
XMM OPTICAL MONITOR

MULLARD SPACE SCIENCE LABORATORY
UNIVERSITY COLLEGE LONDON H.E.Huckle, P.J.Smith, M.C.R.Whillock

XMM-OM ICU FM SOFTWARE DETAILED DESIGN

Document: XMM-OM/MSSL/SP/0205.03

Distribution:

XMM-OM Project Office A Dibbens Orig

ESA PX H Eggel

�

CSL P Rochus
 S Roose

Los Alamos National Laboratory C.Ho

�

UCSB T.Sasseen

�

Royal Greenwich Observatory R Bingham

University College London J Fordham

Mullard Space Science Laboratory R Card
 M Carter

�

 R Chaudery
 R Hunt
 H Huckle

�

 H Kawakami
 T Kennedy

�

 D Self
 P Smith

�

 P Thomas
 M Whillock

�

 K Mason
 A Smith

Author: Date:

OM Project Office Date:

Distributed: Date:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

ii

CHANGE RECORD

Issue Date Comments
1 30 Oct 1998 First Edition
2 5 Nov 1999 Added Mode Manager to overview diagrams.

Corrected connectivity in overview diagrams.
Corrected Summary of main s/w components table.
Added Timer A interrupt handler to component summary.
Added descriptions of
a) task priority structure
b) interrupt structure
c) exception handling and debugging
d) use of pragmas.
Added section on Timer Delay correction.
Added section on use of adaref1750a.
Corrected bootstrap variable locations
Corrected bootstrap routine locations
Changed definition of prime/redundant
Added bootstrap variables location sentence.
Removed references to SAFING package, now part of TMQ.
Additional comments added to all operational code module

descriptions.
Additional comments added to some basic mode code module

descriptions.
3 12 May 2000 Update for release 10 including:

a) Automatic Safing in the event of F/W Position Loss
b) Automatic selection of focus heaters as a function of filter
c) Prevention of transition from Safe mode without f/w in

blocked position
d) Prevention of HV ramp up without f/w in blocked position.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

iii

TABLE OF CONTENTS

1. INTRODUCTION...8

1.1 Purpose.. 8

1.2 Scope.. 8

1.3 Definitions, Acronyms and Abbreviations ... 9

1.4 References ...10

2. ICU SOFTWARE...11

2.1 Overview ... 11

2.2 Main Software Components for Basic and Operational... 12

2.3 Principle Memory Areas.. 14

2.4 Task Priorities .. 17

2.5 Interrupts.. 18

2.6 ADA Exception Handling and Debugging ... 19
2.6.1 Overview ... 19
2.6.2 Exception Handling... 19
2.6.3 Reserved Locations ... 20

2.7 ICU Delay Adjustment : .. 21

3. DESIGN METHOD ..22

4. ADA OVERVIEW...23

4.1 Basic Definitions... 23

4.2 Task Scheduling ... 24

4.3 Identifier Naming Conventions... 24

4.4 Programming Standards ... 24

5. COMPONENTS...25

5.1 Overview ... 25

5.2 File Naming Conventions... 25

5.3 Component Summary .. 26
5.3.1 Objects... 26
5.3.2 Definitions ... 28
5.3.3 Library Routines.. 28

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

iv

6. DETAILED COMPONENT DESCRIPTION...29

6.1 Introduction.. 29
6.1.1 ADA Procedure and Function Notation ..29
6.1.2 ADA Task and Entry Notation..30
6.1.3 Use of ADA Pragma’s...30

6.1.3.1 ELABORATE..30
6.1.3.2 FOREIGN_BODY...30
6.1.3.3 INLINE..30
6.1.3.4 LINKAGE_NAME..30
6.1.3.5 OPTIMIZE...31
6.1.3.6 PACK...31
6.1.3.7 PRIORITY...31
6.1.3.8 SHARED ...31
6.1.3.9 SUPPRESS..31

6.2 Bootstrap Code... 33
6.2.1 Introduction...33
6.2.2 BOOTSTRAP FUNCTIONALITY...34
6.2.3 BOOTSTRAP IMPLEMENTATION...34
6.2.4 Design and Implementation...38
6.2.5 Variables ...46
6.2.6 Routines...48
6.2.7 APPENDIX ...49

6.3 Basic Code...51
6.3.1 Main Program ...53

6.3.1.1 icu.ada..53
6.3.2 Packages...55

6.3.2.1 bcp4_ih.ads ..55
6.3.2.2 bcp4.ih.asm ..56
6.3.2.3 bsio.asm ..57
6.3.2.4 crc.ads..59
6.3.2.5 crc.adb..60
6.3.2.6 debug.ads ..62
6.3.2.7 debug.adb ..63
6.3.2.8 dempsu.ads ..64
6.3.2.9 dempsu.adb ..65
6.3.2.10 hk.ads ...66
6.3.2.11 hk.adb ...67
6.3.2.12 icb.ads ...69
6.3.2.13 icb.adb ...70
6.3.2.14 icb_driver.ads..71
6.3.2.15 icb_driver.adb..72
6.3.2.16 icu_mem_manager.ads ..74
6.3.2.17 icu_mem_manager.adb ..75
6.3.2.18 importance.ads..78
6.3.2.19 mem_manager.ads..80
6.3.2.20 mem_manager.adb..81
6.3.2.21 memloc.ads ...83
6.3.2.22 modeman.ads ...84
6.3.2.23 modeman.adb ...85
6.3.2.24 mutex.ads ...86
6.3.2.25 mutex.adb ...87
6.3.2.26 nhk.ads ...88
6.3.2.27 nhk.adb ...89

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

v

6.3.2.28 packet.ads ... 90
6.3.2.29 peek_poke.ads.. 91
6.3.2.30 peek_poke.asm.. 92
6.3.2.31 rbi.ads ... 95
6.3.2.32 rbi.adb ... 97
6.3.2.33 rbi_ih.ads ...101
6.3.2.34 rbi_ih.asm ...102
6.3.2.35 reset.ads ... 104
6.3.2.36 reset.asm ... 105
6.3.2.37 ssi_driver.ads..106
6.3.2.38 ssi_driver.adb..107
6.3.2.39 ssi_ih.ads ...109
6.3.2.40 ssi_ih.asm ...110
6.3.2.41 task_report.ads.. 111
6.3.2.42 task_report.adb.. 112
6.3.2.43 taskman.ads ... 113
6.3.2.44 taskman.adb ... 114
6.3.2.45 tc_q.ads ... 117
6.3.2.46 tc_q.adb ... 119
6.3.2.47 tc_verify.ads..121
6.3.2.48 tc_verify.adb..122
6.3.2.49 tcq.ads ... 124
6.3.2.50 tcq.adb ... 125
6.3.2.51 time_man.ads.. 127
6.3.2.52 time_man.adb.. 128
6.3.2.53 tm_man.ads ...130
6.3.2.54 tm_man.adb ...131
6.3.2.55 tm_q.ads ... 133
6.3.2.56 tm_q.adb ... 134
6.3.2.57 tmpsu.ads ... 136
6.3.2.58 tmpsu.adb ... 139
6.3.2.59 tmq.ads ... 143
6.3.2.60 tmq.adb ... 144
6.3.2.61 types.ads ... 145
6.3.2.62 USERDEFS.asm.. 146

6.4 Operational Code ... 147
6.4.1 Main Program ...149

6.4.1.1 icu.ada.. 149
6.4.2 Packages... 151

6.4.2.1 bpc4_ih.ads .. 151
6.4.2.2 bcp4.ih.asm .. 152
6.4.2.3 crc.ads.. 153
6.4.2.4 crc.adb.. 154
6.4.2.5 debug.ads .. 156
6.4.2.6 debug.adb .. 157
6.4.2.7 dempsu.ads ..158
6.4.2.8 dempsu.adb ..159
6.4.2.9 detanalog.ads .. 160
6.4.2.10 detanalog.adb..164
6.4.2.11 detdigital.ads..170
6.4.2.12 detdigital.adb..173
6.4.2.13 detector.ads.. 179
6.4.2.14 dpu.ads ... 182
6.4.2.15 dpu.adb ... 184
6.4.2.16 dpu_mem_manager.ads ..190

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

vi

6.4.2.17 dpu_mem_manager.adb ..191
6.4.2.18 dpu_mnemo.ads..193
6.4.2.19 heater.ads ...194
6.4.2.20 heater.adb ...196
6.4.2.21 hk.ads ... 200
6.4.2.22 hk.adb ... 201
6.4.2.23 icb.ads ... 204
6.4.2.24 icb.adb ... 206
6.4.2.25 icb_driver.ads..208
6.4.2.26 icb_driver.adb..209
6.4.2.27 icu_mem_manager.ads ..211
6.4.2.28 icu_mem_manager.adb ..212
6.4.2.29 importance.ads..215
6.4.2.30 INTVEC.asm ...217
6.4.2.31 mechanism.ads..219
6.4.2.32 mechanism.adb..222
6.4.2.33 mem_manager.ads.. 230
6.4.2.34 mem_manager.adb.. 231
6.4.2.35 memdpu.ads ...233
6.4.2.36 memdpu.adb ...234
6.4.2.37 memloc.ads ...237
6.4.2.38 modeman.ads ... 238
6.4.2.39 modeman.adb ... 239
6.4.2.40 mutex.ads ... 241
6.4.2.41 mutex.adb ... 242
6.4.2.42 nhk.ads ... 243
6.4.2.43 nhk.adb ... 244
6.4.2.44 packet.ads ...245
6.4.2.45 peek_poke.ads..246
6.4.2.46 peek_poke.asm..247
6.4.2.47 rbi.ads ... 249
6.4.2.48 rbi.adb ... 251
6.4.2.49 rbi_ih.ads ...255
6.4.2.50 rbi_ih.asm ...256
6.4.2.51 reset.ads ... 258
6.4.2.52 reset.asm ... 259
6.4.2.53 science_fm.ads..260
6.4.2.54 science_fm.adb..262
6.4.2.55 ssi_driver.ads..265
6.4.2.56 ssi_driver.adb..266
6.4.2.57 ssi_ih.ads ...271
6.4.2.58 ssi_ih.asm ...272
6.4.2.59 ssi_in.ads ...273
6.4.2.60 ssi_in.adb ...274
6.4.2.61 ssi_out.ads ... 276
6.4.2.62 ssi_out.adb ... 277
6.4.2.63 task_report.ads.. 278
6.4.2.64 task_report.adb.. 280
6.4.2.65 taskman.ads ... 282
6.4.2.66 taskman.adb ... 283
6.4.2.67 tc_q.ads ... 289
6.4.2.68 tc_q.adb ... 291
6.4.2.69 tc_verify.ads..293
6.4.2.70 tc_verify.adb..295
6.4.2.71 tcq.ads ... 297
6.4.2.72 tcq.adb ... 298

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

vii

6.4.2.73 time_man.ads.. 300
6.4.2.74 time_man.adb.. 301
6.4.2.75 timer_a_ih.ads..303
6.4.2.76 timer_a_ih.adb..304
6.4.2.77 tm_man.ads ...308
6.4.2.78 tm_man.adb ...309
6.4.2.79 tm_q.ads ... 312
6.4.2.80 tm_q.adb ... 313
6.4.2.81 tmpsu.ads ... 316
6.4.2.82 tmpsu.adb ... 318
6.4.2.83 tmq.ads ... 321
6.4.2.84 tmq.adb ... 322
6.4.2.85 types.ads ... 324
6.4.2.86 USERDEFS.asm.. 325

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

8

1. INTRODUCTION

1.1 Purpose
This document specifies the detailed design of the software contained within the Flight Model (FM) of the
Instrument Control Unit (ICU) of the Optical Monitor (OM) instrument onboard the ESA spacecraft XMM (X-
ray, Multi-Mirror) mission.

It’s purpose is to provide an understanding of the basic design of the software, and show that it is capable of
meeting the requirements set out in the Software Requirements Document RD XMM-OM/MSSL/SP/0024.01.

The intended readership is includes :-

1. The technical development team for this software, in order to aid clarification of the software structure and
show top level compliance with the requirements.

2. Other OM team members, including PI, project manager, system engineers, software management, PA, test
managers, EGSE & operations personnel, COI’s, and others to whom requirements, schedule, interfaces,
and quali ty are relevant.

3. ESA, as they wil l assume responsibil ity for operating and supporting the software from about 6 months
after launch up to the end of the mission (perhaps 10 years).

4. Anyone else who is interested, including other XMM experimenters & users.

1.2 Scope
The scope of this document is limited to a detailed description of the ICU onboard software associated with the
OM instrument. The ICU is primarily concerned with providing overall system control, spacecraft interface data
handling, and instrument monitoring.

It does not include OM onboard DPU software. The DPU software is primarily responsible for the scientific data
collection, processing and forwarding to the ICU.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

9

1.3 Definitions, Acronyms and Abbreviations

CCD Charge Coupled Device (detector)
CONFIG CONFIGuration
DBI Digital Bus Interface (between OM & spacecraft)
DBU Digital Bus Unit
DDD Detailed Design Document
DEM Digital Electronics Module
DMA Direct Memory Access
DPU Digital Processing Unit
DSP Digital Signal Processor
EGSE Electrical Ground Support Equipment
EOB Electro-Optical Breadboard (development phase)
EPIC European Photon Imaging Camera
ESA European Space Agency
FIFO First-In First-Out (queue)
FOV Field Of View
HK Housekeeping (data/information)
ICB Instrument Control Bus
ICU Instrument Control Unit
I/O Input-Output
MACSbus Modular Attitude Control System bus
NHK Non-periodic Housekeeping
OBDH On-Board Data Handling (system)
OM Optical Monitor (instrument)
PSU Power Supply Unit
RAM Random Access Memory
RBI Remote Bus Interface (from OM to spacecraft)
RGS Reflection Grating Spectrometer
ROM Read Only Memory
S/C Spacecraft
S/W Software
SSI Serial Synchronous Interface
TBA To Be Added
TBC To Be Confirmed
TBD To Be Defined
TC Telecommand queue
TM Telescope Module
TM TeleMetry queue
TMPSU Telescope Module Power Supply Unit
UV Ultra-Violet
XMM X-ray Multi-Mirror Instrument

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

10

1.4 References
Ref - 1. MSSL XMM-OM User Requirements Specification, XMM-OM/MSSL/SP/0030.01
Ref - 2. MSSL XMM-OM On-Board Software Requirements, XMM-OM/MSSL/SP/0024.01
Ref - 3. ESA XMM EID Part-A, RS-PX-0016
Ref - 4. ESA XMM EID Part-B, RS-PX-0018
Ref - 5. ESA XMM EID Part-C, RS-PX-0024
Ref - 6. OBDH System RS-PX-0015
Ref - 7. Packet Structure Definition RS-PX-0032
Ref - 8. XMM-OM ICU S/W Architectural Design XMM-OM/MSSL/SP/0059
Ref - 9. XMM-OM ADA Coding Standard XMM-OM/MSSL/SP/0008
Ref - 10. XMM-OM ICU EGSE and S/W Development. Environment XMM-OM/MSSL/SP/0025
Ref - 11. XMM-OM User Manual (EM) XMM-OM/MSSL/SP/0005

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

11

2. ICU Software

2.1 Overview
The overall instrument function is provided by the instrument controller. Its main software functions are as
follows:-

• Configuring the instrument.
• Monitoring for breakdown/failure conditions (and safing if required).
• Controlling and monitoring status of, the detector, the telescope power supply and the DPU
• Incorporating new or modified code modules for itself or the DPU
• Collecting and telemetering. instrument housekeeping and engineering packets.
• Accepting, reformatting into packets and telemetering science data from the DPU
• Interfacing with the OBDH for data and commands.
• Monitoring and controlling the thermal environment.

The ICU software consists of 3 programs :-

BOOTSTRAP This resides in ROM and is copied into RAM for execution. It is responsible for bringing up
the ICU in a known safe state after turn on or spacecraft initiated reset, from either a cold or
warm start. It also copies the basic state software from ROM to RAM.

BASIC This resides in ROM and is copied into RAM for execution. Basic will be responsible for loading
the uplinked ICU operational mode code into RAM, housekeeping and basic thermal control.

