue Centroid Table
when TID is Blue Load Window Table
Stop the loading of the Blue Window Table
when TID is Blue Load DPU Deduced Window Table
Flag as an invalid task command as no longer valid
when TID is Blue Integration
Stop the blue integration
When TID indicates HV Ramp
Stop the HV ramp task
When TID indicates the Filter Wheel
Stop moving the filter wheel
When TID indicates Dichroic

Stop moving the dichroic

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 285

When TID indicates the contingency heater control
Stop the contingency heater control

When TID indicates the normal automatic heater control
Stop the normal automatic heater control.

When TID indicates the Secondary Voltages
Disable the secondary voltages

When TID indicate DPU science

Disable the 'handshake' between the ICU and DPU of the
science data.

When TID indicates the DPU Heartbeat Watchdog
Disable the DPU Heartbeat Watchdog.
When TID indicate the DEMPSU
Power down the DPU.
When the TID indicates the RBI watchdog
Disable the RBI watchdog.
When TID indicates Housekeeping
Disable the HK.
When the TID indicates autonomous safing
Disable the Autonomous Safing Task
When the TID indicates the ICB DIRECT
Disable the ability to write to the MACSbus ICB directly.
when TID is any other value ————--—----———---
Flag is as an illegal task command.
End of Selection
When the packet subtype is Load Task...
Set up a default Illegal FID error.
Select Action on the basis of the Task Identifier (TID)
when TID is Blue Load Centroid Table
Load the centroid boundaries in the Blue system
when TID is Blue Load Window Table
Load the Window descriptions into the Blue system
when TID is Blue Integration.
Select action on the basis of the Function Identifier (FID)
when FID is Blue Acquisition Mode
Set Blue System Acquisition Mode
when FID is Blue Double Threshold
Set the Blue System Double Event Threshold
when FID is Flood LED current
Set the Flood LED current.
when the FID is Enable Frame Tag
If the frame tag value is zero

Disable frame tags

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 286

Otherwise
Enable them.
If FID ios Camera Running
Set the Camera Running bit as per request
when FID is any other wvalue
Flag as an illegal task command
End of Selection
when TID is HV ramping
Provided its the correct FID
Load HV ramp parameters
Otherwise
Flag as an invalid task command.
When TID is Move Filter Wheel
Select action on basis of FID
If FID indicates a filter wheel movement parameter
Load up the parameter
When FID indicates the coarse sensor current
Load up the coarse sensor current
When FID indicates the fine sensor current
Load up the fine sensor current
When FID indicates the f/w step rate
Load up the f/w step rate
Any other FID value
Flag as an invalid task command.
If the TID indicates a Move Dichroic
Select action on the basic of the FID value
When the FID indicate Dichroic direction/method
Load Dichroic direction/method
When the FID indicate Dichroic step rate
Load Dichroic step rate.
Any other value of FID
Flag as an invalid task command.
If the TID indicate contingency heater control
Provided its enabled
Accept the command containg the heater configuration.
otherwise
Send an unsuccesful acceptance packet
Flag as an error
When TID indicates normal automatic heater control
Provided its enabled

And its a valid FID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 287

Load up the parameters
Otherwise
Flag as invalid task command.
otherwise
Send an unsuccesful acceptance packet.
Flag as an error.
When TID indicates Direct ICB command
Select action on value of FID
when FID indicates a direct write to an ICB port
and the option is enabled
0/P datum to specified address and subaddress
otherwise
Flag as an error
For any other value of FID
Flag as an invalid task command.
When TID indicates an RBI watchdog
IF the FID is valid
Load up the watchdog parameters
If those parameters are not accepted.
Send the appropriate unsuccesful acceptance packet
All other FID's
Flag as invalid task command
when TID is DPU Direct
Send parameters in the packet as a direct command to the DPU
when TID is any other value
Flag as an invalid task command
End of Selection
When the packet subtype is Report Task...
If it's a valid read ICB port type
and its enabled
Request the task report and flag as accepted
otherwise
Flag as an error
All other FIDs
Send a normal task report packet using TASK_REPORT.SEND.
When the packet subtype is Mode Transition...
Send parameters to the MODEMAN.TO_MODE
End of Selection

If command was flagged as an invalid task management command,
inform the ground

Return success only if we had both a valid task command and
the command was not rejected by the functions called.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 288

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 289

6.4.2.67 tc_g.ads
Extracted from file "tc_g.ads"

Function

This file contains the specification for the package TC_Q. It
supplies the routines that manipulate the telecommand queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010
The OBDH protocol is defined in XM-IF-DOR-0002

Define number of slots NO_SLOTS in Telecommand Queue
Define telecommand queue data structure as follows

Description Size (Words)

R R

* Packet Slot O * 124
K *
* and so on until... * 124
K *
* Packet Slot n-1 * 124

R R

Two pointers are used to indicate the 'occupation' of the queue.

The Input Pointer indicates the packet slot into which the
the next packet will be written.

The Output Pointer indicates the packet slot from which the
the next packet should be taken.

In addition, there is a communication area (CCA) which the spacecraft examines
to determine the location of a TM packet to be collected or into which
a TC packet should be loaded.

R R R i i

* RBI Status Word *
K *
* Start Address of TM Source Packet *
K *
* Length of TM Source Packet *
K *

* Start Address of TC Source Packet *

R R R e

Create instance of Q data structure, and fix at location in memory (determined from MEMLOC) .
Define the input and output pointers at a fixed location in memory and zero them.

procedure RESET;

This procedure resets (i.e. clears) the TC queue

procedure REMOVE (PCKT : in out PACKET.TC_TYPE);

This procedure removes a packet from the TC queue
where:
PCKT is the packet removed from the TC queue.

procedure ADD;

This procedure informs the ICU that the s/c had DMAd a TC packet

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 290

NOTE: This routine is now obsolete and should be removed. Its function
is now handled by a low level assembler routine in package RBI_IH.

function IS_EMPTY return BOOLEAN;
This function determines whether the TC queue is empty
It returns TRUE if the queue is empty

function IS_FULL return BOOLEAN;

This function determines whether the TC queue is full.
It returns TRUE if the queue is full

ICU FM Software Detailed Design

6.4.2.68 tc_g.adb
Extracted from file "tc_g.adb"

Function

XMM OM/MSSL/SP/0205.3

This file contains the body for the package TC_Q. It

supplies the routines that manipulate

Reference

the telecommand queue directly.