OPERATIONAL This is uplinked and will reside in RAM. Operational provides the full functionality of the ICU. It
also allows up-linking of the DPU DPUOS code to provide full OM

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

12

2.2 Main Software Components for Basic and Operational.
The diagrams overleaf illustrate the control and data flows between the main software components for both
basic and operational code. A brief explanation of each component is also given. These two modes share many
components. Their similarities and differences are summarised below, together with the type of telecommands
(and Task Identifier - TID - if appropriate) they service.

Component Type

of TC
TID
(HEX)

Function in Basic Function in Operational

DEMPSU 5 80 • Resets DEMPSU Latchup
• Turns-on DPU if Off

• Resets DEMPSU Latchup
• Turns-on DPU if Off

DETECTOR 5 10 ⇒ 18 ABSENT • Control and monitor detector.
DPU
CONTROLLER

5 A4 ⇒ A6 ABSENT • Uses SSI to communicate with the DPU.
• Configure and control DPU modes.
• Control Science and Engineering data

flow from DPU and send to TM QUEUE.
• Monitors DPU heartbeats
• Turns off DPU

HK 5 D0 • Collect and pass HK packets
to the TM QUEUE that
monitor only the TMPSU and
DPU heartbeats.

• Collect and pass HK packets to the TM
QUEUE for the whole OM.

ICB 5 41 • Controls dataflow to/from the
instrument subsystems using
the ICB interface

• Controls dataflow to/from the instrument
subsystems using the ICB interface.

MECHANISMS 5 60, 65 ABSENT • Control & monitor mechanisms (filter
wheels, dichroic).

MEMORY
MANAGER

6 - • Supports memory uplink and
downlink and memory
checksum calculations for the
ICU only

• Supports memory uplink and downlink
for the DPU only.

MODE
MANAGER

5 - • Implements mode change
request to Safe

• Implements mode change requests from
spacecraft

RBI 5,10 50 • Provides routines to support
the RBI chip

• Handle appropriate interrupts
to the TC and TM queues and
time.

• Supply Watchdog Facili ty

• Provides routines to support the RBI chip
• Handle appropriate interrupts to the TC

and TM queues and time.
• Supply Watchdog Facili ty

SSI see DPU - • Monitors DPU heartbeats and
sends the count and DPU
status to the HK.

• Passes control and data info to the DPU
using the SSI interface.

• Obtains info from the DPU using the SSI
interface.

Continued on next page…

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

13

Component Type

of TC
TID
(HEX)

Function in Basic Function in Operational

TASK
MANAGER

5 • Implements the task
management packet requests

• Implements the task
management packet requests

TC PROCESS All • Obtains telecommand
packets from the
telecommand queue.

• Verifies, acknowledges and
routes telecommand packets
- the ‘main’ program

• Obtains telecommand packets
from the telecommand queue.

• Verifies, acknowledges and
routes telecommand packets -
the ‘main’ program

THERMAL 5 66,67 • Enables or disables Main
and Forward Heaters
simultaneously.

• Provide full thermal control

TIME
MANAGER

10 - • Implements the Time
management packet requests
(verification and
synchronisation).

• Provide time stamps for
packets.

• Implements the Time
management packet requests
(verification and
synchronisation).

• Provide time stamps for
packets.

TEMEMETRY
MANAGER

9 - • Enables/Disables packets
defined by their SID’S

• Enables/Disables packets
defined by their SID’S

TM QUEUE Supplies
TM

- • Provide ability to control
and queue telemetry packets
for downlink.

• Provide ability to control and
queue telemetry packets for
downlink.

• Initiates Safing of HV if TM
queue remains full for > 5 mins

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

This copy printed at 11:10 AM on 12-May-00

14

2.3 Principle Memory Areas

Code Address
(hex)

Description

Start End
0 3FF Bootstrap
400 3FFF Basic Mode
3800 FFFF Operational Mode

Data Address
(hex)

Description

Start End
2C7 2D4 Bootstrap Deduced ICU Status
2F1 313 Bootstrap Filter Wheel Acceleration Table
3F2 3FD Memory Loading Work Area
400 403 RBI Communications Area (CCA)
404 5F3 TC Queue
5F4 9FF TM Queue
A00 A0A RBI Code Work Area
A0B A0B SSI Code Work Area
FC0 FCF DEBUG Area
1000 1B55 Basic Mode Operands
1C00 4A10 Operational Mode Operands
23A4 23DB Focus Heater Settings as function of Filter Wheel
E900 FD00 Main Program Stack
FD01 FFFF Interrupt Stack

IC
U

 F
M

 S
of

tw
ar

e
D

et
ai

le
d

D
es

ig
n

X

M
M

 O
M

/M
SS

L/
SP

/0
20

5.
3

15

TC
 P

R
O

C
E

S
S

X
M

M
-O

M
 I

C
U

 B
A

S
IC

 S
/W

 O
V

E
R

V
IE

W

TM
 Q

U
E

U
E

IC
B

S
S

I

D
E

M
P

S
U

H
K

TA
S

K
M

A
N

A
G

E
R

TM
M

A
N

A
G

E
R

M
E

M
O

R
Y

M
A

N
A

G
E

R

TI
M

E
M

A
N

A
G

E
R

C
on

tr
ol

le
rs

 -
 D

E
TE

C
TO

R
 M

E
C

H
A

N
IS

M
S

 T
H

E
R

M
A

L
TM

P
S

U

S
ci

en
ce

/E
ng

.
H

K
N

H
K

/
Ve

rif
ic

at
io

n
O

th
er

 D
at

a
C

om
m

an
d/

C
on

tr
ol

C
on

tr
ol

 &
D

at
a

Ti
m

in
g

In
fo

R
B

I

M
O

D
E

M
A

N
A

G
E

R

IC
U

 F
M

 S
of

tw
ar

e
D

et
ai

le
d

D
es

ig
n

X

M
M

 O
M

/M
SS

L/
SP

/0
20

5.
3

16

TC
 P

R
O

C
E

S
S

X
M

M
-O

M
 I

C
U

 O
P

E
R

A
TI

O
N

A
L

S
/W

 O
V

E
R

V
IE

W

TM
 Q

U
E

U
E

D
P

U
C

O
N

TR
O

LL
E

R

IC
B

S
S

I

D
E

M
P

S
U

H
K

TA
S

K
M

A
N

A
G

E
R

TM
M

A
N

A
G

E
R

M
E

M
O

R
Y

M
A

N
A

G
E

R

TI
M

E
M

A
N

A
G

E
R

C
on

tr
ol

le
rs

 -
 D

E
TE

C
TO

R
 M

E
C

H
A

N
IS

M
S

 T
H

E
R

M
A

L
TM

P
S

U

S
ci

en
ce

/E
ng

.
H

K
N

H
K

/
V

er
ifi

ca
tio

n
O

th
er

 D
at

a
C

om
m

an
d/

C
on

tr
ol

C
on

tr
ol

 &
D

at
a

Ti
m

in
g

In
fo

R
B

I

M
O

D
E

M
A

N
A

G
E

R

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

17

2.4 Task Priorities
ADA tasks are allocated to actions that are executed in parallel with other actions. In order to ensure that the
behaviour of tasks is a deterministic as possible, their priorities (defined in the package IMPORTANCE) are allocated
in bands as follows:

Task Type Pr ior ity Band
H/W Simulators (for debugging) 191 -> 200
RBI Watchdog reset 190
S/W Watchdogs 171 -> 189
"Semaphore" Tasks 131 -> 140
"Monitor Tasks" (e.g. DPU, TC) 111 -> 130
"Working Tasks" e.g. HK, Blue 011 -> 110
"Idle" Tasks (default) 010

The tasks, and the packages that contain them, are as follows:

Task Package Basic Operational
HV_PROCESS2 DETANALOG - Yes
LOAD_CENTROID_TABLE_TASK3 DETDIGITAL - Yes
LOAD_WINDOW_TABLE_TASK_TYPE4 DETDIGITAL - Yes
HEARTBEAT_WATCHDOG5 DPU - Yes
DATA_MANAGER6 DPU - Yes
CONTROL7 HEATER - Yes
PROCESS8 HK Yes Yes
GUARDED1 ICB Yes -
TCPROC9 ICU (the main program) Yes Yes
MEMORY_DUMP10 ICU_MEM_MANAGER Yes Yes
MECH11 MECHANISM - Yes
SAFING_TASK12 MODEMAN - Yes
SEMAPHORE13 MUTEX Yes Yes
WATCHDOG14 RBI Yes Yes
BCP415 TIME_MAN Yes Yes
GUARDED1 TMQ Yes -

Notes.
1. In operational code, the function of this task (to perform controlled access to a resource) is provided by the

SEMAPHORE task in package MUTEX..
2. Ramps the HV voltages up and down.
3. Loads the Blue Electronics centroid look-up table.
4. Loads the Blue Electronics window table.
5. Monitors the DPU heartbeats and issues alerts in there absence.
6. Monitors and processes all output from the DPU.
7. Monitors and controls the telescope module heaters.
8. Acquires Housekeeping.
9. Monitors the Telecommand stream.
10. Performs memory load and dumps.
11. Controls the mechanisms.
12. “Safe”s the instrument (HV down, filter wheel to blocked).
13. Provides emulation of a mutex type semaphore.
14. Controls the RBI watchdog facilit y.
15. Processes BCP4 interrupts.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

18

2.5 Interrupts
The interrupts for the ICU is as follows:-

Number Description

0 Power Down (cannot be masked or disabled)1
1 Machine Error (cannot be disabled)
2 Spare
3 Floating Point Overflow
4 Fixed Point Overflow
5 Executive Call (cannot be masked or disabled)
6 Floating Point Underflow
7 Timer A4
8 BCP42
9 Timer B3
10 SSI2
11 Spare
12 Input/Output Level 1
13 Instruction to User/RBI/LOSSN2
14 Input/Output Level 2
15 Spare

Notes.

1. Interrupt Number 0 has the highest priority. Priority decreases with increasing interrupt number.
2. All Interrupts are as per the 1750 standard except 8, 10 and 13. These ‘spare’ interrupts that have been allocated as

above for the ICU.
3. Used by the Tartan Kernel to derive times for e.g. the delay facilit y – however, see section entitled “ ICU Delay

Adjustment” .
4. Used by the ICU code to produce a series of pulses to control the speed of the mechanisms (filter wheel and

dichroic).

(The following is a summary of section 8.5.5.4 of the Tartan Compilation System Manual). There are five configurable
interrupt masks that control the behaviour of the runtimes with respect to interrupts. They are defined in the linker
control file tlink17.lcf. The purpose of each mask is as follows:

ART_MASK Used when executive space runtime code is executing
ARTELAB_MASK Used when executive space main program is being elaborated
ARTTASK_MASK Used when executive main program or user tasks are executing
PREEMPTER_MASK Blocks all i nterrupts that might cause task pre-emption
CONNECT_MASK Determines if a task entry may be directly connected to a particular hardware interrupt

For both basic and operational code, the interrupts are enabled as follows:

MASK Value Interrupt (1 = ENABLED)
 (hex) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ART_MASK D5E4 1 1 - 1 - 1 - 1 1 1 1 - - 1 - -
ARTELAB_MASK DD40 1 1 - 1 1 1 - 1 - 1 - - - - - -
ARTTASK_MASK DDE4 1 1 - 1 1 1 - 1 1 1 1 - - - - -
PREEMPTOR_MASK DC00 1 1 - 1 1 1 - - - - - - - - - -
CONNECT_MASK 0100 - - - - - - - 1 - - - - - - - -

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

19

2.6 ADA Exception Handling and Debugging

2.6.1 Overview
The package DEBUG provides a number of faciliti es which can be helpful in the event of an unexpected ADA
exception or ‘hang’ of the code. In addition, a series of fixed memory locations (defined in package MEMLOC) are
provided in which debugging information may be written. A combination of the two will usually indicate the problem
area of the code.

2.6.2 Exception Handling
In the event of an ADA exception
1) a code of the form ‘Offset Code’ + ‘Exception Type’ is written to the reserved location FC0 (hex) – see next

section. This is done using the procedure EXCEPTION_REPORT in package DEBUG. The ‘Offset Code’
indicates the package in which the exception occurred. The ‘Exception Type’ indicates which ADA exception
occurred

2) A non-periodic engineering exception packet is issued containing two parameters. The first parameter contains an
‘Exception Code’ indicating which subsystem issued the exception. The second parameter is of the form ‘Offset
Code’ + ‘Code Region’ . The ‘Offset Code’ indicates which package was executing just prior to the exception.
The ‘Code Region’ indicates within which region of package code the exception occurred. This second parameter
is contained within reserved location FIRST_PROGRESS (see next section) of package DEBUG. Its contents are
set up using calls to procedure PROGRESS in package DEBUG.

The Offset Codes (defined in package DEBUG) are as follows:

Package Offset Codes
Name Basic Operational
ICU 1000 2000
CRC 1100 2100
DEMPSU 1200 2200
HK 1300 2300
MODEMAN 1400 2400
NHK 1500 2500
RBI 1600 2600
TASK_REPORT 1700 2700
TASKMAN 1800 2800
TC_Q 1900 2900
TC_VERIFY 1A00 2A00
TCQ 1B00 2B00
ICU_MEM_MANAGER 1C00 2C00
ICB 1CB0 2CB0
ICB_DRIVER 1CBD 2CBD
TM_Q 1D00 2D00
TMPSU 1E00 2E00
TMQ 1F00 2F00
MECHANISM - 4000
DETDIGITAL - 4100
TIME_MAN 3200 4200
MUTEX 3400 4400
HEATER - 4500
MEM_MANAGER 3C00 4C00
SSI_DRIVER 5500 6500
SSI_IN 5600 6600
SSI_OUT - 6700
SCIENCE_FM - 6800
DPU - e000
DPU_MEM_MANAGER - e100
DETANALOG - E300
MEMDPU - E400
TM_MAN 3500 E500

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

20

The exception types are as follows:

ADA Exception Exception Type
Constraint Error 0
Program Error 1
Storage Error 2
Tasking Error 3
Other 4

The exception codes are detailed in the telecommand and telemetry section of the User Manual (section 3.4.2 of
XMM-OM/MSSL/ML/0010).

2.6.3 Reserved Locations
The package MEMLOC defines the following reserved locations for debugging purposes.

Location Description Notes Address
FIRST_PROGRESS address See exception handling above 16#FC1#;
LAST_PROGRESS address See section on debug.adb for description 16#FC3#;
FIRST_EXCEPTION address See exception handling above 16#FC0#;
LAST_EXCEPTION address See section on debug.adb for description 16#FC2#;
SSI_ERROR_COUNT address SSI Error Counter 16#FC4#;
SSI_IN_BUF_PTR address Pointer to next free location in SSI input buffer 16#FC5#;
SSI_HEARTBEAT_COUNT address SSI Heartbeat Counter 16#FC5#;
SSI_INT_COUNT address SSI Interrupt Counter 16#FC6#;
BCP4_INT_COUNTER address BCP4 Interrupt Counter 16#FC7#;
RBI_INT_COUNTER address RBI Interrupt Counter 16#FC8#;
PROGRESS_SPECIAL address 16#FC9#;
PROGRESS_SPECIAL2 address 16#FCA#;
PROGRESS_SPECIAL3 address Used as required to hold 16#FCB#;
PROGRESS_SPECIAL4 address additional debug information 16#FCC#;
PROGRESS_SPECIAL5 address 16#FCD#;
PROGRESS_SPECIAL6 address 16#FCE#;
PROGRESS_SPECIAL7 address 16#FCF#;

The following are reserved areas for counters for use by the named task (see section 2.4).

Location Description Address
LOAD_CENTROID_TABLE_TASK_COUNTER address 16#FD0#;
LOAD_WINDOW_TABLE_TASK_COUNTER address 16#FD1#;
HEARTBEAT_WATCHDOG_TASK_COUNTER address 16#FD2#;
DATA_MANAGER_TASK_COUNTER address 16#FD3#;
DPU_MEMORY_DUMP_TASK_COUNTER address 16#FD4#;
CONTROL_TASK_COUNTER address 16#FD5#;
PROCESS_TASK_COUNTER address 16#FD6#;
TCQ_TASK_COUNTER address 16#FD7#;
ICU_MEMORY_DUMP_TASK_COUNTER address 16#FD8#;
MECH_TASK_COUNTER address 16#FD9#;
ICU_TASK_COUNTER address 16#FDA#;
WATCHDOG_TASK_COUNTER address 16#FDB#;
PROT_TASK_COUNTER address 16#FDC#;
BCP4_TASK_COUNTER address 16#FDD#;
TC_Q_TASK_COUNTER address 16#FDE#;
TIMER_A_TASK_COUNTER address 16#FDF#;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

21

The following are reserved as code location indicators for the named task (see section 2.4).

Location Description Address
LOAD_CENTROID_TABLE_TASK_PROGRESS address 16#FE0#;
LOAD_WINDOW_TABLE_TASK_PROGRESS address 16#FE1#;
HEARTBEAT_WATCHDOG_TASK_PROGRESS address 16#FE2#;
DATA_MANAGER_TASK_PROGRESS address 16#FE3#;
DPU_MEMORY_DUMP_TASK_PROGRESS address 16#FE4#;
CONTROL_TASK_PROGRESS address 16#FE5#;
PROCESS_TASK_PROGRESS address 16#FE6#;
TCQ_TASK_PROGRESS address 16#FE7#;
ICU_MEMORY_DUMP_TASK_PROGRESS address 16#FE8#;
MECH_TASK_PROGRESS address 16#FE9#;
ICU_TASK_PROGRESS address 16#FEA#;
WATCHDOG_TASK_PROGRESS address 16#FEB#;
PROT_TASK_PROGRESS address 16#FEC#;
BCP4_TASK_PROGRESS address 16#FED#;
TC_Q_TASK_PROGRESS address 16#FEE#;
TIMER_A_TASK_PROGRESS address 16#FEF#;

2.7 ICU Delay Adjustment :
The standard 31750 processor specification requires a timer B clock of 100 khz. However, for the RGS and OM (same
processors design), a 62.5 khz clock is used. As this timer is used to control any requested delays, this will produce an
error factor of 0.625 in the delay statements. For example a delay of 1 second will produce an actual delay of (1/0.625
second). In the majority of cases, this does not matter as the delay is used for tasks de-scheduling. However in other
cases (such as the HK timer - default to 10 seconds), a correction factor of 0.625 is applied to get an accurate delay. For
example a more accurate 10 second delay can be achieved as follows :

TIME_CORRECTION = 0.625

delay (10.0 * TIME_CORRECTION).

However, for the OM code, the Tartan run time library (madart.tlib) was modified so that the above correction is
automatically applied by modifying the handling of Timer B interrupts.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

22

3. Design Method
The design methodology is “object-based” , i.e. most modules in the system denote an object identified in the system
(e.g. ‘ real’ objects such as the detector, or ‘soft’ objects such as an on-board telemetry manager). These objects were
then implemented in the ADA language.

By object, we mean an entity that has
1. a state (i.e. a value or values)
2. actions it suffers or can apply to other objects

It is recognised that it is not possible to have a perfect knowledge of a software problem at the start, i.e. the growth of
understanding is an iterative one. It is therefore assumed that previously unrecognised problems will be found as the
project proceeds. However, since the design corresponds to the ‘ real world’ , it is hoped that the resultant changes will
not radically affect the design. Instead, they will only impact those modules associated with the affected objects. This is
also a good system in situations where important sub-systems require early development, and where some elements are
not well known early on.

Therefore, the steps used are as follows:
• Identify the objects and their attributes.
• Identify the operations that affect each object and the operations that each object must initiate.
• Establish the visibilit y of each object in relation to other objects.
• Establish the interface of each object.
• Implement each object.

There are also a number of modules which are of a ‘ library’ nature - i.e. they provide constants, definitions and
routines of a general nature with no specific object in mind.

The design aim is that modules are implemented as ADA packages. However, when speed of execution is a
requirement, the language of choice is 1750 Assembler.

We have also been guided by ESA PSS-05 software engineering standards, though some differences arise because of
the small i n-house software team (2-3 people) involved in this project and the prioritised nature of the work required.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

23

4. ADA Overview

4.1 Basic Definitions
A full description of the ADA language is beyond the scope of this document, but the following summary of some
ADA features may be useful in understanding the descriptions in the following sections.

Program Units - An ADA program is composed of one or more program units. It is standard OM practice to compile
these separately. Program Units consist of Subprograms, Task, Packages and Generic Units. All ADA program units
have a similar two part structure, consisting of a Specification and a Body. These are also compiled separately

Specifications identify the information visible to a client (i.e. the caller) of that program unit.

Bodies contain the implementation details and will be hidden from the client.

Subprograms are either Procedures or Functions and express a sequential action. A function is the same as a
procedure, except that its primary purpose is to return a calculated value. (A Main Program is a special case of a
Subprogram that is called directly when the code starts running. It can also be regarded as a separately running task)

Tasks defines an action that is executed in parallel with other tasks.

Packages are a collection of computational resources, encapsulating data types or instances thereof, subprograms,
tasks or other packages.

Generic Units are templates for subprograms and packages and serve as the primary mechanism for building reusable
software components.

The following table summarises the above characteristics and, additionally, lists the applications for each.

Program
Unit

Characteristic Applications

Subprogram Sequential Action Main Program Unit
 Definition of Functional Control
 Definition of Type Operations
Package Collection of Resources Named Collection of Declarations
 Groups of Related Program Units
 Abstract Data Type
 Abstract State Machines
 Objects
Task Parallel Action Concurrent Actions
 Routing Messages
 Controlling Resources
 Interrupts
Generic Unit Template Reusable S/W Components

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

24

4.2 Task Scheduling
At a given time during the execution of an ADA program, there are a set of tasks that are eligible for execution. The
process of choosing a subset of tasks to actually run is called scheduling. The code uses the Tartan implementation of
this process.

Scheduling has two parts:

1. Scheduler
2. Dispatcher

The scheduler is responsible for:

• adding a task to the set of executable tasks
• removing a task from the set of executable tasks
• selecting a task from the set to be the next task executed

The scheduler is implemented as a strictly priority ordered queue. The task with the highest priority is selected for
execution. New tasks are inserted after tasks of equal priority within priority levels.

When the dispatcher is invoked, it causes the currently executing task to be suspended and replaced by the next task
selected by the scheduler. If the current task is also the task selected to be the next by the scheduler, no change occurs.

The dispatcher is invoked whenever an ADA tasking or delay operation causes execution of the current task to be
blocked, or when a high priority task becomes ready (for instance, by the expiration of a delay) and pre-empts a
task with lower priority. This method of pre-emptive scheduling minimises the amount of time a high-priority task
must wait for execution after a delay operation.

4.3 Identifier Naming Conventions
In common with standard ADA coding practice, lower case letters indicate reserved words, UPPER CASE letters
indicate identifiers.

4.4 Programming Standards
Ref - 9 defines the ADA coding standards used in the project.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

25

5. Components

5.1 Overview
The components are grouped into the following categories:

1. Main Program.
2. Specifications and bodies of Named ‘objects’ .
3. Specifications and bodies of Libraries of Related Routines that do not form an object (e.g. a maths library).
4. Specifications of General Definitions e.g. Types and Constants.
5. Miscellaneous

5.2 File Naming Conventions

filename.ada - a file containing a ' main' program
filename.ads - a file containing an ADA specification
filename.adb - a file containing an ADA body
filename.adp - a file containing both ADA specification and body
filename.asm - a file containing MSSL written 31750 assembler code
filename.ASM - a file containing Tartan supplied, MSSL modified, assembler code
filename.ad[sb] - refers to both filename.ads and filename.adb

The filename for a specification (.ads) is the same as the corresponding package body (.adb) name.

filename is always the name of the package specification and/or body or main program included in the file.

IC
U

 F
M

 S
of

tw
ar

e
D

et
ai

le
d

D
es

ig
n

X

M
M

 O
M

/M
S

SL
/S

P/
02

05
.3

26

5.
3

C
om

po
n

en
t S

um
m

ar
y

5.
3.

1
O

bj
ec

ts

Th
e

fo
llo

w
in

g
ta

bl
e

in
di

ca
te

s h
ow

 th
e

pr
in

ci
pa

l s
/w

 o
bj

ec
ts

, a
s i

nd
ic

at
ed

 o
n

th
e

ov
er

vi
ew

 d
ia

gr
am

s g
iv

en
 e

ar
lie

r,
‘m

ap
’ t

o
fil

es
. T

hi
s t

ab
le

 is
 va

lid
 fo

r b
ot

h
ba

si
c

an
d

op
er

at
io

na
l

m
od

e
co

de
 p

ro
vi

de
d,

 o
f c

ou
rs

e,
 th

at
 th

e
na

m
ed

 o
bj

ec
t i

s p
re

se
nt

.
 O

bj
ec

t
C

on
si

st
 o

f F
ile

na
m

e(
s)

D

es
cr

ip
tio

n
D

EM
PS

U

d
e
m
p
s
u
.
a
d
[
s
b
]

R
ou

tin
es

 to
 c

on
tro

l t
he

 D
EM

PS
U

d
e
t
a
n
a
l
o
g
.
a
d
[
s
b
]

R
ou

tin
es

 to
 c

on
tro

l a
nd

 m
on

ito
r t

he
 an

al
og

 fu
nc

tio
ns

 o
f t

he
 d

et
ec

to
r e

le
ctr

on
ic

s,
 c

an
 is

su
e

sa
fin

g
co

m
m

an
d.

D

ET
EC

TO
R

d
e
t
d
i
g
i
t
a
l
.
a
d
s

R
ou

tin
es

 to
 c

on
tro

l a
nd

 m
on

ito
r t

he
 d

ig
ita

l f
un

ct
io

ns
 o

f t
he

 d
et

ec
to

r e
le

ctr
on

ic
s

d
e
t
e
c
t
o
r
.
a
d
s

Pr
ov

id
es

 si
ng

le
 in

te
rf

ac
e f

or
 a

ll
de

te
cto

r r
ou

tin
es

D

PU

d
p
u
.
a
d
[
s
b
]

Se
nd

s c
om

m
an

ds
 an

d
re

ce
iv

es
 d

at
a

fr
om

 th
e

D
PU

.
C

O
N

TR
O

LL
ER

d
p
u
_
m
n
e
m
o
.
a
d
s

Pr
ov

id
es

 D
PU

 M
ne

m
on

ic
 d

ef
in

iti
on

s
H

K

h
k
.
a
d
[
s
b
]

O
bt

ai
ns

 H
K

 it
em

s,
 c

on
st

ru
ct

s t
he

 H
K

 p
ac

ke
t a

nd
 se

nd
s r

es
ul

t t
o

th
e

TM
 q

ue
ue

.
IC

B

i
c
b
.
a
d
[
s
b
]

C
on

tro
ls

 a
cc

es
s t

o
th

e
IC

B
 in

te
rf

ac
e

co
de

 in
 i
c
b
_
d
r
i
v
e
r
.

i
c
b
_
d
r
i
v
e
r
.
a
d
[
s
b
]

Pr
ov

id
es

 th
e

ro
ut

in
es

 to
 p

er
fo

rm
 I/

O
 o

n
th

e
IC

B
 in

te
rf

ac
e

M
EC

H
A

N
IS

M
S

m
e
c
h
a
n
i
s
m
.
a
d
[
s
b
]

C
od

e
to

 c
on

tro
l t

he
 fi

lte
r w

he
el

an
d

di
ch

ro
ic

, c
an

 is
su

e
sa

fin
g

co
m

m
an

d,
 a

nd
 re

qu
es

t h
ea

te
r s

et
tin

gs
.

t
i
m
e
r
_
a
_
i
h
.
a
d
[
s
b
]

R
ou

tin
es

 to
 h

an
dl

e
tim

er
 A

 in
te

rr
up

ts
.

d
p
u
_
m
e
m
_
m
a
n
a
g
e
r
.
a
d
[
s
b
]

R
ou

tin
es

 to
 p

er
fo

rm
 D

PU
 m

em
or

y
lo

ad
 a

nd
 d

um
p

M
EM

O
R

Y

i
c
u
_
m
e
m
_
m
a
n
a
g
e
r
.
a
d
[
s
b
]

R
ou

tin
es

 to
 p

er
fo

rm
 IC

U
 m

em
or

y
lo

ad
 a

nd
 d

um
p

M
A

N
A

G
ER

m
e
m
_
m
a
n
a
g
e
r
.
a
d
[
s
b
]

In
te

rp
re

ts
 m

em
or

y
m

an
ag

em
en

t p
ac

ke
t a

nd
 c

all
 a

pp
ro

pr
ia

te
 ro

ut
in

e

p
e
e
k
_
p
o
k
e
.
a
d
s

Ex
am

in
es

 ad
dr

es
se

s i
n

va
rio

us
 m

em
or

y
m

od
es

.

p
e
e
k
_
p
o
k
e
.
a
s
m

m
e
m
d
p
u
.
a
d
[
s
b
]

In
te

rc
ep

ts
 D

PU
 m

em
or

y
du

m
ps

 (p
ar

t o
f d
p
u
_
m
e
m
_
m
a
n
a
g
e
r

),
co

ns
tru

ct
s a

pp
ro

pr
ia

te
 p

ac
ke

t a
nd

 p
la

ce
s i

t i
n

TM
 q

ue
ue

b
c
p
4
_
i
h
.
a
d
s

R
ou

tin
es

 to
 h

an
dl

e
B

C
P4

 in
te

rr
up

t

b
c
p
4
_
i
h
.
a
s
m

R

B
I

r
b
i
.
a
d
[
s
b
]

R
ou

tin
es

 to
 p

er
fo

rm
 n

on
-in

te
rr

up
t d

riv
en

 R
B

I f
un

ct
io

ns

r
b
i
_
i
h
.
a
d
s

R
ou

tin
e

to
 h

an
dl

e
R

B
I i

nt
er

ru
pt

r
b
i
_
i
h
.
a
s
m

s
s
i
_
d
r
i
v
e
r
.
a
d
[
s
b
]

R
ou

tin
es

 to
 h

an
dl

e
no

n
in

te
rr

up
t p

ar
t o

f S
SI

 I
/O

s
s
i
_
i
h
.
a
d
s

R
ou

tin
es

 to
 h

an
dl

e
S

SI
 in

te
rr

up
ts

S

SI

s
s
i
_
i
h
.
a
s
m

s
s
i
_
i
n
.
a
d
[
s
b
]

C
on

st
ru

ct
s D

PU
 d

at
a

bl
oc

k
se

nt
 o

ve
r S

SI

s
s
i
_
o
u
t
.
a
d
[
s
b
]

Se
nd

s a
 D

PU
 c

om
m

an
d

ov
er

 th
e

S
SI

IC
U

 F
M

 S
of

tw
ar

e
D

et
ai

le
d

D
es

ig
n

X

M
M

 O
M

/M
SS

L
/S

P
/0

20
5.