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010.
The OBDH protocol is defined in XM-IF-DOR-0002

Define telecommand queue data structure as follows (this information repeated for

convenience from the specification).

Description Size (Words)

R R

* Packet Slot 0 *
o *
* and so on until... *
o *
* Packet Slot n-1 *

R R

124

124

Two pointers are used to indicicate the 'occupation' of the queue.

The Input Pointer indicates the packet slot into which the

the next packet will be written.

The Output Pointer indicates the packet slot from which the

the next packet should be taken.

In addition, there is a communication area which the spacecraft examines
to determine the location of a TM packet to be collected or into which

a TC packet should be loaded.

KA Ak ko k

* RBI Status Word

* *

* Start Address of TC Source Packet *

KA Ak ko k

procedure RESET is

Set the start and end pointers t

Store the Start address of the 1
using RBI.SET_COMM_AREA_TC_INFO.

Inform s/c we are ready to recei
appropriate RBI status word bit

* *

o the location of 1lst packet.

st packet in the comm area

ve a packet by setting the
using RBI.SET_TC_READY.

procedure REMOVE (PCKT : in out PACKET.TC_TYPE) is

Copy packet from current slot sp
calc next output pointer wvalue,
Inform s/c we are ready to recei
appropriate RBI status word bit
using RBI.SET_TC_READY.

procedure ADD is

ecified by the output pointer into PCKT.
watching for 'wraparound'

ve a packet again by setting the
(provided the queue is not full)

2901

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 292

NOTE: This routine is now obsolete and should be removed.

Its function is now handled by a low level assembler routine in

package RBI_IH.

Tell s/c we can't receive TC packets using RBI.SET_TC_READY.

Packet has already been stored by s/c

So calculate next slot index indicated by the value of the input pointer

and watching for 'wraparound'

Now set up new address for next packet using RBI.SET_COMM_AREA_TC_INFO

Now tell s/c we can accept TC packets again if g not full using RBI.SET_TC_READY.

function IS_EMPTY return BOOLEAN is

Return TRUE if Input Pointer equals the Output Pointer
Otherwise return FALSE

function IS_FULL return BOOLEAN is

Calc value of input pointer of next (after current) packet slot to be written.

Return TRUE if it is the same as the output pointer.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 203

6.4.2.69 tc_verify.ads

Extracted from file "tc_verify.ads"

Function

This file contains the specification for the TC_VERIFY package.

That package supplies the routines that construct and send the
telecommand verification packets.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

procedure SUCCESSFUL_ACCEPTANCE
(TC_SEQ_COUNT_AND_SRC: UINT16);

This procedure constructs and sends a successful telecommand acceptance
packet to the telemetry queue.
where:

TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
telecommand being verified.

procedure UNSUCCESSFUL_ACCEPTANCE
(TC_SEQ_COUNT_AND_SRC: UINT1l6;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY);

This procedure constructs and sends an unsuccessful telecommand
acceptance packet to the telemetry queue.

where:

TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
telecommand being verified.

ERROR_CODE specifies the reason for failure
PARAMS specify any parameters associated with the

error code (NOTE - unlike other routines in the
ICU code, the first index of this array must be 1)

procedure UNSUCCESSFUL_EXECUTION
(TC_SEQ_COUNT_AND_SRC: UINT1l6;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY);

This procedure constructs and sends an unsuccessful telecommand
execution packet to the telemetry queue.

where:

TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
telecommand being verified.

ERROR_CODE specifies the reason for failure
PARAMS specify any parameters associated with the

error code (NOTE - unlike other routine in the
ICU code, the first index of this array must be 1)

procedure REPORT_ERROR (ERROR : PACKET.COMMAND_ERROR_TYPE;
TC_SEQ_COUNT_AND_SRC: UINT16);

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 204

This is a simplified version of UNSUCCESSFUL_ACCEPTANCE,
for use when there are no parameters.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.70 tc_verify.adb

Extracted from file "tc_verify.adb"

Function

This file contains the body for the TC_VERIFY package.

That package supplies the routines that construct and send the
telecommand verification packets.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

The specification for this package's internal routine follows:

procedure UNSUCCESSFUL (

SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
TC_SEQ_COUNT_AND_SRC: UINT16;
ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY) ;

where:

SUB_TYPE is the packet sub-type being output

(unsuccessful acceptance or execution).

TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
telecommand being verified.

ERROR_CODE specifies the reason for failure
NO_PARAMS specifies how many params are supplied
PARAMS specify any parameters associated with the

error code

The body for this package's internal routine follows:

procedure UNSUCCESSFUL (

SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
TC_SEQ_COUNT_AND_SRC: UINT16;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;

PARAMS : UINT16_ARRAY) 1is

Create instance of verification packet of requested sub-type

295

Return as successful with no further action if an internal command is causing the error

(as this will have no source and sequence count parameter - the 'impossible' wvalue
of FFFF (hex) is used to indicate this).

Get the time and place it in packet using TIME_MAN.TIME_STAMP.
Flag CRC as present

Store the number of parameters supplied

Calculate and load packet length

Copy originating sequence count and source flag into packet
Copy error code into packet

and then copy in the associated parameters

Place packet in gqueue using TMQ.PUT.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 206

The bodies for this package's externally visible follow:

procedure UNSUCCESSFUL_EXECUTION
(TC_SEQ_COUNT_AND_SRC: UINT1l6;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY) 1is

Call UNSUCCESSFUL with sub-type specifying Unsuccessful Execution

procedure UNSUCCESSFUL_ACCEPTANCE
(TC_SEQ_COUNT_AND_SRC: UINT16;

ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
NO_PARAMS : UINT16;
PARAMS : UINT16_ARRAY) 1is

Call UNSUCCESSFUL with SUB_TYPE specifying Unsuccessful Acceptance

procedure SUCCESSFUL_ACCEPTANCE
(TC_SEQ_COUNT_AND_SRC: UINT16) is

Create verification packet of sub-type Succesful Acceptance

Return as successful with no further action

if an ICU internal command (i.e. if source and sequence count is set

to the immpossible value of FFFF hex) caused the error

Get the time and place it in packet using TIME_MAN.TIME_STAMP.

Flag CRC as present

Calculate and load packet length

Copy originating sequence count and source flag into packet

Place packet in queue using TMQ.PUT.
procedure REPORT_ERROR (ERROR : PACKET.COMMAND_ERROR_TYPE;

TC_SEQ_COUNT_AND_SRC: UINT16) is

If the error code is in the unsuccessful execution range

call UNSUCCESSFUL_EXECUTION with ERROR supplied and
number of parameters set to zero.