3

27

O
bj

ec
ts

 (
co

nt
in

ue
d)

 O
bj

ec
t

C
o
n
s
i
s
t

o
f

F
i
l
e
n
a
m
e
(
s
)

D
es

cr
ip

ti
on

m
o
d
e
m
a
n
.
a
d
[
s
b
]

P
er

fo
rm

s
M

od
e

sw
itc

hi
ng

T

A
SK

t
a
s
k
m
a
n
.
a
d
[
s
b
]

In
te

rp
re

ts
 T

as
k

M
an

ag
em

en
t p

ac
ke

ts
 a

nd
 c

al
l a

pp
ro

pr
ia

te
 r

ou
tin

e
M

A
N

A
G

E
R

r
e
s
e
t
.
a
d
s

C
al

le
d

by
 m
o
d
e
m
a
n

 w
he

n
sw

itc
hi

ng
 f

ro
m

 b
as

ic
 to

 o
pe

ra
tio

na
l.

r
e
s
e
t
.
a
s
m

i
c
u
.
a
d
a

T
he

 m
ai

n
pr

og
ra

m
. T

ak
es

 v
al

id
 T

C
 p

ac
ke

ts
 a

nd
 d

is
tr

ib
ut

es
 th

em
 to

 th
e

ap
pr

op
ri

at
e

P
ac

ke
t M

an
ag

er

T
C

 P
R

O
C

E
SS

t
c
_
q
.
a
d
[
s
b
]

R
ou

tin
es

 to
 m

an
ip

ul
at

e
T

C
 p

ac
ke

ts
 in

 th
e

qu
eu

e

t
c
_
v
e
r
i
f
y
.
a
d
[
s
b
]

R
ou

tin
es

 to
 v

al
id

at
es

 T
C

 p
ac

ke
ts

t
c
q
.
a
d
[
s
b
]

C
on

tr
ol

s
ac

ce
ss

 to
 r

ou
tin

es
 to

 e
xt

ra
ct

 p
ac

ke
ts

 f
ro

m
 T

C
 q

ue
ue

T

H
E

R
M

A
L

h
e
a
t
e
r
.
a
d
[
s
b
]

R
ou

tin
es

 to
 c

on
tr

ol
 h

ea
te

rs

T
IM

E
 M

A
N

A
G

E
R

t
i
m
e
_
m
a
n
.
a
d
[
s
b
]

In
te

rp
re

ts
 ti

m
e

m
an

ag
em

en
t p

ac
ke

ts
 a

nd
 c

al
l a

pp
ro

pr
ia

te
 r

ou
tin

es

t
m
_
q
.
a
d
[
s
b
]

R
ou

tin
e

to
 m

an
ip

ul
at

e
th

e
T

M
 p

ac
ke

ts
, i

ss
ue

s
sa

fi
ng

 if
 T

M
 q

ue
ue

 f
ul

l f
or

 >
 1

 m
in

.
T

M

t
m
q
.
a
d
[
s
b
]

C
on

tr
ol

s
ac

ce
ss

 to
 r

ou
tin

es
 to

 m
an

ip
ul

at
e

T
M

 p
ac

ke
ts

Q

U
E

U
E

n
h
k
.
a
d
[
s
b
]

C
on

st
ru

ct
s

no
n

pe
ri

od
ic

 H
K

 p
ac

ke
ts

 a
nd

 p
la

ce
 th

em
 in

 T
M

 q
ue

ue

s
c
i
e
n
c
e
_
f
m
.
a
d
[
s
b
]

C
on

st
ru

ct
s

Sc
ie

nc
e

P
ac

ke
ts

 a
nd

 p
la

ce
s

th
em

 in
 th

e
T

M
 q

ue
ue

t
a
s
k
_
r
e
p
o
r
t
.
a
d
[
s
b
]

C
on

st
ru

ct
s

ta
sk

 r
ep

or
t p

ac
ke

ts
 a

n
pl

ac
es

 th
em

 in
 th

e
T

M
 q

ue
ue

T

M
P

SU

t
m
p
s
u
.
a
d
[
s
b
]

R
ou

tin
es

 f
or

 lo
w

 le
ve

l T
M

P
SU

 c
on

tr
ol

 a
nd

 m
on

ito
ri

ng

IC
U

 F
M

 S
of

tw
ar

e
D

et
ai

le
d

 D
es

ig
n

X

M
M

 O
M

/M
S

SL
/S

P
/0

2
0

5.
3

2
8

5.
3.

2
D

ef
in

it
io

ns

T
he

 fo
llo

w
in

g
ta

bl
e

in
di

ca
te

 w
hi

ch
 fi

le
s

ar
e

us
ed

 fo
r

de
fi

ni
ti

on
s

on
ly

. T
he

y
co

nt
ai

n
on

ly
 s

pe
ci

fi
ca

tio
ns

. T
he

re
 a

re
 n

o
 c

or
re

sp
on

di
ng

 fi
le

s
co

nt
ai

ni
ng

 a
 p

ac
ka

ge
 b

o
dy

.
 F
i
l
e
n
a
m
e
(
s
)

D
es

cr
ip

ti
on

t
y
p
e
s
.
a
d
s

D
ef

in
es

 a
d

di
ti

on
al

 A
D

A
 t

yp
es

p
a
c
k
e
t
.
a
d
s

D
ef

in
es

 th
e

pa
ck

et
 s

tr
uc

tu
re

i
m
p
o
r
t
a
n
c
e
.
a
d
s

D
ef

in
es

 A
D

A
 t

as
k

pr
io

ri
ti

es

m
e
m
l
o
c
.
a
d
s

D
ef

in
es

 k
ey

 m
em

or
y

lo
ca

tio
ns

I
N
T
V
E
C
.
A
S
M

L
in

ka
ge

 a
nd

 S
er

vi
ce

 P
oi

nt
er

s
fo

r
In

te
rr

up
ts

U
S
E
R
D
E
F
S
.
A
S
M

T
im

er
 c

or
re

ct
io

n
fa

ct
or

 +
 A

D
A

 r
un

 ti
m

e
co

ns
ta

nt
s

an
d

 m
as

ks

5.
3.

3
L

ib
ra

ry
 R

ou
ti

ne
s

T
he

 fo
llo

w
in

g
ta

bl
e

co
nt

ai
n

ro
ut

in
es

 th
at

 d
o

 n
ot

 m
ap

 to
 a

 si
ng

le
 o

bj
ec

t b
ut

 a
re

 in
st

ea
d

 u
se

d
 b

y
m

an
y.

 T
he

y
ar

e
th

er
ef

or
e

cl
as

se
d

 a
s

‘li
br

ar
ie

s’
.

 F
i
l
e
n
a
m
e
(
s
)

D
es

cr
ip

ti
on

s
c
r
c
.
a
d
[
s
b
]

C
R

C
 c

al
cu

la
tio

n
ro

ut
in

es

d
e
b
u
g
.
a
d
[
s
b
]

D
eb

ug
gi

ng
 u

til
it

y
ro

ut
in

es

m
u
t
e
x
.
a
d
[
s
b
]

U
se

d
 to

 p
ro

vi
de

 m
ut

ua
lly

 e
xc

lu
si

ve
 a

cc
es

s t
o

 v
ar

io
us

 re
so

ur
ce

s

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

29

6. Detailed Compon ent Description

6.1 Introdu ction

This section contains:

1) A detailed description of the Bootstrap code.
2) A components section describing the software components that make up the Basic and Operational code.This

components section is subdivided according to the type of the components contained within the specified file e.g.
Main Program, Package representing an Object, Packages representing a Library etc. It has been compiled by
extracting ‘f lagged’ comments of a design nature - e.g. ‘Structured English’ descriptions - from the code itself.

6.1.1 ADA Procedure and Function Notation
Many of the components described in this section assume knowledge of the calli ng convention, or interface, to
procedures and functions in ADA. A summary is therefore presented here.

The list of parameters in a subprogram or function call are known as actual parameters; inside the subprogram they
are called formal parameters. They are passed in one of 3 calli ng modes:

• in Only the actual value is used; the subprogram cannot modify the value.
• out The subprogram creates a value but does not use the value of the actual parameter
• in out The subprogram uses the value from the actual parameter and may assign a new value to it.

If omitted, in mode is the default.

The notation used in subprogram and function calls is as follows, e.g.:

procedure COUNT_LEAVES_ON_BINARY_TREE;

ill ustrates an interface to a procedure with no arguments.

procedure ROTATE
 (POINT : in out TRANSFORM.COORDINATE;
 ANGLE : in UNITS.RADIANS);

states that procedure ROTATEs formal first argument has the name POINT, is of type COORDINATE (which in turn is
defined in the package TRANSFORM) and that its calli ng mode is in out. Similarly the second argument has the
name ANGLE, is of type RADIANS (defined in package UNITS) and that its calli ng mode is in.

Similarly for functions:

function COS
 (ANGLE : in UNITS.RADIANS) return FLOAT;

shows that the function COS returns the predefined type FLOAT.
Note that function arguments can only be of mode in.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

30

6.1.2 ADA Task and Entry Notation
A task specification introduces the name of the task, together with any entry points to the task. It
thus defines the communication paths (entries) available to other tasks. It may also define the priority at which a task
runs. An entry declaration has a form similar to a subprogram specification. e.g:

task PROTECTED_STACK is
 pragma priority(100); -- define priority
 entry POP (ELEMENT : out INTEGER); -- define entry point
 entry PUSH(ELEMENT : in INTEGER); -- define entry point
end PROTECTED_STACK;

It is always necessary to prefix entry calls with the task name. e.g.:

PROTECTED_STACK.POP(MY_VALUE);

Occasionally, tasks are specified as task types. This is done if there is more than one instance of the task or to allow
certain ADA pragmas (special instructions to the compiler) to be obeyed that are only supported under task types. The
following is equivalent to the above specification.

task type PROTECTED_STACK_TYPE is -- define the type.
 pragma priority(100); -- define priority
 entry POP (ELEMENT : out INTEGER); -- define entry point
 entry PUSH(ELEMENT : in INTEGER); -- define entry point
end PROTECTED_STACK_TYPE;

PROTECTED_STACK : PROTECTED_STACK_TYPE; -- create an
instance of the task.

6.1.3 Use of ADA Pragma’s
A pragma is a statement that conveys information to the compiler. The following ADA pragmas are used throughout
the code. The following is a summary of the usage.

6.1.3.1 ELABORATE

Takes one or more simple names denoting library units as arguments. This pragma is only allowed immediately after
the context clause of a compilation unit (before the subsequent library unit or secondary unit). Each argument must be
the simple name of a library unit mentioned by the context clause.

This pragma specifies that the corresponding library unit body must be elaborated before the given compilation unit.
If the given compilation unit is a subunit, the library unit body must be elaborated before the body of the ancestor
library unit of the subunit.

6.1.3.2 FOREIGN_BODY

This provides a way to access entities written in languages other than ADA. It must appear in the visible part of the
package before any declarations – see section 4.1.2.2 of the Tartan ADA Compilation System Manual.

It dictates that all subprograms and objects in the package are provided by means of a foreign object module. In the
case of the ICU, the language used is always assembler and therefore the pragma takes the argument string “ASM”.

6.1.3.3 INLINE

Takes one or more names as arguments; each name is either the name of a subprogram or the name of a generic
subprogram. This pragma is only allowed at the place of a declarative item in a declarative part or package
specification, or after a library unit in a compilation, but before any subsequent compilation unit.

This pragma specifies that the subprogram bodies should be expanded inline at each call whenever possible.

6.1.3.4 LINKAGE_NAME

This pragma associates an ADA entity (e.g. subprogram or variable name) with a text string meaningful externally to,
say, a linkage editor. It is usually used to equate that entity to its equivalent in assembler code.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

31

6.1.3.5 OPTIMIZE

Takes one of the identifiers TIME or SPACE as the single argument. This pragma is only allowed within a declarative
part and it applies to the block or body enclosing the declarative part.

It specifies whether time or space is the primary optimisation criterion.

6.1.3.6 PACK

Takes the simple name of a record or array type as the single argument. The allowed positions for this pragma, and
the restrictions on the named type, are governed by the same rules as for a representation clause.

The pragma specifies that storage minimization should be the main criterion when selecting the representation of the
given type.

6.1.3.7 PRIORITY

Takes a static expression of the predefined integer subtype PRIORITY as the single argument. This pragma is only
allowed within the specification of a task unit or immediately within the outermost declarative part of a main program.

It specifies the priority of the task (or tasks of the task type) or the priority of the main program. N.B. The package
IMPORTANCE defines of all task priorities used as arguments to this pragma.

6.1.3.8 SHARED

Takes the simple name of a variable as the single argument. This pragma is allowed only for a variable declared by an
object declaration and whose type is a scalar or access type; the variable declaration and the pragma must both occur
(in this order) immediately within the same declarative part or package specification.

This pragma specifies that every read or update of the variable is a synchronization point for that variable i.e. no
optimisation is performed which might lead to the value contained in the variable not always being up-to-date.

6.1.3.9 SUPPRESS

Takes as arguments the identifier of a check and optionally also the name of either an object, a type or subtype, a
subprogram, a task unit, or a generic unit. This pragma is only allowed either immediately within a declarative part or
immediately within a package specification. In the latter case, the only allowed form is with a name that denotes an
entity (or several overloaded subprograms) declared immediately within the package specification. The permission to
omit the given check extends from the place of the pragma to the end of the declarative region associated with the
innermost enclosing block statement or program unit. For a pragma given in a package specification, the permission
extends to the end of the scope of the named entity.

If the pragma includes a name, the permission to omit the given check is further restricted: it is given only for
operations on the named object or on all objects of the base type of a named type or subtype; for calls of a named
subprogram; for activations of tasks of the named task type; or for instantiations of the given generic unit.

The identifier is that of the check that can be omitted. The name (if present) must be either a simple name or an
expanded name and it must denote either an object, a type or subtype, a task unit, or a generic unit; alternatively the
name can be a subprogram name, in which case it can stand for several visible overloaded subprograms.

The following checks correspond to situations in which the exception CONSTRAINT_ERROR may be raised; for these
checks, the name (if present) must denote either an object or a type.

• ACCESS_CHECK: When accessing a selected component, an indexed component, a slice, or an attribute, of an

object designated by an access value, check that the access value is not null.

• DISCRIMINANT_CHECK: Check that a discriminant of a composite value has the value imposed by a

discriminant constraint. Also, when accessing a record component, check that it exists for the current
discriminant values.

• INDEX_CHECK: Check that the bounds of an array value are equal to the corresponding bounds of an index

constraint. Also, when accessing a component of an array object, check for each dimension that the given index

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

32

value belongs to the range defined by the bounds of the array object. Also, when accessing a slice of an array
object, check that the given discrete range is compatible with the range defined by the bounds of the array object.

• LENGTH_CHECK: Check that there is a matching component for each component of an array, in the case of

array assignments, type conversions, and logical operators for arrays of boolean components.

• RANGE_CHECK: Check that a value satisfies a range constraint. Also, for the elaboration of a subtype

indication, check that the constraint (if present) is compatible with the type mark. Also, for an aggregate, check
that an index or discriminant value belongs to the corresponding subtype. Finally, check for any constraint checks
performed by a generic instantiation.

The following checks correspond to situations in which the exception NUMERIC_ERROR is raised. The only allowed
names in the corresponding pragmas are names of numeric types.

• DIVISION_CHECK: Check that the second operand is not zero for the operations /, rem and mod.

• OVERFLOW_CHECK: Check that the result of a numeric operation does not overflow.

The following check corresponds to situations in which the exception PROGRAM_ERROR is raised. The only allowed
names in the corresponding pragmas are names denoting task units, generic units, or subprograms.

• ELABORATION_CHECK: When either a subprogram is called, a task activation is accomplished, or a generic

instantiation is elaborated, check that the body of the corresponding unit has already been elaborated.

The following check corresponds to situations in which the exception STORAGE_ERROR is raised. The only allowed
names in the corresponding pragmas are names denoting access types, task units, or subprograms.

• STORAGE_CHECK: Check that execution of an allocator does not require more space than is available for a

collection. Check that the space available for a task or subprogram has not been exceeded.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

33

6.2 Bootstrap Code

6.2.1 Introduction

The OM Bootstrap resides in the ICU memory, and is the first piece of code to be executed by the ICU processor

after a reset or power up. It’ s purpose is to initialise the instrument hardware and higher level software.

This code is blown into PROM and hence it will not be able to be changed after launch.

The ICU is designed to have 16K words of PROM, each PROM chip holds 8K octets of code. The 16K words

available will hold both the Bootstrap code and the Basic mode code.

The PROM’s to be used for this are very higher power ones, so the on time of these chips needs to minimised.

The Bootstrap code will be initiated by three possible alternatives (See Figure 1) :-

1. Power On or the Main Power Bus to the instrument has been interrupted.

2. A RESET ICU, warm or cold start, command has been received by the instrument from the

spacecraft.

3. The ICU watchdog has timed out. (The RBI’ s watchdog timer is to be used for this function.

[App-2]).

Since the ICU uses an MA31750 processor, 31750 assembler language is a natural choice to be adopted for the
Bootstrap code implementation.

Bootstrap

Power
On RESET

ICU

Watchdog
Time Out

Basic Mode
Code

Figure 1 ICU Bootstrap Operational Architecture

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

34

6.2.2 BOOTSTRAP FUNCTIONALITY

This section specifies what the Bootstrap code does, and the implementation and operational constraints.

Essential (Priority 1) :

R1.1 Enable the spacecraft OBDH to be able to perform read and write operations to the ICU RAM

memory. ([App-1] R4.1.3.3.1-4). (This is required in order that the spacecraft can send

telecommands to, and take telemetry data from the ICU RAM, even though these will not be

supported at this time. This also allows spacecraft low level access to the ICU RAM in case of

problems, e.g. patch access.)

R1.2 Safe the instrument as it is possible for the ICU to remain in reset mode for an indefinite time.

R1.3 Load all PROM code into RAM, turn off PROM, and run Bootstrap code from RAM.

R1.4 Initialise all i nterrupt handlers to return to caller.

R1.5 Follow OBDH protocol to next mode.

Highly Desirable (Priority 2) :

R2.1 Perform RAM checks relevant to loading code from ROM to RAM and report any errors to

ground in RBI software indication field. (Checks may be pre- or/and post- loading) (Is not

classed as essential as RAMs used are very SEU immune)

R2.2 In event of a RAM error, provide means to avoid bad RAM locations.

R2.3 Unused interrupt handlers to store count of times called to be reported in housekeeping for

diagnostic purposes.

Constraints :

C1 Minimise time that the ROM is powered. (To less than 100 msecs for nominal operations, to

avoid overheating of components, to minimise total power consumed and to avoid brown outs).

C2 Bootstrap + Basic code must fit within 16K 16-bit words. (Bootstrap code must fit within 2K

words baseline allocation.)

C3 Implement Bootstrap on an MA31750 processor operating at 8Mhz, with (TBD) PROM.

C4 Comply with OBDH protocols (for next mode) [App-1].

C5 On entry to Bootstrap the ICU hardware status will be :-

_ • Interrupts are disabled.

 • DMA by the RBI will be disabled.

 • The PROMs will be powered on.

6.2.3 BOOTSTRAP IMPLEMENTATION

This section specifies how the Bootstrap code is implemented.

S0. The Bootstrap Code will be implemented in 31750 assembler on an MA31750 processor.

• Since the ICU uses an MA31750 processor, 31750 assembler is a natural choice to be adopted for the ICU

Bootstrap code language.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

35

• The use of assembler is also consistent with stringent memory and speed limitations consistent with these

Bootstrap requirements.

The following specifies what the Bootstrap will do once it is invoked, in chronological order :-

S1. Enable Spacecraft t o have read & wr ite access into the instrument’ s memory.

This is required to :-

• Enable the spacecraft to be able to send telecommands to the ICU.

• Enable the spacecraft to take telemetry data from the ICU.

• Allow spacecraft read/write access to the ICU RAM in case of problems.

(a) Enable DMA: The Bootstrap will write any value to IO location DMAE, defined in 31750 assembler.

(b) Command RBI into Reset state: The Bootstrap will write 8000 hex to the RBI Configuration register, IO address

6806 hex.(Note that if a watchdog time-out has occurred this command will have no effect. The value in the RBI

Status register, bits 0-3, seen by the Ground System will be zero.)

(c) Write the CCA address into RBI’ s base address register.

(d) Send reset page address command to RBI configuration register.

S2. Copy code in PROM to RAM, turn off PROM and run in Bootstrap code from RAM.

− Copy bootstrap code from ROM into RAM.

− Options:

(a) Immediately turn of PROM and go to S3, or

(b) Check that RAM code is OK and/or do checksum on code copied.

− If OK, then turn off PROM, run code from RAM, and go to S3.

− If not OK, then try again.

− If not OK for a second time, find four words in consecutive RAM memory which are OK and copy two

jump instructions to RAM which loop to each other.

− A value is written to the RBI Status register bits 12-15, Software Indication field, to indicate to the

Ground System the Bootstrap failed.

− The PROM is then turned off and the two jump instructions are run.

(The Ground System then can then study the problem. If suff icient code can be loaded using Low

Level DMA commands under Ground System control the Ground System can then change one of

the addresses in the jump instructions so control is passed to the loaded code.)

− If f our words in consecutive RAM memory cannot be found which are OK :-

− Write a value to the RBI Status register to indicate to the Ground System that total RAM failure has

occurred.

− Turn off the PROM.

− Copy Basic mode code from PROM into RAM unless the bootstrap was started due to a reset ICU no copy

interrogation to the RBI.

S3. Safe var ious components of the instrument.

This step will always turn off the heaters and the filter wheel phases, reset the DPU and move the filter wheel to the

blocked position using the coarse sensor only. Additionally, the high voltage unit and the TMPSU secondaries will

be turned off if the bootstrap is running due to a “warm start” (i.e. ICU code has already been running).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

36

S4 Initialise all interrupt handlers to return to caller.

This is achieved at code assembly time.

S5. Determine next mode as per OBDH Bus Protocol Specification. [1]

Sections of [1] that describe this procedure are figure 4.1.3-1 and R4.1.3.3.1-1.

A pseudo code listing of this procedure is given below :-

 - Copy the bootstrap to RAM

 - Read RBI configuration register

 If WD bit set - If watchdog time-out has occurred

 Set jump pointer to WD_ENTRY

 Set boot type flag to watchdog

 Goto PROM_OFF

 End If

 - Read RBI instruction to RBI register

 If 0000 XXXX 0000 0000 - Reset ICU Cold Start command)

 Set jump pointer to BASIC_START

 Set boot type flag to cold

 Else

 Set jump pointer to READ_LOOP

 Set boot type flag to warm

 If 0000 XXXX 0101 1110 - Reset ICU Warm Start command, no copy.

 Goto PROM_OFF

 End if

 End if - Reset ICU Warm Start command, copy.

 - Copy Basic mode code into RAM - Fall through

PROM_OFF:

 Turn off PROM

 Perform safing

 Use jump pointer to goto to next procedure

READ_LOOP:

 Read RBI configuration register.

 If IT1 bit not set goto READ_LOOP

 End If

 If IT1 bit is set read Instruction-to-RBI Register

 If 1111 XXXX 0000 0000 - Start ICU command.

 Goto BASIC_START

 Else if 0000 XXXX 0101 XXXX - Reset ICU Warm Start Cmd

 Restart Bootstrap

 End If

 Else goto READ_LOOP

 End if

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

37

BASIC_START:

 Command RBI into Running State

 Transfer control to Basic mode Code

WD_ENTRY:

 Goto WD_ENTRY - wait for reset command from

 - ground and then go back to S1.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

38

6.2.4 Design and Implementation

The XMM-OM bootstrap is based on a modified version of the Tartan supplied Adascope kernel.

Due to the power requirements of the PROMs the bootstrap must copy itself to code space RAM, turn off the PROMs
and continue running from RAM. Additionally, before shutting off the PROMS the bootstrap must decide whether to
copy out the Basic mode code too.

Flow charts of the bootstrap are shown in figures 2 to 6 and the corresponding pseudo code is given below.

 - Copy the bootstrap to RAM

 - Read RBI configuration register

 If WD bit set - If watchdog time-out has occurred

 Set jump pointer to WD_ENTRY

 Set boot type flag to watchdog

 Goto PROM_OFF

 End If

 - Read RBI instruction to RBI register

 If 0000 XXXX 0000 0000 - Reset ICU Cold Start command)

 Set jump pointer to BASIC_START

 Set boot type flag to cold

 Else

 Set jump pointer to READ_LOOP

 Set boot type flag to warm

 If 0000 XXXX 0101 1110 - Reset ICU Warm Start command, no copy.

 Goto PROM_OFF

 End if

 End if - Reset ICU Warm Start command, copy.

 - Copy Basic mode code into RAM - Fall through

PROM_OFF:

 Turn off PROM

 Perform safing

 Use jump pointer to goto to next procedure

READ_LOOP:

 Read RBI configuration register.

 If IT1 bit not set goto READ_LOOP

 End If

 If IT1 bit is set read Instruction-to-RBI Register

 If 1111 XXXX 0000 0000 - Start ICU command.

 Goto BASIC_START

 Else if 0000 XXXX 0101 XXXX - Reset ICU Warm Start Cmd

 Restart Bootstrap

 End If

 Else goto READ_LOOP

 End if

BASIC_START:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

39

 Command RBI into Running State

 Transfer control to Basic mode Code

WD_ENTRY:

 Goto WD_ENTRY - wait for reset command from

 - ground and then go back to S1.

Perform safing

 if boot type flag = cold

 if Blue Processing Electronics is on

 goto WARM_SAFE

 end if

 call WARM_SAFE1 - common safing procedure with warm start

 call SAFE_FW - safe the filter wheel

 Use jump pointer to goto to next procedure - will be the read loop for go command

 - in the case of a warm start, or Basic mode

 - code in the case of a cold start

 end if

WARM_SAFE

 turn off high voltages

 call WARM_SAFE1 - common safing procedure with cold start

 pause for 5 seconds

 turn off secondary voltages

 call SAFE_FW procedure

 Use jump pointer to goto to next procedure - will be the read loop for go command

 - in the case of a warm start, or Basic mode

 - code in the case of a cold start.

WARM_SAFE1

 turn off all heaters

 turn off filter wheel phases

 reset the DPU

 return from sub-procedure

SAFE_FW

 initialise counters, phase variable, etc.

 turn on coarse sensor LED

 if command failed

 goto EXIT

 end if

NEXT

 do

 calculate next phase

 read coarse sensor

 if read failed

 goto EXIT

 end if

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

40

 if coarse sensor detected

 goto COARSE_SEEN

 else

 set coarse counter - to detect when we see coarse for second time

 end if

 energise next phase

 if command failed

 goto EXIT

 end if

 delay for time specified in acceleration table

 decrement step counter

 while step counter > 0

EXIT

 save results of procedure

 turn off LED and phases

 return from sub-procedure

COARSE_SEEN

 if coarse counter = 0 - then gap between seeing coarse sensor

 goto NEXT

 end if

 increment coarse counter

 if coarse counter = 2 - seeing coarse for second time

 store step counter in steps remaining location

 set step counter to 1257/1258 (redundant/prime) - steps needed until in blocked position

 goto NEXT

 else

 goto NEXT

 end if

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

41

Enter
Bootstrap

Perform safing

Copy Basic code
to RAM

Turn off PROM

Watchdog
Kick Entry

Read RBI config
register

Copy bootstrap
to RAM

Cold/Warm Entry

Read Instruction to
RBI register

Warm StartDetermine
 warm start type

Warm start copy

Cold Start

Warm start no copy

Enable DMA, Reset
RBI, Init CCA, Reset

PA

Figure 2 Determination Of Boot Type

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

42

Entry

Command RBI
into running state

Perform cold
safing procedure

Determine boot
type

Wait for Start
ICU command

Watchdog
Kick

Check Blue
Processing
Electronics

Perform warm
safing procedure

Watchdog loop

Warm start Cold Start

Exit
Bootstrap

To: Basic Code
(ADA)

 (Running Mode)

On

Off
Warm start

Cold Start

Figure 3 Perform Safing

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

43

Entry

Turn off High
Voltage

Exit

Turn off
Heaters

Turn off
Phases

Reset
DPU

Pause for 5
seconds

Turn off
Secondaries

Safe Filter
Wheel

Figure 4 Warm Safing Procedure

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

44

Entry

Turn off
Heaters

Exit

Turn off
Phases

Reset
DPU

Safe Filter
Wheel

Figure 5 Cold Safing Procedure

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

45

Entry

Initialize

Exit

Turn on coarse
sensor LED

Calculate next
phase

Read coarse
sensor

Coarse sensor
LED detected ?

Leading
Edge ?

Move final
steps

Energize
phase

Decrement step
counter

Step counter at
zero ?

Save results of
procedure

On OK

Turn off LED
and phases

Command failed

Read fail

Read OK

No

Yes

Yes

No

Energize fail

No
Yes

Figure 6 Safe Filter Wheel Procedure

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

46

6.2.5 Variables

This section lists the variables which are used by the bootstrap. These variables are also available for the Basic mode
code to inspect and downlink to the ground, providing information as to what happened during the bootstrap process.
They appear in the linker map reference as BOOTSTRAP_PARAMS. The length of each parameter is given in 16-bit
words and the address is in hexadecimal. These variables are to be found in data space. All the variables are defined
in the file emboot.asm.

Address Length Parameter Description

03FE 1 PRM_RED Indicates whether the Primary or Redundant
system is running
1 = Primary, 0 = Redundant.

03FF 1 VERSION Version number of the Bootstrap code only.
Constant = 0137.

02C7 1 BOOT_TYPE Boot type detected by the Bootstrap.
0 = Power up
1 = Reset cold
2 = Reset warm copy
3 = Reset warm no copy
4 = Watchdog kick

02C8 1 PROGRESS Bit pattern recording the safing procedures
completed. See note 1.

02C9 1 ICB_GOOD Counter recording the total number of valid
ICB commands sent. Range [0,FFFF]

02CA 1 ICB_SYNC_ERRS Counter recording the total number of ICB
sync errors detected. Range [0,FFFF]

02CB 1 ICB_EXT_ERRS Counter recording the total number of ICB
extension errors detected. Range [0,FFFF]

02CC 1 ICB_TX_ERRS Counter recording the total number of ICB
transmission errors detected. Range [0,FFFF]

02CD 1 ICB_TIMEOUT Counter recording the total number of ICB
time-out errors detected. Range [0,FFFF]

02CE 1 ICB_DEAD 0 = Alive, 1 = Dead
02CF 1 COARSE_SEEN Indicates whether the Coarse Sensor was

detected when safing the Filter Wheel. 0 =
coarse not seen, 1 = coarse seen.

02D0 1 STEPS_REMAINING Number of steps remaining to move the filter
wheel a complete revolution when the coarse
sensor was detected. Range [0,898 (hex)].

02D1 1 FINAL_STEPS A count of the steps to do when detecting the
coarse sensor. Range [0,1257/1258].

02D2 1 LAST_PHASED_USED Last phase used when moving the filter wheel.
Phases 1-4 are represented as 1111, 2222,
4444, 8888.

02D3 1 BAD_FW Records errors encountered when moving the
filter wheel. See note 2.

02D4 1 INIT_ICB ICB settle loop. Number of loops remaining
when the ICB status became OK. Counts
down from DF37 (hex).

02D5 1 WPR_SAVE Adascope variable. Not used.
02D6 6 cmdbuf Adascope variable. Not used.
02DC 2 ackbuf Adascope variable. Not used.
02DE 16 rstate Register save area during interrupt handling.
02EE 3 state Interrupt linkage/service pointer storage.

Machine state at time of interrupt.
02F1 35 ACCEL_TABLE Constant. Table of values used for

accelerating the filter wheel.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

47

Notes:

1. Progress flag.

This is a bit pattern recording the safing procedure completed. The following table indicates which bit
corresponds to each safing procedure. Initially each bit is set and is reset only after the procedure has been
successfully performed. If the procedure is not appropriate for the type of boot in progress then the bit will
remain set.

Therefore, after a cold start the value of this parameter should be 0022 (hex) and after a warm start it should be 0
if all the safing procedure were carried out successfully.

2. Filter Wheel Safing Error Counter.

This comprises of three 4-bit nibbles in the least significant portion of the word (bits 4 to 15) as shown in the
following table:

If no errors occurred whilst safing the filter wheel then all the nibbles will be set to 0. Only one error will be
recorded as the safing procedure is aborted after the first error is detected. The errors that can happen are all ICB
command related and are shown in the following table:

Bit 0-9 10 11 12 13 14 15
Procedure Not

Used
High

Voltage
Heaters Phases DPU Second-

aries
Filter
Wheel

Warm 0 0 0 0 0 0 0
Cold 0 1 0 0 0 1 0

Bits 0-3 4-7 8-11 12-15
Err
or

Not
Used

Bad
Phase

Bad Sensor
Read

Bad
LED

Error
Code

1 2 3 4

Meaning Sync
 Error

Extensio
n Error

Transmission
Error

Time-
out

Error

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

48

6.2.6 Routines

This section lists the most important routines used by the bootstrap, giving their address in code space.

Name Addre
ss

Description

KSTART 01DF Start of the Tartan supplied Adascope kernel
code.

WARM_SAFE1 0314 Code which is common to both Cold and Warm
boots. Turns off the Heaters and Filter Wheel
Phases and resets the DPU.

SAFE_FW 032B This routine performs the filter wheel safing.
ICB_CMD_SEND 038F Routine to send commands along the ICB bus.
UPDATE_PROGRESS 03B7 Routine called after each safing procedure to

record the result of each particular safing
procedure.

SAVE_STATS 03BD Saves the result of safing the Filter Wheel.
DELAY 03C1 Implements a delay in software.
CHECK_BPE 03C9 Routine to check whether the Blue Processing

Electronics is on or off . Used to provide more
information in determining whether the current
Boot Type is warm or cold.