Otherwise

Call UNSUCCESSFUL_ACCEPTANCE with ERROR supplied and
number of parameters set to zero.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 297

6.4.2.71 tcq.ads
Extracted from file "tcg.ads"

Function

This file contains the specification for the package TCQ.
That package supplies the low level routines that manipulate the
telecommand queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010.
The OBDH protocol is defined in XM-IF-DOR-0002.

procedure RESET;
This procedure resets (i.e. clears) the telecommand queue

procedure GET (PCK : in out PACKET.TC_TYPE;
GOOD_PACKET : out BOOLEAN) ;

This procedure returns the next valid telecomand packet received
to the caller.
where:
PCK is the returned packet.
GOOD_PACKET - always returns TRUE.
procedure ADD renames TC_Q.ADD;
The procedure is called when an EOTC Instruction to User
interrupt is received (i.e. that a TC packet has been added to the
TC queue) .

NOTE: This routine is now obsolete and should be removed. Its function is
now handled by a low level assembler routine in package RBI_IH.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 208

6.4.2.72 tcq.adb
Extracted from file "tcg.adb"

This package body implements the specification given in TCQ.ADS

Dependencies

with TC_Q;

with TMQ;

with TC_VERIFY;

with TYPES; use TYPES;
with CRC;

with HK;

with SYSTEM;

with MEMLOC;

Data Global to this package

As this package only returns valid packets, it requires a table
of valid types and subtype, and the associated error conditions,
as follows:

Subtype 0 1 2 3 4 5 * Comments
Type
1 7?2?2222
2 I ooITITITI Device Commanding
3 7?2?22
4 7?7?2222
5 I oo oo oI Task Management
6 I oooITITI Memory Maintenance
7 7?2?2222
8 7?72?2227
9 I oIooolI Telemetry Maintenance
10 I T oolIolI Time Management
11 7?7?2220
12 7?7?2222
13 I oIITITITI Test Commands
14 7?7?2222
15 7?2?22
where:

o = valid type/subtype, 1 = invalid subtype, ? = invalid type
The specification and body for the internal routine follow:
where:

TC_PACKET is the packet to be checked for validity.

function VALID_PACKET (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

Assume by default we have a good packet.
If a good packet
Perform Valid APID check
If not, note and flag it as a bad packet as invalid APID.
If still a good packet
Perform Packet Length Check (i.e. is it in a valid range)
If not, note and flag it as a bad packet with invalid length.
If still a good packet
and a CRC is flagged as being present

Perform CRC check

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 299

If the CRC check fails
Note and flag it as a bad packet with incorrect checksum.
If still thought to be OK

Look up error condition, if any, as a function of packet type
and subtype, from the table described above.

Select next action on the basis of the value returned.
If packet OK
Flag it is a good packet.
If an invalid packet is present
Determine whether because it is a bad type or bad sub-type.

Load up the packet type and subtype into the parameter
array for the error packet to be sent.

Finally flag as bad packet.
If it's not a good packet so far

Construct and place Unsuccessful Acceptance
Telemetry Packet in the telemetry queue with the appropriate error code.

Increment bad packet count HK.TC_BAD for HK purposes.
Return whether it was a good (TRUE) or bad (FALSE) packet.

procedure RESET is

Perform queue reset by calling TC_Q.RESET
procedure GET (PCK : in out PACKET.TC_TYPE;
GOOD_PACKET : out BOOLEAN) is
Commence infinite loop
If the telecommand queue is empty
then wait a while
otherwise
Remove a packet from the queue using TC_Q.REMOVE.

If function VALID_PACKET returns a value of TRUE
(i.e. we have a valid packet).

then exit from this loop (and therefore procedure), indicating success.
End Loop

Package TCQ Code

Perform a failsafe Reset Queue on Package Elaboration using RESET.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 300

6.4.2.73 time_man. ads

Extracted from file "time_man.ads"

Function

The file contains the specification for the Time Manager Package TIME_MAN.
This package, together with the package BCP4_IH, supplies routines to
support On-Board Time Management.

function REQUEST (TC_PACKET : PACKET.TC_TYPE)
return BOOLEAN;

This routine implements the On-Board Time Management Packets TC(10, x)
contained in TC_PACKET. The format of these packets is defined in
the Packet Structure Definition document PX-RS-0032. Of those, only
the following are required to be supported.

TC(10,2) - Enable Time Synchronization.
TC(10,3) - Add Time Code.
TC(10,5) - Enable Time Verification.

In this release, the function always returns TRUE.

function VERIFICATION_ACTIVE
return BOOLEAN;

This function returns TRUE if the process of verifying the time
is in progress.

function SYNCHRONISATION_ACTIVE
return BOOLEAN;

This function returns TRUE if the process of synchronizing the time
is in progress.

function TIME_STAMP
return PACKET.TIME_TYPE;

This function returns the current on-board time in a format suitable
for direct insertion into a packet.
(see the RBI package for details of the format).

function OBT_AT_NEXT_BCP4
return RBI.OBT_TYPE;

This function

1) waits until the next BCP4 pulse from the spacecraft

2) returns the On-board time at that pulse in the format as
provided by the RBI
(see the RBI package for details of the format).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.74 time_nman. adb

Extracted from file "time_man.adb"

Function

The file contains the body for the Time Manager Package TIME_MAN.
This package, together with the package BCP4_IH, supplies routines to
support On-Board Time Management.

The following is the specification for a task internal to this package.
It constructs and sends and enable time verification package after the
initial processing of the BCP4 interrupt by package bcp4_ih.
task BCP4 is

entry START;
end BCP4;

function REQUEST (TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

Determine action on the basis of the packet sub-type.
If we have received a Time Synchronisation Packet

Inform world that we are synchronising by setting
the appropriate flag for use in HK.

Enable time synchronisation by commanding the
RBI configuration register appropriately using RBI.SET_SYNC_READY

If we have received an Add Time Code Packet

Remember the most significant byte from the time information
supplied by the packet.

Copy remaining significant 4 bytes into work array

Convert them to RBI OBT (On-Board Time) format and
load into RBI registers using RBI.SET_OBT

Now disable Time synchronisation by commanding the RBI
configuration register accordingly using RBI.SET_SYNC_READY.

Now update DPU time to agree with the new time value using the special
version of the IC_SYNCH_CLK with the length set to zero.

Finally, tell world we are no longer synchronising by resetting
the appropriate flag in HK.