WATCHDOG_LOOP 03D3 Loop which is entered only when the Bootstrap
has determined that it is running due to a
Watchdog kick and after the instrument has been
safed.

START_ICU 03D9 This routine puts the RBI into running mode and
starts the Basic mode code.

SW_INDICATE 03E7 Writes to the 4 software indication bits available
in the RBI configuration register.

WRF_START 03F2 Routine executed when the ICU has received an
“ ICU RESET” instruction to RBI. Relocated to
address FFF8 in Code space by the bootstrap.

GOCMD 016E Part of the Adascope kernel which is called when
the bootstrap has detected a warm start. Waits for
an RBI “GO” command or an “ ICU REST”
instruction to RBI.

COPY_BOOTSTRAP
COPY_BOOTSTRAP_
AND_VECTORS

0295 Routine which copies the bootstrap code from the
PROM into RAM.

COPY_BASIC 0213 Routine which copies the Basic mode code from
the PROM into RAM. Executed unless following
a “ ICU REST WARM NO COPY” instruction to
RBI.

COPY_BOOTSTRAP_
ONLY

0292 Routine which copies only the bootstrap code
from PROM to RAM. Basic mode interrupt table
is not copied.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

49

6.2.7 APPENDIX

Private Communication 30-MAY-1996 15:47:02.24

From: MSSL::JAT "Jason A Tandy"
To: ADV
CC: JAT
Subj: RBI Chip. Attn: P.Mercier.

Dear Phili ppe,

With respect to the RBI's Watchdog timer;

When this times out and resets the running bit in the Status register, how
does the ICU software on rebooting go through the normal sequence of setting
the Reset bit then the Running bit?
At present I f ind that I get a bad operation in the Configuration register.
Does the ICU software have to wait until the spacecraft has read the Status
register and clears the Watchdog timeout bits?
Then the ICU can proceed.

Cheers, Jason.

Private Communication 31-MAY-1996 08:08:53.92

From: SMTP%"advtlse@dialup.francenet.fr"
To: jat@mssl.ucl.ac.uk (Jason A Tandy)
CC:
Subj: Re: RBI Chip. Attn: P.Mercier.

Dear Jason,

When a watchdog error is detected, then the error is flagged in the RBI
status word by resetting the Running bit. However the RBI is still
considered to be in the 'Running' state and not in the 'Init' state and
then a microprocessor 'Reset ICU' and 'START ICU' instructions is
considered as invalid (this explain why the bad operation bit is set in the
Configuration register).

Note that a Watchdog time-out error indicates that the ICU SW has failed
and then it is not able to issue these commands. In fact this is the
central computer role to manage this error by issuing a 'Reset ICU'
interrogation which will restart the ICU SW. This interrogation can be
preceded by a 'Suspend ICU' interrogation and by 'Read Block'
interrogations if the central computer wants to check the ICU memory before
to restart the microprocessor.

Best regards.

 P. Mercier

--
- Phili ppe Mercier, ADV technologies -
- Parc Technologique du Canal, 16 Avenue de l' Europe -
- 31520 Ramonvill e Saint Agne, France -

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

50

- Tel : (33) 62 19 04 44 Fax : (33) 62 19 03 54 -
- E-mail advtlse@Dialup.FranceNet.fr -

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

51

6.3 Basic Code
Basic code is built from the following files:-

ADA Assembler
Specifications Bodies

bcp4_ih.ads bcp4_ih.asm

 bsio.asm

crc.ads crc.adb

debug.ads debug.adb

dempsu.ads dempsu.adb

 emboot.asm

 emsubs.com

hk.ads hk.adb

icb.ads icb.adb

icb_driver.ads icb_driver.adb

 icu.ada

icu_mem_manager.ads icu_mem_manager.adb

importance.ads

mem_manager.ads mem_manager.adb

memloc.ads

modeman.ads modeman.adb

mutex.ads mutex.adb

nhk.ads nhk.adb

packet.ads

peek_poke.ads peek_poke.asm

rbi.ads rbi.adb

rbi_ih.ads rbi_ih.asm

reset.ads reset.asm

ssi_driver.ads ssi_driver.asm

ssi_ih.ads ssi_ih.asm

task_report.ads task_report.adb

taskman.ads taskman.adb

tc_q.ads tc_q.adb

tc_verify.ads tc_verify.adb

tcq.ads tcq.adb

time_man.ads time_man.adb

tm_man.ads tm_man.adb

tm_q.ads tm_q.adb

tmpsu.ads tmpsu.adb

tmq.ads tmq.adb

types.ads

 USERDEFS.ASM

The following pages contain ‘Structured English’ extracted from comments in the file. They should be studied in
conjunction with the code listings as they have additional comments regarding implementation details but are omitted
in this document for clarity.

• The comments extracted from the specification files (*.ads) describe ‘what’ a given package does.
• The comments extracted from the associated body files (*.ads or *.asm) describe ‘how’ a given package

performs the operations defined by the specification.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

52

In addition, the file icu.xtof can be supplied. It may be used in conjunction with the TARTAN utilit y
adaref1750a to extract the dependencies, list of calls and inverse calls and cross reference information..

To extract the call graph (of ‘ callers’).

adaref1750a –input icu.xtof –call_graph

To extract the call graph (of ‘ called by’).

adaref1750a –input icu.xtof –call_graph -reverse

To extract the call graph (of ‘ callers’) from one package.

adaref1750a –input icu.xtof –call_graph –from package_name

To extract a list of dependent relationships.

adaref1750a –input icu.xtof –dependency_graph

To extract a list of dependent relationships from one package.

adaref1750a –input icu.xtof –dependency_graph –from package_name

To extract a alphabetical li st of user defined entities, containing source location of declaration, source location of
where it is set and used.

adaref1750a –input icu.xtof –xref

To extract a alphabetical li st of user defined entities, containing source location of declaration, source location of
where it is set and used for one package.

adaref1750a –input icu.xtof –xref –about package_name

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

53

6.3.1 Main Program

6.3.1.1 icu.ada

Extracted from file "icu.ada"

 Function
 ========

 This procedure is the 'main' program for the basic code of the ICU. It

 1) Initialises the ICU then...
 2) Routes all valid received telecommand packets as appropriate

procedure ICU is

 Initializations
 ===============

 Initialise the SSI interface controlling software.

 Initialise RBI related matters
 (including the communications area and TC and TM ready bits)

 Start the RBI Watchdog.

 Ensure that telemetry queues are initialised

 Ensure the telecommand queues are initialised (after which we can
 receive telecommands

 Send the Bootstrap Status Block

 1st Determine whether its an event (boot OK) or exception (boot not OK)

 then send the block

 Now turn on both main heaters, in order to compensate for lack of
 heat input because secondaries are not on during basic mode.

 Now start the Housekeeping task

 Now begin the endless control loop

 Wait for a valid telecommand packet

 When a valid packet is obtained, route it to the appropriate package
 on the basis of the packet type

 For a Task Management Packet

 send it to the Task Manager package TASKMAN

 For a Memory Maintenance Packet

 call the memory manager package MEM_MANAGER

 For a Telemetry Management Packet

 Call the telemetry manager package TM_MAN.

 For a Time Management Packet

 Call the Time Manager package TIME_MAN

 For a test packet

 do nothing

 For all other packet types

 do nothing

 end of selection by packet type

 If nothing has indicated that the packet was bad

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

54

 Place a Successful Acceptance Telemetry Packet in the
 telemetry queue.

 Increment the good packet count (modulo 65536) for HK purposes.

 Otherwise, increment the bad packet count (modulo 65536)
 for HK purposes

 End the controlling loop

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

55

6.3.2 Packages

6.3.2.1 bcp4_ih.ads

Extracted from file "bcp4_ih.ads"

 Function
 ========

 This file merely contains the specification for the XMM-OM bcp4 interrupt
 handler. It specifies that the body of bcp4_ih is written in assembler
 and therefore directs the linker to link it as foreign.
 The interrupt handler had to be written in assembler for speed so as not to
 block other interrupts for too long.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

56

6.3.2.2 bcp4.ih.asm

File is bcp4_ih.asm

 Fetch the interrupt counter
 Check for impending overflow
 If it's OK, increment it
 otherwise avoid overflow
 Check BCP flag and if it is not 1, we don't have to bother so jump to end
 "Freeze" the current time by writing appropriate instruction
 to config register.
 Read bits 0-15
 Read bits 16-31
 Read remaining bits 32-42 (result in high order bits)
 Set the BCP flag to 2 to show we've got a time
 Recover registers
 Turn on interrupts
 Back from whence we came

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

57

6.3.2.3 bsio.asm

File is bsio.asm

 Name
 INITLINK

 Initialize the communications link

 Parameters
 None

 Notes
 This routine is called on startup. R14 is the link register.
 All other registers may be trashed.
 In the ROM version, this routine is called after the kernel has
 been copied to RAM, but before the startup ROM is shut off.
 This code may either execute from ROM, or disable the startup
 ROM if it needs to read RAM.

 NO LONGER USED

 Name
 QUIET

 Presuming a transmission error, wait for quiet on input link

 Parameters
 None
 Notes
 R14 is the link register. R0, R1 and R3 can be trashed.
 We 'read' and discard characters until there had been no more input
 for 500ms.
 NO LONGER USED

 Name
 ENABLE_MONITOR

 Enable monitoring of the link before going off to the user's program

 Parameters
 None
 Notes
 R14 is the link register. All other registers are trashable.
 Usually, we enable UART receiver error or data interrupts.
 Thus, if the host tries to send us a message while we are in
 the user's program we will get back to the kernel (we hope).

 (?) In the SBC50 we left the interrupt on. We just clear the pending
 (?) bit, if set.

 NO LONGER USED

 Name
 READLINK

 Read bytes from the communications link

 Parameters
 r12 Destination address
 r0 Byte count (must be even)
 r9 Address State

 Returns
 checksum in r0
 Notes
 R14 is the link register. Destroys r1,r2,r3
 but r2 counts down to 0 for cmdinterp to check.
 r12 used later too

READLINK EQU $

RDRDY

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

58

 Set the software indication bits to 2

RD_POLL

 Read the RBI configuration register
 If IT1 (interrupt) pin has been asserted
 then branch to STARTTEST
 else branch to RD_POLL

STARTTEST
 ; Don't forget ICU Resetw command

 Read instruction to RBI register
 If there has been a start ICU command
 then jump to START_ICU
 If it is not a reset command then branch to RD_POLL
 Reset command so jump to 16#FFF8# in page 2

 Name
 Writelink

 Write bytes to the communications link

 Parameters
 r12 Destination address
 r0 Byte count (must be even)

 Notes
 R14 is the link register. Destroys r1,r2,r3,R13
 mov ra,r12 ; ra=move to rbi addr; r12=move from, r(a+1)=number to move

WRITELINK EQU $
WRRDY

 Not used

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

59

6.3.2.4 crc.ads

Extracted from file "crc.ads"

 Function
 ========

 This file contains the specification for the CRC package.
 This contains the CRC algorithms for XMM which
 are based on the algorithm described in ESA technical note PX-TN-00540

package CRC is

 This function returns the unsigned 16 bit integer checksum of the
 first NUMBER locations in unsigned byte array DATA.

 function CHECK_TC(TC : PACKET.TC_TYPE) return UINT16;

 This function calculates the checksum of telecommand packet TC,
 using the packet length stored within the packet to determine its
 length. Returns value of zero if as expected, otherwise returns
 value of checksum found, NOT including the 2 byte checksum
 field at the end of the packet.
 It thus checks whether that packet TC contained a valid CRC.

 function CALC_TM(TM : PACKET.TM_TYPE) return UINT16;

 This function calculates the value to be inserted into
 the checksum field of packet TM, using the packet length stored
 within the packet to determine the length of the data to be checksumed
 (i.e. NOT including the checksum field at the end of the packet).

 function CALC_MEM(CURRENT_CRC : UINT16;
 MEM : UINT16_ARRAY;
 NO_WORDS : INTEGER) return UINT16;

 This function is used to calculate a checksum for a large block
 of data on the assumption that not all the data will be available
 at once. Therefore, it uses the CURRENT_CRC value returned by a prior
 call as input to the current call and then calculates the CRC of the
 NO_WORDS 16-bit words of data contained in MEM. The result is the CRC
 for all blocks of data supplied (NOTE: the sequence is restarted by
 supplying a value of all binary ones for CURRENT_CRC).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

60

6.3.2.5 crc.adb

Extracted from file "crc.adb"

 Function
 ========

 This file contains the body for the CRC package.
 This contains the CRC algorithms for XMM which
 are based on the algorithm described in ESA technical note PX-TN-00540

package body CRC is

 function CLC(SYNDROME : UINT16; DATA : UBYTE_ARRAY; NUMBER : UINT16)
 return UINT16 is

 This function returns the unsigned 16 bit integer checksum of the
 first NUMBER locations in unsigned byte array DATA. An initial value
 of the currently 'running' checksum is contained in SYNDROME.
 It is a function internal to this package.

 The following test data was used (taken from the reference above).

 DATA CRC
 ++++ +++
 00 00 1D 0F
 00 00 00 CC 9C
 AB CD EF 01 04 A2
 14 56 F8 9A 00 01 7F D5

 First define the lookup table for efficient calculation (equivalent of
 routine InitLtbl in above reference.

 loop over NUMBER data points

 Calc RHS term by

 1) Shift right the input checksum by 8.

 2) Exclusive Or result with current datum.

 3) Mask off the 8 least significant bits of the result.

 4) Use result to index into table of pre-calculated coefficients.

 calc LHS term by

 1) Shift left the input checksum by 8.

 2) Mask off the 8 most significant bits of the result.

 Calculate checksum by Exclusive Oring the two terms.

 Return final value of the checksum.

 function CALC(DATA : UBYTE_ARRAY; NUMBER : UINT16) return UINT16 is

 Call the CLC routine with the initial CRC set to all binary 1's.

 function CHECK_TC(TC : PACKET.TC_TYPE) return UINT16 is

 This function calculates the checksum of a whole packet,
 using the packet length stored within the packet to determine its
 length. Returns value of zero if OK, otherwise returns
 value of checksum found, NOT including the 2 byte checksum
 field at the end of the packet.
 It thus checks whether that packet contained a valid CRC.

 Call routine CALC (using the whole packet as data and deriving
 its length from internal length information) to check that the result
 (i.e. the checksum of whole packet) is zero

 if it is, return zero

 Otherwise

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

61

 Return checksum found (not including the CRC field).

 function CALC_TM(TM : PACKET.TM_TYPE) return UINT16 is

 This function calculates the value to be inserted into
 the checksum field of packet TM, using the packet length stored
 within the packet to determine the length of the data to be checksumed
 (i.e. NOT including the checksum field at the end of the packet).

 Calculate the appropriate length to be used from the length
 field in the packet, then use routine CALC to calculate the
 checksum of packet TM and return the value.

 function CALC_MEM(CURRENT_CRC : UINT16;
 MEM : UINT16_ARRAY;
 NO_WORDS : INTEGER) return UINT16 is

 This function is used to calculate a checksum for a large block
 of data on the assumption that not all the data will be available
 at once. Therefore, it uses the CRC value returned by a prior
 call as input to the next one.

 Loop over the block of data, 1 16 bit word at a time.

 Call function CLC to calculate the 'running' CRC for just 1 word.

 Return the resulting CRC.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

62

6.3.2.6 debug.ads

Extracted from file "debug.ads"

 Function
 ========

 This file contains the specification and body for the package DEBUG.
 As its name implies, it contains a collection of routines useful
 for debugging.
 Both procedures write a meaningful number to fixed location in memory
 which can be read later (e.g., after a crash) to help understand what
 went wrong.

 Dependencies
 ============

with TYPES; use TYPES;
with SYSTEM;
with MEMLOC;

package DEBUG is

 procedure PROGRESS(ITEM : UINT16);

 Where ITEM is the progress number to write to memory
 This procedure writes the number "ITEM" to a fixed location in memory
 and is used to keep a record of how far the running code has progressed.
 When this memory location is read later, after a crash, it will provide
 good idea as to what was running as the code crashed.

 procedure EXCEPTION_REPORT(ITEM : UINT16);

 Where ITEM is the exception number to write to memory
 When the running code produces an Ada exception, the Ada exception
 handler should call this procedure which will write the exception
 number to a special known location in memory that can be read afterwards
 to help understand why the code crashed.

 Define some constants for the progress numbers.
 In this way, the high order bits of the code numbers used indicate the
 package involved.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

63

6.3.2.7 debug.adb

Extracted from file "debug.adb"

 Function
 ========

 This file contains the body for the package DEBUG.
 As its name implies, it contains a collection of routines useful
 for debugging.

package body DEBUG is

 procedure PROGRESS(ITEM : UINT16) is

 Where ITEM is the progress number to write to memory

 If we haven't had an Ada exception

 Write ITEM to the FIRST_PROGRESS standard memory location
 ITEM identifies which part of the code is running: the package and
 a location in that package
 After an Ada exception the value stored at this address
 will not change

 Write ITEM to the LAST_PROGRESS standard memory location
 This will continue to update after an Ada exception

 procedure EXCEPTION_REPORT(ITEM : UINT16) is

 Where ITEM is the progress number to write to memory

 If this is the first exception trapped

 Write ITEM to the fixed memory location reserved to store the
 first exception. This will not be overwritten.
 ITEM identifies in which part of the code the exception occured:
 the package and which exception was handled

 Then write ITEM to the fixed memory location reserved to store the
 last exception. This is overwritten at each exception.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

64

6.3.2.8 dempsu.ads

Extracted from file "dempsu.ads"

 Function
 ========

 This file contains the specification for the DEMPSU package
 It provides routines to control the Digital Electronics Module
 Power Supply Unit.

package DEMPSU is

 procedure DPU_RESET;

 Resets the DPU after a 'latch-up' or turns it on again if it is
 powered down.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

65

6.3.2.9 dempsu.adb

Extracted from file "dempsu.adb"

 Function
 ========

 This file contains the body for package DEMPSU
 It provides routines to control the Digital Electronics Module
 Power Supply Unit.

package body DEMPSU is

 Define the addresses used

 The DEMPSU reset register := DPU_RESET_REGISTER

 Define the procedure/functions to read / write to registers

 procedure DPU_RESET is

 To reset/turn on the DPU, write a "don't care" bit
 pattern to the DPU Reset Register of the DEMPSU control card.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

66

6.3.2.10 hk.ads

Extracted from file "hk.ads"

 Function
 ========

 This file defines the specification for the HK package. The package
 acquires and sends the Housekeeping Packets (HK), the contents of
 which are defined in the XMM-OM Telecommand and
 Telemetry Specification document, XMM-OM/MSSL/ML/0010

package HK is

 procedure ON;

 This procedure enables the acquisition of the HK packet type

 procedure OFF;

 This procedure disables the acquisition of the HK.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

67

6.3.2.11 hk.adb

Extracted from file "hk.adb"

 Function
 ========

 This file defines the body for the HK package. The package
 acquires and sends the Housekeeping Packets (HK), the contents of
 which are defined in the XMM-OM Telecommand and
 Telemetry Specification document, XMM-OM/MSSL/ML/0010

package body HK is

 Create an array of flags to hold the individual 'HK packet
 is enabled' status

 task PROCESS is
 pragma PRIORITY(IMPORTANCE.HK_PROCESS);
 entry ON;
 entry OFF;
 end PROCESS;

 The above is the specification for the internal task that performs the HK
 acquisition

 Entry ON starts the task.
 Entry OFF stops the task
 and returns whether or not it was already stopped.

 task body PROCESS is

 Create an instance of an HK packet

 Set up initial time interval

 Commence infinite loop

 Await for either:

 1) A request to start HK acquisition (already on by default)

 If ON request comes in

 Initiliase the next time for HK to be now

 2) A request to stop HK acquisition

 If OFF request comes in

 then disable acquisition

 3) otherwise, provided HK is enabled (the default)

 wait until it's time to collect the next block of HK

 unless the time is too negative

 Decide which HK section to acquire

 and branch accordingly

 If its the Detector section

 Take no action

 If it's the TMPSU

 Get Heater status

 Get Sensor current info

 Get Secondary Voltages

 Get TMPSU Secondary Currents

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

68

 If it's the ICB section

 Get Status of ICB

 If it's the SSI section

 Get SSI I/F error count

 If it's the RBI section.

 Get RBI Status and Configuration Registers

 DEMPSU Voltages

 If it's the miscellaneous section

 Get ICB Error Count

 Get TC Good Packet Counter

 Get TC Bad Packet Counter

 Get OM State

 Get ICU State

 Get Which chain (i.e Prime or Redundant)

 Get S/W Version

 If it's the DPU section.

 Get DPU Info

 Correct for DPU ROM bug (NCR 89)

 If it's the section where we send out the packet.

 then set the HK Packet SID field accordingly

 Get the current time and place in packet

 Indicate CRC present

 Calculate and set the packet length field

 Provided at least one type of HK SID is enabled

 Send packet to telemetry queue

 Set up for next HK section

 Check whether current SID has changed

 Calculate the next HK sample time
 (derived from the time determined at start and the SID)

 Subtract it from the current time and delay the
 code by the result, thus ensuring an average time interval

 end of infinite loop

 procedure OFF is

 Disable the HK acquisition program

 procedure ON is

 Ensure HK program is running

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

69

6.3.2.12 icb.ads

Extracted from file "icb.ads"

 Function
 ========

 This file contains the specification for the ICB package. The package
 controls access to lower-level routines that interface directly with
 the Instrument Control Bus (ICB). The ICB is implemented using the
 MACSbus protocol.

package ICB is

 task GUARDED is

 pragma PRIORITY(IMPORTANCE.ICB_GUARDED);

 entry PUT(DEST : DEST_ADDRESS_TYPE; -- data to one sub-address
 SUBADR : SUB_ADDRESS_TYPE;
 DATUM : UINT16;
 OK : out BOOLEAN);

 entry GET(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUB_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN);

 entry RESET;

 end GUARDED;

 Provides one-at-a-time controlled access to the PUT, GET and RESET
 functions for the ICB.

 PUT
 Writes DATUM to sub-address SUBADR at MACSbus destination DEST.
 Returns OK = TRUE if no errors occur.

 GET
 Reads DATUM from sub-address SUBADR at MACSbus destination DEST.
 Returns OK = TRUE if no errors occur.

 RESET
 Resets the ICB MACSbus interface.

 function REPORT(TID : UBYTE;
 FID : UBYTE) return BOOLEAN;

 The function implements the "Read ICB Address Directly" command
 as described in section 2.2.5 of the Telecommand and Telemetry
 Specification, XMM-OM/MSSL/ML/0010.

 Specifically, it constructs a Task Parameter Report [TM(5,4)] containing
 the datum read back from subaddress FID at destination TID-40(hex), as
 documented in section 3.5 of the above document.

 In this release, it always returns TRUE.

 function STATUS return UBYTE renames ICB_DRIVER.HK_STATUS;

 For convenience, renames a low-level routine which returns
 the ICB interface status word - see package ICB_DRIVER for
 more details.

 function ERROR_COUNT return UBYTE renames ICB_DRIVER.ERROR_COUNT;

 Returns the ICB error count (modulo 256) since the ICU was started.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

70

6.3.2.13 icb.adb

Extracted from file "icb.adb"

 Function
 ========

 This file contains the body for the ICB package. The package
 controls access to lower-level routines that interface directly with
 the Instrument Control Bus (ICB). The ICB is implemented using the
 MACSbus protocol.

package body ICB is

 task body GUARDED is

 Reset Interface

 Commence Infinite Loop

 Await a call on one of the following:

 If a call to RESET is made

 Call the ICB driver RESET procedure from ICB_DRIVER.

 If a call is made to the PUT procedure in ICB_DRIVER.

 Send the data to the put ICB driver

 If a call is made to the GET entry

 Obtain a value via the GET procedure from ICB_DRIVER.

 End of infinite loop

 function REPORT(TID : UBYTE;
 FID : UBYTE) return BOOLEAN is

 Get the datum at the address and sub-address corresponing
 with the supplied TID and FID.

 Supply the datum to the TASK_REPORT package to construct
 and send the aappropriate Report Task Parameters Packet.

 Always return success.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

71

6.3.2.14 icb_driver.ads

Extracted from file "icb_driver.ads"

 Function
 ========

 This file contains the specification for the ICB_DRIVER package.
 The package provides the lower-level routines that interface directly
 with the Instrument Control Bus (ICB). The ICB is implemented using the
 MACSbus protocol.

package ICB_DRIVER is

 procedure PUT(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUBADR_ADDRESS_TYPE;
 DATUM : UINT16;
 OK : out BOOLEAN);

 This procedure write the datum DATUM to sub-address SUBADR at
 MACSbus destination DEST. OK is set to TRUE if no errors occur.

 procedure GET(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUBADR_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN);

 This procedure request the datum DATUM from sub-address SUBADR at
 MACSbus destination DEST. OK is set to TRUE if no errors occur.

 procedure RESET;

 This procedure resets the MACSbus interface.

 function HK_STATUS return UBYTE;

 Returns ICB status
 BUT only for the last occurring error.

 function ERROR_COUNT return UBYTE;

 This returns the (modulo 256) error count of MACSbus errors since
 the ICU code started running.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

72

6.3.2.15 icb_driver.adb

Extracted from file "icb_driver.adb"

 Function
 ========

 This file contains the body for the ICB_DRIVER package.
 The package provides the lower-level routines that interface directly
 with the Instrument Control Bus (ICB). The ICB is implemented using the
 MACSbus protocol.

package body ICB_DRIVER is

 Define the structure of the status register

 --
 | msb | | | | | | | lsb |

 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

 | DEAD BITS | | TX | EXT | SYNC | END |
 | | | ERR | ERR | ERR | COMM |
 --

 Note: the structure of the ICB command register is:

 | MSB LSB|

 | ext | dest | subadr |inst |
 | |
 | | | | | | | | | | | | | | | | |

 function GET_STATUS return ICB_STATUS_TYPE is

 Read the ICB MACSbus status register port.

 Extract and return the status word

 function HK_STATUS return UBYTE is

 Return the last noted **error** status word.

 procedure PUT(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUBADR_ADDRESS_TYPE;
 DATUM : UINT16;
 OK : out BOOLEAN) is

 Construct command word to be written to command register
 based on supplied DEST and SUBADR
 (Note, Instr = RD = 010 binary, Ext = 101 binary)

 Write Datum to datum register port

 Write command word to command register (thus initiating transfer)

 Wait for completion of command (END COMM bit set),
 an error (i.e. TX ERR, EXT ERR or SYNC ERR bit set) or a timout, and
 remember the resulting status.

 Flag an error if error bitset , a timout or all 'dead bits' set.
 Otherwise, assume OK.

 if no error

 Do nothing.

 Otherwise

 Hand status, command word and datum over to be
 processed by the Analyse Errors procedure.

 Finally, ensure status register always reset by

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

73

 calling procedure RESET.

 procedure GET(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUBADR_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN) is

 Construct word to be written to command register
 based on supplied DEST and SUBADR
 (Note, Instr = TI = 100 binary, Ext = 101 binary)

 Write command word to command register
 (which initiates transfer).

 Wait for completion of command (END COMM bit set),
 an error (i.e. TX ERR, EXT ERR or SYNC ERR bit set) or a timout, and
 remember the resulting status.

 Set OK as 'false' if error or timout or all dead bits set
 Otherwise set 'true'

 Get datum (this will be bad data if there was an error)

 If no error

 Do nothing.

 Otherwise

 Hand status, command word and datum over to be
 processed by the Analyse Errors procedure.

 Finally, ensure status register always reset by
 calling procedure RESET.

 procedure RESET is

 To reset the ICB interface, write a "don't care" bit
 pattern to the Status Register port.

 Note new status.

 procedure ANALYSE_ERRORS(COMMAND_WORD : UINT16;
 DATUM : UINT16;
 STATUS: ICB_STATUS_TYPE) is

 Remember this error status.

 Increment the error count (modulo 256)

 Construct and send the appropriate 'MACSbus Error' Exception Report.

 function ERROR_COUNT return UBYTE is

 Return the (modulo 256) error count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

74

6.3.2.16 icu_mem_manager.ads

Extracted from file "icu_mem_manager.ads"

 function load_memory loads memory corresponding to the MID

 where MID is the MID
 where START_ADDRESS is the start address of the load
 where DATA is the data to load as an array of unsigned 16 bit words
 where LENGTH is the length of the data in words
 where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
 returns a boolean: true on success and false on failure

 function dump_memory dumps memory corresponding to the MID

 where MID is the MID
 where ADDRESS is the address of the dump request
 where LENGTH is the length of the requested memory dump in words
 where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
 returns a boolean: true on success and false on failure

 function calculate_memory_checksum calculates the checksum of the memory region
corresponding to the MID

 where MID is the MID
 where ADDRESS is the address of the crc request
 where LENGTH is the length of the requested block of memory to crc in words
 where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
 returns a boolean: true on success and false on failure

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

75

6.3.2.17 icu_mem_manager.adb

Extracted from file "icu_mem_manager.adb"

 Dependencies
 ============

with TYPES; use TYPES;
with UNCHECKED_CONVERSION;
with ARTCLIENT;
with PACKET;
with TC_VERIFY;
with TMQ;
with PEEK_POKE;
with CRC;
with TIME_MAN;
with SYSTEM;
with NHK;

package body ICU_MEM_MANAGER is

 task MEMORY_DUMP is

 procedure SEND_PACKET(SUB_TYPE: PACKET.TELEMETRY_SUBTYPE; ADDRESS: LONG_INTEGER; DATA :
UINT16_ARRAY; LENGTH : UINT16; MID: UINT16) is
 CRC_LENGTH: UINT16;
 DUMP_PACKET: PACKET.TM_TYPE(PACKET.MEMORY_MAINTENANCE_REPORTS, SUB_TYPE);

 Flag CRC as present

 Check if CRC is present

 If subtype is for a memory_dump

 Write the address into the packet

 Write the packet_length into the packet

 Write the data into the packet

 If subtype is for a memory_checksum_report

 Write the address into the packet

 Write the packet_length into the packet

 Write the memory_length into the packet

 Send the packet

 procedure READ_BLOCK(MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: INTEGER; DATA: in out
UINT16_ARRAY; SEQUENCE_COUNT_AND_SOURCE: UINT16) is

 returns array 0 .. PACKET.MAX_TM_MEM_PARAMS_M1

 Check the MID

 When the MID is 0: icu operand/data space
 For each word of data to be read

 Calculate the address state

 Enter critical section

 Read from the address

 Leave critical section

 When the MID is 1: icu instr space
 For each word of data

 Calculate the address_state

 Enter critical section

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

76

 Read from the address

 Leave critical section

 When the MID is wrong
 Send unsuccessful acceptance packet

 task body MEMORY_DUMP is

 begin an infinite loop

 if a call to start is made

 Finish when there's nothing left

 If there's more than a packet left

 Read the memory

 Send the data in a packet

 Recalculate the no of words left

 If there's less than or just one packet left
 Read the memory

 Send the data in a packet

 function LOAD_MEMORY(MID: UINT16; START_ADDRESS: LONG_INTEGER; DATA: UINT16_ARRAY; LENGTH:
UINT16; SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

 When the MID is 0: icu operand/data space
 For each word to be loaded

 Calculate address state and address offset

 Protect from address state change by entering critical section

 Write the value to memory

 Leave critical section

 When the MID is 1: icu instruction space
 For each word to be loaded

 Calculate address state and address offset

 Protect from address state change by entering critical section

 Write the value to memory

 Leave critical section

 Otherwise the MID must be wrong
 put params in array

 Send unsiccessful acceptance (illegal mid) packet

 function DUMP_MEMORY(MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

 Remember the dump parameters

 Try to ask for dump

 for 0.5 second

 if can't dump, return false so that an unsuccessful execution can be sent

 function CALCULATE_MEMORY_CHECKSUM(MID: UINT16;
 ADDRESS: LONG_INTEGER;
 LENGTH: UINT16;
 SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

 Set crc syndrome to ffff to start with

 loop

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

77

 until there's nothing left to crc

 If there's more than or just one packet's worth left

 Read a block of memory

 crc it

 recalculate length remaining

 If there's less than a packet's worth left
 Read a block of memory

 crc it

 finish

 Send a memory checksum report with the checksum just calculated

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

78

6.3.2.18 importance.ads

Extracted from file "importance.ads"