If we have received an Enable Time Verification Packet

Inform world we are verifying the time by setting the
appropriate flag for HK

Start BCP4 processing task by calling BCP4.START.
and leave it to do the work
For any other packet sub-types.
Do nothing.
In this release, always return success.

task body BCP4 is

Begin infinite loop
Wait until a call to start the task occurs i.e. BCP4.START

Wait for the next BCP4 and get the corrected RBI format OBT
using the OBT_AT_NEXT_BCP4 function.

301

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 302

Create instance of a Time Management Report packet.
Now build Time Verification Packet

Flag CRC as present

Calculate and load packet length.

Construct Most Sig Byte of time stamp from value
extracted from Add Time Code packet and held in memory.

Construct remaining bytes from corrected OBT.
And send it to to TM queue using TMQ.PUT.
and disable BCP4 processing
and inform world via HK we have finished verifying the time.

function SYNCHRONISATION_ACTIVE return BOOLEAN is

Return the value of the synchronising flag

function VERIFICATION_ACTIVE return BOOLEAN is

Return the value of the verification flag
function TIME_STAMP return PACKET.TIME_TYPE is
Construct Most Sig Byte of time stamp from value extracted
earlier from the Add Time Code packet and held in memory
Get current corrected On-Board Time from the RBI using RBI.CORRECTED_OBT.
Construct remaining bytes of time stamp from it;
Return the time stamp.
function OBT_AT_NEXT_BCP4 return RBI.OBT_TYPE is
Enable BCP4 processing at interrupt level by setting a flag the assembler
code in bcpd4_ih will poll at the next BCP4 interrupt.

then wait for bcp4 int to be processed by code in
package bcp4_ih (i.e. load up the OBT).

Correct and return the On Board Time from the RBI using RBI.CORRECT_OBT.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 303

6.4.2.75 timer_a_ih. ads

Extracted from file "timer_a_ih.ads"

A block of variables are declared in MECHANISMS as part of the
specification of that package

so that they are 'visible' to this package which actually

performs the movement. It is compiled separately as it is run

at interrupt level and therefore a different set of compilation flags
must be used.

Enables the phase coils for the stepper motor driving DEVICE

(FILTER_WHEEL or DICHROIC) as specified by the bit pattern contained
in PHASE (1 = enabled) as follows:

function FW_PHASE return UINT16;

Returns a bit pattern specified by earlier calls to SET_PHASE
commanding the filter wheel stepper motor for which the bit pattern
PHASE was non zero. As before, the bits are defined as follows

(1 = enabled)

function DM_PHASE return UINT16;

Returns a bit pattern specified by earlier calls to SET_PHASE
commanding the dichroic stepper motor for which the bit pattern
PHASE was non zero. As before, the bits are defined as follows
(1 = enabled)

function COARSE_POSITION_SENSED return BOOLEAN;

Returns TRUE if the filter wheel coarse sensor is currently detected.

function FINE_POSITION_SENSED return BOOLEAN;

Returns TRUE when the filter wheel fine position sensor is detected

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.76 timer_a_ih.adb

Extracted from file "timer_a_ih.adb"

procedure START (INIT_PULSE_RATE : UINT16) is

Flag that the next pulse will be the first
Init pulse counter

Zero fine pulse sensor counter

Set up first Timer A Interrupt

procedure STOP is

Cancel current interrupt

procedure WHEN_ALARM_HAPPENS is

If the ICB is still busy at non-interrupt level

Set up another timer A interrupt in a little while
using ALARMCLOCK.SETALARM

and return from interrupt

Re-enable SSI and RBI interrupts so they can still be processed
(as otherwise they are 'locked out' due to being lower priority

Inform ICB Driver that it will be running at interrupt level
Provided mechanisms are flagged as in use
1st reset timer A ready for next pulse
(rate dependent on requested movement speed
set up in calls to the MECHANISMS package)
If this is not the first pulse

As the mechanisms will now have settled, we check for
exit conditions resulting from prior pulse.

If exit condition is when we reach the specified steps

If we have reached the max steps requested,
flag as finished

If we are within braking distance
then start decelerating if cruising or accelerating
If the exit is on seeing the coarse sensor
Flag as finished when coarse sensor set

Set error flag if we have gone beyond
max requested steps

If the exit is on seeing the next fine sensor
If fine sensor seen
Increment count of fine sensor pulses
Flag as finished when pulse count at requested max pulses

Set error flag if we have gone beyond
max requested pulses

If the exit is on seeing the coarse sensor and
fine sensor pulse (i.e. we are at datum)

Can we can see the coarse sensor?
Set finished flag if we also see the fine sensor

If finished, reset filter wheel position

304

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 305

If we can we see the coarse sensor
Adjust speed to be fixed but very slow
but if we can't see the coarse sensor
Keep the speed fixed but at standard pull-in rate
Set error flag if we have gone beyond max requested steps
If exit is at dichroic positive excursion
If we are moving to maximum excursion
Flag as finished when steps >= 31 and phase is 1
If we are moving n steps
Flag as finished when we reach them
If exit is at dichroic negative excursion
If we are moving to max dichroic excursion
Flag as finished when steps >= 31 and phase is 2
but if we are moving n steps
Flag as finished when we reach them
Otherwise, if this is not the first pulse
Flag as unfinished
and reset first_pulse flag as false
If the finished or error flag is set
Terminate movement
Otherwise, we have not finished so
Determine next phase
Send phase line commands to appropriate device via SET_PHASE
Examine which mechanism we are moving
If it's the f/w
Flag it as moving
Increment its position couter
If it's the dichroic
Adjust position counter according to movement direction
Remember the last phase set for HK use
Increment the pulse count;

Now determine time interval for next pulse
based on whether we are accelerating/deceleration etc

If we are accelerating

Increase pulse rate

If now at max speed, switch to cruising
If we are decelerating

Calculate pulse rate downwards

If now back to pull-in speed, switch to fixed speed
if we are cruising

Leave speed alone

If the speed is fixed

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Do nothing
Clear flag that we are at interrupt level
function SET_PHASE (DEVICE : in MECHANISM.DEVICE_TYPE;

PHASE : in UINT16
) return BOOLEAN is

It should be noted that the same TMSPU MACSbus sub address
is used to command the stepper motor phases for both the
filter wheel and dichroic as follows

where D1->D4 are the dichroic motor phases.
F1->F4 are the filter wheel motor phases.

Determine which device is being commanded.
If the filter wheel is being commanded
Insert the requested phase bit pattern into the
the appropriate part of the command word to be

to be sent to the mechanisms.

If it's a non zero phase, remember for recall
as last active phase for the filter wheel.

If it's the dichroic that's being commanded
Insert the requested phase bit pattern into the
the appropriate part of the command word to be

to be sent to the mechanisms.

If it's a non zero phase, remember for recall
as last active phase for the dichroic.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus) .

Always return OK as the ICB routines inform the ground if there

was an error.

function FW_PHASE return UINT16 is

Return the last non zero phase pattern sent to the filter wheel.

function DM_PHASE return UINT16 is

Return the last non zero phase pattern sent to the dichroic.
function COARSE_POSITION_SENSED return BOOLEAN is

Get datum containing the value from the appropriate address

on the MACSbus.

The format of the datum now received is as follows:

where C0->C7 is the 'raw' current of the requested secondary circuit.

XX is "don't care".
CS is coarse sensor status, 1 = 'seen'.

Extract sensor status from the CS field within the datum
and return it.

function FINE_POSITION_SENSED return BOOLEAN is

Get Data from the appropriate MUX port on the ICB MACSbus.

306

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 307

Extract and return the bit corresonding to the Fine Sensor status.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 308

6.4.2.77 tm.man. ads

Extracted from file "tm_man.ads"

Function

This file contains the specification for the telemetry manager package, TM_MAN.

Reference

function REQUEST (TM_MAN_PACKET : PACKET.TC_TYPE) return BOOLEAN;
This function provides the means of passing the telecommand
to the package for further action.
where
TM_MAN_PACKET contains the tc packet to be interpreted and executed.
function SID_STATUS(SID : PACKET.SID_TYPE) return BOOLEAN;
This function reports on the TM packet generation status of a
packet with the corresponding packet type specified by SID.
where
SID is the tm packet sid to be reported
If the generation of a TM packet with this SID is enabled then
the function will return TRUE, FALSE otherwise.
function REPORT_STATUS (SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;
This procedure is responsible for generation of TM(9,1) packet in
response to a TC(9,1) packet.

where

SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
of the associated telecommand.

Returns TRUE if the command was successfully accepted

procedure VETO (TM_MAN_IGNORED: BOOLEAN) ;

Ensures , if true, that STATUS always returns TRUE

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 309

6.4.2.78 tm man. adb

Extracted from file "tm_man.adb"

Function

This file implements the body of the telemetry manager package, TM_MAN, for
Operational mode.

Reference

Define some package internal procedures

function CHANGE_ALL (ENABLE_DISABLE : BOOLEAN;
SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

This internal procedure changes the generation status of all applicable
TM packets to that specified by ENABLE_DISABLE. The
SEQUENCE_COUNT_AND_SRC parameter is needed in case of unsuccessful
command execution

function CHANGE_SPECIFIC (ENABLE_DISABLE : BOOLEAN;
SID : PACKET.SID_RECORD_ARRAY;
SEQUENCE_COUNT_AND_SRC : UINT16;
PKT_LENGTH : UINT16) return BOOLEAN;

This internal procedure changes the generation status of the TM packets
specified by the SID parameter to that specified by ENABLE_DISABLE.
SEQUENCE_COUNT_AND_SRC parameter is needed in case of unsuccessful
command execution

Create the enabled array which contains true if a particular
sid is to be enabled (ie a tm packet with that sid can be
generated)

Create the valid array which contains true if a particular
sid is defined

function REQUEST (TM_MAN_PACKET : PACKET.TC_TYPE) return BOOLEAN is

Check whether CRC is present in tc packet
Now determine packet subtype and act accordingly
If 1 for a Report TM Packet Generation Status
report the status using REPORT_STATUS
If 2 for an enable Generation of all TM Packets
Ignore as not supported by OM!
If 3 for a Disable Generation of all TM Packets
Disable all SIDs using CHANGE_ALL.
4 for an Enable Generation of Specific Packets
Enable a specific SID using CHANGE_SPECIFIC.

5 for a Disable Generation of Specific Packets

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 310

Disable a specific SID using CHANGE_SPECIFIC.
Any other value, return false
function SID_STATUS(SID : PACKET.SID_TYPE) return BOOLEAN is
Return the SID value in the valid sid array
or'ed with the value in the enabled array
function REPORT_STATUS (SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN is
Loop over the valid sid array, getting all SID enabled status
and put them in an array
Now create rest of the tm packet
Put packet into tm queue using TMQ.PUT
function CHANGE_ALL (ENABLE_DISABLE : BOOLEAN;
SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN is
Loop over the enabled sid array
Record enabled status in array

Return success.

function CHANGE_SPECIFIC (ENABLE_DISABLE : BOOLEAN;
SID : PACKET.SID_RECORD_ARRAY;
SEQUENCE_COUNT_AND_SRC : UINT16;
PKT_LENGTH : UINT16) return BOOLEAN is

Calculate number of sids to change
If valid number of sids
Set up error parameters just in case
Test whether SID to change is a valid one
If this is a valid SID
Determine SID type is
When fast HK
If enabling this SID
If slow HK or science is enabled
then cannot enable fast HK
When slow hk
If enabling this SID
If fast HK is already enabled
then cannot enable slow HK
When any science SID
Determine whether this SID is already enabled
If enabling this SID
If fast HK is already enabled
then cannot enable this science SID
Else
If SID already enabled
Do nothing
else

increment enabled science SIDs counter

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 311

Else if disabling this SID
If SID already enabled
Then decrement science SID enabled counter
Else set up error parameters
If the SID status can be changed
Record changed SID status
Else
Send unsuccessful acceptance packet using TC_VERIFY.UNSUCCESSFUL_ACCEPTANCE.
Return FALSE
Return TRUE.

procedure VETO (TM_MAN_IGNORED: BOOLEAN) is

Set the override flag to supplied value.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 312

6.4.2.79 tmg. ads
Extracted from file "tm_g.ads"

Function

This file contains the specification for package TM_Q.

That package supplies the low level routines that manipulate the
telemetry queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010
The OBDH protocol is defined in XM-IF-DOR-0002

Two pointers are used to indicate the 'occupation' of the queue.

The Input Pointer indicates the packet slot into which the
the next packet will be written.

The Output Pointer indicates the packet slot from which the
the next packet should be taken.

Define the input and output pointers at a fixed location in memory.

procedure RESET;

This procedure resets (i.e. clears) the TM queue

procedure ADD (PCKT : in PACKET.TM_TYPE);

This procedure adds a packet to the TM queue
where:
PCKT is the packet to be added to the TM queue.

function IS_FULL return BOOLEAN;

This function determines whether the TM queue is full
where IS_FULL returns TRUE if the queue is full
procedure REMOVE;
This procedure remove a packet from the telemetry queue after
the s/c indicates it has taken a copy with an EOTM Instruction to User.

NOTE: This routine should be removed as its function is now
performed by a low-level assembler routine in package RBI_IH.

function PACKET_COUNT return UINT16;

Returns the current packet sequence count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.80 tmg. adb
Extracted from file "tm_g.adb"

Function

This file contains the body for package TM_O.

That package supplies the low level routines that manipulate the
telemetry queue directly.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010.

The OBDH protocol is defined in XM-IF-DOR-0002

The telemetry queue is a area of memory defined as follows:

Description Size (Words)

R R

* Packet Slot 0 * 259
o *
* and so on until... * 259
o *
* Packet Slot n-1 * 259

R R

Two pointers are used to indicate the 'occupation' of the queue.

The Input Pointer indicates the packet slot into which the
the next packet will be written.

The Output Pointer indicates the packet slot from which the
the next packet should be taken.

In addition, there is a communication area which the spacecraft examines
to determine the location of a TM packet to be collected or into which

a TC packet should be loaded.

KA Ak A Ak ko k

* RBI Status Word *

* Start Address of TC Source Packet *

KA Ak ko k

Create instance of Q data structure, and fix at location in memory

Specify routines internal to this package

function IS_EMPTY return BOOLEAN;

returns TRUE if the telemetry Q is empty.

Specify bodies for routines internal to this package

function IS_EMPTY return BOOLEAN is

Return TRUE if Input Pointer equals Output Pointer.
otherwise return FALSE.

Specify bodies for routines visible externally

313

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 314

procedure RESET is

Set the start and end pointers to the lst packet
Ensure the s/c knows the queue is empty by using RBI.SET_TM_READY
Reset the packet sequence counter to zero

procedure ADD (PCKT : in PACKET.TM_TYPE) is

If the queue is full (use IS_FULL fucntion)

Raise a TM Q Overflow exception (This should never happen
as TMQ package should guard against this?)

Otherwise
Store packet at next free slot
Store sequence count in packet

Prepare sequence count for next packet, performing 'wraparound'
if necessary.

If CRC required
Convert packet to an array of 16 bit word

Calc CRC location in words from
packet length in bytes already in supplied packet

Calculate CRC value using CRC.CALC_TM
and place it at CRC location

As we now manipulate items that may be manipulated/examined
by an interrupt handler as well

Grab them for exclusive use by blocking task pre-emption
and interrupts by entering a critical section.

Check here whether queue is now shown as empty (use IS EMPTY Function).
If it is then the

queue was empty prior to packet insertion.

(Note: this is so because we haven't updated the pointers yet

and so still reflect pre-insertion status.)

If so, we need to inform s/c of the new packet address
(derived from the Output Pointer) which is now available.
Also tell the spacecraft its length.

Note that the INPUT_POINTER = OUTPUT_POINTER at this stage.
Use RBI.SET_COMM_AREA_TM_INFO to do this.

Finally, ensure TM_READY bit is up using RBI.SET_TM_READY,
to let spacecraft know that there are packets to take.

Otherwise
Do nothing, because there are still packets to be
removed and therefore the spacecraft has the information

it needs from a previous pass.

Finally, calculate next slot index by incrementing the
input pointer (and 'wrapping around' if necessary).

Finally, allow manipulation by other code by leaving the critical section
procedure REMOVE is
NOTE: This routine should be removed as its function is now
performed by a low-level assembler routine in package RBI_IH.
Ensure TM_READY bit is down while we process this
Calculate new output index following packet removal

If the queue is now empty

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 315

Leave TM_READY bit low to inform s/c of the fact
Otherwise

set up packet information which enables the
the spacecraft to fetch the next packet.

Ensure TM_READY bit is up, to let s/c more packets to come

function IS_FULL return BOOLEAN is

Calc Input Pointer of next (after current) packet slot to be written.
Return TRUE if it is the same as the output pointer.

function PACKET_COUNT return UINT16 is

Return the current sequence count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

6.4.2.81 tnpsu.ads

Extracted from file "tmpsu.ads"

Function

This file contains the specification for the TMPSU package. The package
contains the software to control and monitor the Telescope Module Power
Supply. It is based on document XMM-OM/IALS/SP/0002 -

"TMPSU Electrical Specification".

procedure SEND (
SUBADR : in SUB_ADDRESS_TYPE;
DATUM : in UINT16;
OK : out BOOLEAN) ;

Sends the data value DATUM to the MACS subaddress SUBADR of the
TMSPU. OK is set to TRUE if no errors occur.

procedure ACQUIRE (SUBADR : in SUB_ADDRESS_TYPE;
DATUM : out UINT16;
OK : out BOOLEAN) ;

Reads the data value DATUM from the MACS subaddress SUBADR of the
TMSPU. OK is set to TRUE if no errors occur.

function SET_SECONDARY_VOLTAGES (ON_OFF : BOOLEAN;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Enables or disables (ON_OFF = TRUE or FALSE respectively) the secondary
voltages that power the blue electronics.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function SECONDARY_VOLTAGES_ENABLED return BOOLEAN;

Returns the status of the Secondary Voltages (TRUE = ON) for display
in Housekeeping.

function SET_COARSE_POSITION_SENSOR_CURRENT (CURRENT : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN;

Sets the current for the coarse sensor illuminating LED in 'raw' units
to be used when moving the filter wheel. The value is not used until

a call to COARSE_SENSOR is made.

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function COARSE_SENSOR_CURRENT return UINT16;

Returns the current for the coarse sensor illuminating LED in 'raw' units

that is used when moving the filter wheel.

procedure COARSE_SENSOR(ON_OFF : BOOLEAN) ;

Turns on/off (ON_OFF = TRUE/FALSE) the illuminating LED used
by the filter wheel coarse sensor. It uses the current specified in an
earlier call to SET_COARSE_POSITION_SENSOR_CURRENT.

function SET_HEATER_CONFIG(CONFIG : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

The bit pattern in CONFIG specifies which heater should be on or off
(1 =on) as follows:
L.S.B.

316

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 317

| Temperature Control | Focussing

| Main | Forward | Metering | Secondary |
| | | Rods | Mirror |
| (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4)

SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
associated telecommand.

function HEATER_CONFIG return UINT16;

Returns a bit pattern specifying the current heater configuration
as follows:

L.S.B
| Temperature Control | Focussing
| Main | Forward | Metering | Secondary |
| | | Rods | Mirror |
| (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4)

function CURRENT (SECONDARY_VOLTAGE : UINT16) return UINT16;

Returns the current (in 'raw' units) for the secondary supply circuit
specified by SECONDARY_VOLTAGE as follows:

+25
+15
+11
+5.3
-5.3
-15
+28
+ 5

<K< <S<S<
do s WN O

The values returned are used in the Housekeeping.

ICU FM Software Detailed Design

6.4.2.82 tnpsu.adb
Extracted from file "tmpsu.adb"

Function

This file contains the body for t
contains the software and data st
the Telescope Module Power

XMM OM/MSSL/SP/0205.3

he TMPSU package. The package
ructures to control and monitor

Supply. It is based on document XMM-OM/IALS/SP/0002 -

"TMPSU Electrical Specification".

package body TMPSU is

procedure SEND (
SUBADR : in SUB

_ADDRESS_TYPE;

DATUM : in UINT16;
OK : out BOOLEAN) is

Send the DATUM to MACS sub-
corresponding to the TMPSU
using ICB.PUT.

Set OK to TRUE if no error
procedure ACQUIRE (SUBADR : in

DATUM : out
OK : out

Gets the DATUM at MACS sub-
corresponding to the TMPSU

using ICB.GET.

Set OK to TRUE if no error

function SET_SECONDARY_VOLTAGES

address SUBADR at the MACS address
on the Instrument Control Bus

occurs.

SUB_ADDRESS_TYPE;
UINT16;
BOOLEAN) is

address SUBADR at the MACS address
on the Instrument Control Bus

occurs.
(ON_OFF : BOOLEAN;

SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is

Remember the last commanded secondary status.

As the bit defining the sta
combined with other bits, c
requested status of the sec
of the other bits.

The layout is as follows:
MSB

tus of the secondaries is
onstruct the bit pattern from the
ondaries and the last known values

where CS0->CS2 specify which secondary circuit is being monitored.

SCO0->SC1 specify the

coarse sensor illuminating current.

SE specifies whether the secondaries are enabled.

Write the bit pattern to the appropriate address & subaddress

on the ICB (Macsbus) using
Allow electronics to settle

If we had a macsbus error

Restore record of current status to that of the last status noted earlier.

Always return OK as the ICB
was an error via an error c

ICB.PUT.

routines inform the ground if there
ount in the HK.

function SECONDARY_VOLTAGES_ENABLED return BOOLEAN is

Return the stored status of

the secondary supplies.

function SET_COARSE_POSITION_SENSOR_CURRENT (CURRENT : UINT16;

SRC_AND_SEQUENCE_COUNT
return BOOLEAN is

UINT16)

318

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 319

If the requested current is greater than the maximum (7) allowed
Reset it to the maximum allowed and note the value.
else
Simply note the value.
Always return OK.
function COARSE_SENSOR_CURRENT return UINT16 is
Return the stored 'raw' current to be used when powering the illuminating
LED for the filter wheel coarse sensor.

procedure COARSE_SENSOR (ON_OFF : BOOLEAN) is

If the LED is to be turned on

Determine the current value from the earlier value(given by
SET_COARSE_POSITION_SENSOR_CURRENT or a default value).

else

Use a value of zero.
As the bits defining the 'raw' current to drive the illuminating
LED of the filter wheel coarse sensor is combined with other bits,
construct the bit pattern from the determined value of current and

the last known values of the other bits.

The layout is as follows:
MSB

where CS0->CS2 specify which secondary circuit is being monitored.
SC0->SC1 specify the coarse sensor illuminating current.
SE specifies whether the secondaries are enabled.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus) using icb_driver.put.

function SET_HEATER_CONFIG(CONFIG : UINT16;
SRC_AND_SEQUENCE_COUNT : UINT16)
return BOOLEAN is
Loop over permitted heater configurations.

If the request heater configuration is one of them

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus) using ICB.PUT.

Remember the requested heater configuration for
HK and heater control purposes.

and exit with a success flag.
Otherwise exit (in this release, also with a success flag).

function HEATER_CONFIG return UINT16 is

Return the last commanded heater configuration.

function CURRENT (SECONDARY_VOLTAGE : UINT16) return UINT16 is

If the requested circuit is outside the allowed range of circuits
Return a zero.

As the bits defining which secondary circuit is to be monitored are
combined with other bits, construct the bit pattern from the
requested secondary circuit and the last known values

of the other bits.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 320

The layout is as follows:
MSB

where CS0->CS2 specify which secondary circuit is being monitored.
SC0->SC1 specify the coarse sensor illuminating current.
SE specifies whether the secondaries are enabled.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus) using ICB.PUT.

Wait for electronics to settle.

Write the bit pattern to the appropriate address & subaddress
on the ICB (Macsbus) to initiate an analogue to digital conversion
using ICB.PUT.

Wait a bit for the electonics to settle.

Get datum containing the value from the appropriate address
on the MACSbus using ICB.GET.

The format of the datum now received is as follows:

where C0->C7 is the 'raw' current of the requested secondary circuit.
XX is "don't care".
CS is coarse sensor status, 1

'seen'

Extract current value from the C0->C7 field within the datum
and return it.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 321

6.4.2.83 tny. ads
Extracted from file "tmg.ads"

Function

This file contains the specification for the TMQ package.
The function of that package is to provide routines to control
access to the telemetry queue

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM-OM/MSSL/ML/0010

The protocol it implements is defined in the OBDH Bus Protocol Requirement
Specification XM-IF-DOR-0002

procedure RESET;

The procedure RESET resets (i.e. clears) the telecommand queue
procedure REMOVE;

The procedure REMOVE is called upon receipt of an EOTM Instruction to

User from the spacecraft. This indicates that a TM packet has been

taken

NOTE: This routine should be removed as its function is now
performed by a low-level assembler routine in package RBI_IH.

procedure PUT(PCK : in PACKET.TM_TYPE) ;

The procedure PUT places a packet in the telemetry queue
where:

PCK is the packet to be inserted into the queue.

function PACKET_COUNT return UINT16
renames TM_Q.PACKET_COUNT;

Rename (for convenience) the PACKET_COUNT function of package TM_O.
procedure SAFING (SAFING_VALUE : in BOOLEAN) ;

Enables/disables (SAFING_VALUE = TRUE/FALSE) the automatic safing
that takes place if TM queue becomes full.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 322

6.4.2.84 tny.adb
Extracted from file "tmg.adb"

Function

This file contains the body for the TMQ package.

The function of that package is to provide routines to control

access to the telemetry queue. It, in turn, call lower level routine in
package TM_O.

Reference

The format of these packets is defined in the XMM-OM Telecommand and
Telemetry Specification document XMM—-OM/MSSL/ML/0010

The protocol it implements is defined in the OBDH Bus Protocol Requirement
Specification XM-IF-DOR-0002

Create Semaphore TM_QUEUE using package MUTEX.
The specifications for this package's internal routine follow:

procedure SEND_TO_TM_Q (PCK : in PACKET.TM_TYPE);

where:
PCK is the packet to be inserted into the queue.

procedure SEND_TO_TM_Q (PCK : in PACKET.TM_TYPE) is

Commence infinite loop
If the telemetry queue is full (use TM_Q.FULL)
Wait a bit
Increment a timout counter

If we have now spent the timout period waiting for the TM queue
to be become non-full

If autonomous safing enabled
If we are not already safing the instrument
and we are not already (full or intermediate) safed.

Initiate the intermediate safing of the instrument
using MODEMAN.TO_MODE.

but if we have already started the safing process
Determine whether the safing process has finished.
Reset the timout counter.
Otherwise
Reset the timout counter.
Place packet in queue (via TM_Q.ADD).
Exit from loop
end infinite loop
procedure PUT(PCK : in PACKET.TM_TYPE) is

Ensure we have exclusive use of the telemetry queue
by use of the TM_QUEUE.SEIZE semaphore.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 323

Send the packet to the telemetry queue (via SEND_TO_TM_OQ)
Release the telemetry queue for use by other routines using TM_QUEUE.RELEASE.

procedure RESET is

Call the reset routine in TM_Q for the telemetry queue

procedure REMOVE is

Call the 'remove packet' routine for the telemetry queue.

NOTE: This routine should be removed as its function is now
performed by a low-level assembler routine.

procedure SAFING (SAFING_VALUE : in BOOLEAN) is

Save requested autonomous safing status

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 324

6.4.2.85 types. ads
Extracted from file "types.ads"

Function

The function of this package specification is to define the basic data
types used throughout the ICU ADA code.

Definitions

Define

Define

Define

Define

Define

Define

Define

Define

Define

Define

Define

Define

Unsigned Byte type UBYTE

Signed Byte type BYTE

Unsigned 16 bit integer type UINT16

Signed 16 bit integer type INT16

Signed 32 bit type INT32

Unsigned Byte Unconstrained Array type UBYTE_ARRAY

Signed Byte Unconstrained Array type BYTE_ARRAY

Unsigned 16 bit Integer Unconstrained Array type UINT16_ARRAY
Signed 16 Bit Integer Unconstrained Array type INT16_ARRAY
Unsigned Nibble type

Unsigned Nibble Array Type

single bit Integer Unconstrained Array type BIT_ARRAY

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3 325

6.4. 2. 86 USERDEFS. asm
File is USERDEFS. asm

IF 0 ;~TI configuration constants now defined in linker control file
DEFINE
PREEMPTER_MASK
DEFINE
CONNECT_MASK
DEFINE ART_MASK
DEFINE
ARTTASK_MASK
DEFINE
ARTELAB_MASK
DEFINE
STACKTOP
DEFINE
MAINSTKTOP
DEFINE
MAINSTKSIZE

Interrupt Masks

; Ada allows the connection of interrupts to task entries by use
; of "FOR task.entry USE intnumber". The mask below indicates which
; 1750 hardware interrupts the user can DIRECTLY connect to with such
; a statement. ©Note that ALL such interrupts, and any indirectly connected
; interrupts must also appear in PREEMPTER_MASK below.
CONNECT_MASK EQU
001BF

; The interrupt mask used during the execution of normal (post-elaboration)
; code, for both the main program and tasks, is defined below.
; Floating underflow must be disabled, Floating overflow, Fixed overflow
; and Timer B must be enabled (to validate).
ARTTASK_MASK EQU
OFDFF
; The mask used during the elaboration of the program, before the main
; program is started. This is by default identical to the above.
ARTELAB_MASK EQU
OFDFF
r
; The masked used when runtime code is executing. This must have in addition
; Fixed overflow disabled.
ART_MASK EQU OFS5FF

; Next definition is a mask that also masks off any interrupts that might
; cause a task to be rescheduled
PREEMPTER_MASK EQU

OFDFF-CONNECT_MASK-040
; Timer B too

Stack Allocation
; Root initializes 2 stacks on startup. Data space is laid out as follows:

; STACKTOP
=> Fmm +

| Interrupt

Stack

; MAINSTKTOP
=> Fmm +

’

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

Main
Stack

\
\
MAINSTKTOP-MAINSTKSIZE =>

Free

END_OF_DATA
=> e +
| Static

Data

| Code

I
\
Low Mem (200 HEX)

STACKTOP EQU OFFFF
MAINSTKTOP EQU

OFDOO0
; Main stack top

MAINSTKSIZE EQU

01400
; Main stack size
ENDIF ; ~TI

Time base constants.

For the most part these constants are fixed by the tick rate of timer B

(10KHZ in MIL-STD-1750). Users who wish to adjust the shortest delay
should be aware that values less than 2 are dangerous since the start
of the delay is not necessarily synchronized with the clock tick.

BEWARE! These constants MUST appear in the order shown!!!

4
TIMES CSECT, C

;~TI

DEFINE
ART#DURSML

ART#DURSML EQU

$
conversion from TICKS to DURATION'SMALL (= 1.6384) as 3 word float
this is the original
DATA 068DB,08B01,0AC71
this is half the delay of the original
DATA 068DB, 08B02, 0AC71
this is double the original
DATA 068DB, 08B00, 0AC71

326

’

’

ICU FM Software Detailed Design

this is what we
DATA 053

this is what we
DATA

had
a7,01102,05161
want
053e2,0d602,0238e

XMM OM/MSSL/SP/0205.3

shortest non-zero delay time allowed (in ticks)

DATA 0,2
ticks in one day

DEFINE

ARTONEDA

ARTONEDAY EQU $

Ne Ne Se S

this is the orig
DATA 033

0

Y

inal
7F, 09800

this is what we want

DATA 020
ticks in two day
this is the orig

2f,0b£f00
s
inal

DATA 066FF, 03000
this is what we want

DATA
END

0405£,07e00

327