 Function
 ========

 This package defines the priority of tasks

 The range of priorities is 10..200
 The default is SYSTEM.DEFAULT_PRIORITY := 10;

 Priorities are allocated in bands as follows:-

 H/W Simulators (for debugging) 191 -> 200
 CPU Watchdog reset 190
 S/W Watchdogs 171 -> 189
 "Guard" Tasks to control access to resources 151 -> 170
 Task initiated by interrupts 141 -> 150
 "Semaphore" Tasks 131 -> 140
 "Monitor Tasks" (eg. DPU, TM) 111 -> 130
 "Working Tasks" e.g. HK, Science, Blue 11 -> 110
 "Idle" Task 10

package IMPORTANCE is

 Priority Definitions
 ====================

 CPU Watchdog Reset

 CPU_RESET : constant SYSTEM.PRIORITY := 190;

 Software Watchdogs

 DPU Heartbeat Watchdog Task

 DPU_HEARTBEAT : constant SYSTEM.PRIORITY := 171;

 "Guard Tasks" to control access to resources

 Priority of task to control access to SSI i/face

 SSI_GUARDED : constant SYSTEM.PRIORITY := 151;

 Priority of task to control access to ICB i/face

 ICB_GUARDED : constant SYSTEM.PRIORITY := 152;

 Priority of task to control access to telemetry queue

 TMQ_GUARDED : constant SYSTEM.PRIORITY := 153;

 Priority of task to control access to HK record (NOT USED)

 HK_ACCESS : constant SYSTEM.PRIORITY := 154;

 Priority of task to guard running/not running status flag for
 HK acquire (NOT USED)

 HK_RUNNING_GUARD : constant SYSTEM.PRIORITY := 155;

 High Priority Interrupt Initiated Tasks

 Priority of BCP4 interrupt task

 BCP4_INTERRUPT : constant SYSTEM.PRIORITY := 140;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

79

 "Semaphore" Tasks

 Priority of DPU Event semaphore task

 EVENT_ACTION : constant SYSTEM.PRIORITY := 131;

 Priority of Mutual exclusion semaphore task type

 MUTEX_SEMAPHORE : constant SYSTEM.PRIORITY := 132;

 Timer A Resource

 TIMER_A : constant SYSTEM.PRIORITY := 133;

 "Monitor Tasks" (eg. DPU, TC)

 Priority of Task to monitor DPU data for events

 DPU_DATA_MANAGER : constant SYSTEM.PRIORITY := 112;

 Priority of Task to monitor Telecommand queue

 TCPROC : constant SYSTEM.PRIORITY := 111;

 "Working Tasks" (e.g. HK, Science, Blue)

 Priority of task that collects and send HK data

 HK_PROCESS : constant SYSTEM.PRIORITY := 92;

 Load Blue Centroid Table (NOT USED IN BASIC)

 LOAD_CENTROID_TABLE : constant SYSTEM.PRIORITY := 93;

 Load Blue Window Table (NOT USED IN BASIC)

 LOAD_WINDOW_TABLE : constant SYSTEM.PRIORITY := 94;

 Priority of task to perform Thermal Control (NOT USED IN BASIC)

 THERMAL_CONTROL : constant SYSTEM.PRIORITY := 95;

 Priority of task that fetches DPU science data (NOT USED).

 FETCH_DPU_DATA : constant SYSTEM.PRIORITY := 96;

 Priority of task that fetches other DPU data
 (e.g. priority data) - NOT USED AS NOT IMPLEMENTED

 DPU_OTHER_DATA_MANAGER: constant SYSTEM.PRIORITY := 97;

 IDLE Task (NOT USED)

 IDLE : constant SYSTEM.PRIORITY := 10;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

80

6.3.2.19 mem_manager.ads

Extracted from file "mem_manager.ads"

 --
 function REQUEST(MEM_MANAGER_PACKET: PACKET.TC_TYPE) return BOOLEAN;
 --

 Where MEM_MANAGER_PACKET is a memory management packet
 Returns BOOLEAN true success or false on failure
 This merely forwards packets onto the ICU_MEM_MANAGER

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

81

6.3.2.20 mem_manager.adb

Extracted from file "mem_manager.adb"

 Function
 ========

 This file contains the body for package mem_manager.
 It calls icu_mem_manager or dpu_mem_manager to load/dump/check memory.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/SP/0061

 Dependencies
 ============

with UNCHECKED_CONVERSION;

with PACKET;
with ICU_MEM_MANAGER;
with TMQ;
with TC_VERIFY;
with DEBUG;

package body MEM_MANAGER is

 function REQUEST(MEM_MANAGER_PACKET: PACKET.TC_TYPE) return BOOLEAN is

 Find length of CRC (is it there or not)

 Calculate length of data is packet

 Convert length from bytes to words

 Check memory management packet subtype - load/dump/crc

 Check address is valid

 If not, send an unsuccessful acceptance packet

 Check the MID

 When the MID is for the ICU

 Call LOAD_MEMORY in ICU_MEM_MANAGER

 Otherwise send an unsuccessful acceptance packet

 Return FALSE if something went wrong

 When it's a dump memory command (subtype 2)

 Check the MID

 When the MID is for the ICU (0, 1)

 Call DUMP_MEMORY in ICU_MEM_MANAGER

 Otherwise send an unsuccessful acceptance packet

 if we had trouble, send an unsuccessful execution packet

 When it's a memory crc (subtype 3)
 Check the MID

 If the MID is for the ICU (0, 1)

 Call CALCULATE_MEMORY_CHECKSUM in ICU_MEM_MANAGER

 Otherwise send an unsuccessful acceptance packet

 Otherwise we have a wrong subtype for MEM_MANAGEMENT
 So send an unsuccessful acceptance

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

82

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

83

6.3.2.21 memloc.ads

Extracted from file "memloc.ads"

 Function
 ========

 This file contains the specification only package MEMLOC.
 This package defines any fixed memory locations.

package MEMLOC is

 Define the location of the ADASCOPE version ID we are running

 Define the size of the telemetry queues

 Define RBI Communication Area Location

 Define the location TC_LOC of the telecommand queue area

 Define the location TM_LOC of the telemetry queue area

 Define other tc/tm special addresses (e.g. queue pointers)

 Define BCP4/RBI interrupt processing save areas
 (these are fixed to assist assembler
 and ADA routines to communicate with each other).

 define RBI special addresses

 Define Time Control Flags locations

 Define the Bootstrap Parameter Area

 Define SSI special address

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

84

6.3.2.22 modeman.ads

Extracted from file "modeman.ads"

package MODEMAN is

function TO_MODE(MODE : UINT16; PARAM : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

 Sets the current mode of the ICU.

function MODE return UINT16;

 Returns the current mode of the ICU.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

85

6.3.2.23 modeman.adb

Extracted from file "modeman.adb"

with RESET;
with DEBUG;
with TC_VERIFY;
with PACKET;

package body MODEMAN is

function TO_MODE(MODE : UINT16; PARAM : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

 If MODE is full safe then

 Accept telecommand

 Wait one second for acknowledgement to be sent

 Set current mode to new mode

 Else

 Send unsuccessful command acceptance

function MODE return UINT16 is

 Return the current mode

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

86

6.3.2.24 mutex.ads

Extracted from file "mutex.ads"

 Function
 ========

 This file contains the specification for the MUTEX package. This
 provides a mutual exclusion semaphore emulation;

package MUTEX is

 task type SEMAPHORE is

 entry SEIZE;

 This entry point acquires the resource

 entry RELEASE;

 This entry point releases the resource

 end SEMAPHORE;

end MUTEX;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

87

6.3.2.25 mutex.adb

Extracted from file "mutex.adb"

 Function
 ========

 This file contains the body for the MUTEX package. This provides a
 mutual exclusion semaphore emulation;

package body MUTEX is

 task body SEMAPHORE is

 Assume, by default, the resource is not in use.

 Begin infinite loop

 Await a call to seize or release a resource.

 If resource is flagged as not 'in use'

 allow acceptance of a seize resource request

 and set flag as 'in use'

 If resource is flagged as 'in use'

 allow acceptance of a release resource request

 and set flag as not 'in use'

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

88

6.3.2.26 nhk.ads

Extracted from file "nhk.ads"

 Function
 ========

 This file contains the specification for package NHK.

 The function of this package is to provide routine(s) to construct and
 place Non-Periodic Housekeeping (NHK) packets into the telemetry queue
 prior to their being transmitted to the ground.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package NHK is

 procedure PUT(SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
 SID_EX : PACKET.SID_TYPE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER);

 The procedure PUT constructs and places an NHK packet in the telemetry
 queue. The interface is as follows:

 where:

 SUB_TYPE specifies the sub-type of NHK packet to be placed in the queue.
 It will take one of the the following values:

 PACKET.EVENT_REPORT := 1;
 PACKET.EXCEPTION_REPORT := 2;
 PACKET.MAJOR_ANOMALY_REPORT := 3;

 SID_EX specifies the Structure Identifier (SID) to be loaded into the
 packet

 PARAMS specifies an array of parameters to be loaded into the packet.
 Note - the index range of the parameter array should start at 0.

 SIZE specifies the number of parameters to be loaded from PARAMS.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

89

6.3.2.27 nhk.adb

Extracted from file "nhk.adb"

 Function
 ========

 This package body implements the body for package NHK.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package body NHK is

 procedure PUT(SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
 SID_EX : PACKET.SID_TYPE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER) is

 Create an instance of the NHK Packet Data Structure.

 If this packet's SID is enabled

 Place current time in data field header

 Flag presence or absence of CRC in data field header

 Calculate and load packet length

 Load in Structure Identifier (SID)

 Load Number of Parameters

 Load parameters into packet

 Put packet record into queue

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

90

6.3.2.28 packet.ads

Extracted from file "packet.ads"

 Function
 ========

 This file contains the specification only package PACKET. This
 defines the format of the telecommand and telemetry packets used by the OM
 instrument and are derived from the description in the 'Telecommand
 and Telemetry Specification', XMM-OM/MSSL/ML/0010.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

91

6.3.2.29 peek_poke.ads

Extracted from file "peek_poke.ads"

 Function
 ========

 This file contains the specification for the XMM-OM low-level memory read/write.
 The program is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

92

6.3.2.30 peek_poke.asm

File is peek_poke.asm

 Name
 peek

 Description
 Picks up an address to be peeked and the Address State from the stack,
 switches to that Address State, peeks the address, selects the
 original Address State and exits with the value peeked in r2.

 Calling sequence
 var := peek(address,address_state)

 (All parameters & return type are UINT16)

 Input
 r0 Link register
 r2 Uplevel register (not needed ?)
 r14 Frame pointer (not needed ?)
 r15 Stack pointer

 Output
 r2 Holds contents of address peeked

 Altered
 r1, r2, r3, r4

 Register map
 r0 Link register
 r1 Holds entry Address State
 r2 Return value
 r3 Holds address to peek
 r4 Holds Address State to switch to

 Notes
 Assembled for use as a foreign code segment in Ada.
 Registers r0-r4 can be trashed.
 All other registers must be preserved.

 Assumptions

 No error checking is performed.

peekaddr

 Save the current address state and change address state
 Read the memory location
 Restore old address state
 Return

 Name

poke

 Description

Picks up an address to be poked, the Address State and the value

to be poked into memory from the stack, switches to that Address

State, pokes the address, selects the original Address State and

exits with the value poked in r2.

 Calling sequence

var := poke(value,address,address_state);

(All parameters & return type are UINT16)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

93

 Input

r0

Link register

r2

Uplevel register (not needed ?)

r14

Frame pointer (not needed ?)

r15

Stack pointer

 Output

r2

Holds value poked into memory

 Altered

r1, r2, r3, r4

 Register map

r0

Link register

r1

Holds entry Address State

r2

Holds value to poke and return value

r3

Holds address to poke

r4

Holds Address State to switch to

 Notes

Assembled for use as a foreign code segment in Ada.

Registers r0-r4 can be trashed.

All other registers must be preserved.

Is a function because procedure definition in Ada appears

not to link properly (doesn't see assembler label).

 Assumptions

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

94

No error checking is performed.

pokeaddr

 Save current address state

 Write address with value

 Change back to original address state

 Return

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

95

6.3.2.31 rbi.ads

Extracted from file "rbi.ads"

 Function
 ========

 This file contains the specification for the RBI package. This, in turn,
 contains RBI service routines. The package RBI and RBI_INT together
 control and monitor the RBI (Remote Bus Interface).

 The code in this package is based on the description of the RBI chip
 given in "Standard RBI Chip For OBDH Interface
 (MC1031 Technical Informations 2.8-01/06/95 and from the
 "OBDH Bus Protocol Requirements Specification", XM-IF-DOR-0002.

package RBI is

 procedure INIT;

 Performs RBI package initialisation.

 function UNCORRECTED_OBT return OBT_TYPE;

 Returns the uncorrected OBT (On-board Time) from the RBI.

 function CORRECT_OBT(UNCORRECTED_OBT_VALUE : in OBT_TYPE) return OBT_TYPE;

 Applies the correction to the OBT documented in the ADV technical note
 2.8-01/06/95

 function CORRECTED_OBT return OBT_TYPE;

 Combines the functions of UNCORRECTED_OBT and CORRECT_OBT;

 procedure SET_OBT(OBT_VALUE : in OBT_TYPE);

 Sets the RBI OBT value. This is usually extracted from an Add Time Code
 packet TM(10,3).

 function "+"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE;

 Adds OBTs together N.B. only accurate to 2**-8 secs!!!!

 function "-"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE;

 Subtract OBTs N.B. only accurate to 2**-8 secs!!!!
 Watchdog Control

 procedure SET_SYNC_READY(SYNC_ENABLE : BOOLEAN);

 Set/Unset Sync Enable Bit in RBI Configuration Register

 task type WATCHDOG_TYPE is
 pragma PRIORITY(IMPORTANCE.CPU_RESET);

 entry PARAMS(TIMOUT : UINT16 ;
 RESET_INTERVAL : UINT16 ;
 OK : in out BOOLEAN);
 entry ENABLE;
 entry DISABLE;

 end WATCHDOG_type;

 This task controls the RBI watchdog.

 ENABLE starts the task.
 DISABLE stops the task.
 PARAMS resets the time intervals used to control the watchdog.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

96

 TIMOUT specifies what value should be loaded into the
 watchdog timer counter.
 RESET_INTERVAL specifies how often the software the software should
 reload the time counter with TIMOUT.

 function TM_READY return BOOLEAN;

 Returns whether TM_READY (telelemetry ready to transmit) bit is set
 in the RBI status register

 procedure SET_TM_READY(SET_TO_ON : BOOLEAN);

 Set/Unset TM_READY (telelemetry ready to transmit) bit in the
 RBI status register

 procedure TOGGLE_TM_READY;

 Toggles TM_READY (telelemetry ready to transmit) bit in the
 RBI status register

 function TC_READY return BOOLEAN;

 Returns whether TC_READY (ready to receive telecommand) bit is set
 in the RBI status register

 procedure SET_TC_READY(SET_TO_ON : BOOLEAN);
 pragma INLINE(SET_TC_READY);

 Set/Unset TC_READY (ready to receive telecommand) bit in status register

 procedure SET_COMM_AREA_TM_INFO(START_ADDRESS : UINT16;
 PACKET_LENGTH : UINT16);

 Store start address and length of a telemetry packet in
 the communications area (CCA).

 procedure SET_COMM_AREA_TC_INFO(START_ADDRESS : UINT16);

 Store start address of where the telecommmand should be stored
 in the communication area (CCA).

 function STATUS_REGISTER return UINT16;

 Returns the RBI Status Register

 function CONFIG_REGISTER return UINT16;

 Returns the RBI configuration register

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

97

6.3.2.32 rbi.adb

Extracted from file "rbi.adb"

 Function
 ========

 This file contains the body for the RBI package. This, in turn,
 contains RBI service routines. The package RBI and RBI_INT together
 control and monitor the RBI (Remote Bus Interface).

 The code in this package is based on the description of the RBI chip
 given in "Standard RBI Chip For OBDH Interface
 (MC1031 Technical Informations 2.8-01/06/95 and from the
 "OBDH Bus Protocol Requirements Specification", XM-IF-DOR-0002.

package body RBI is

 Contents of OBT as follows:

 | OBT 0 | OBT 1 | OBT 2 | OBT location

 | C | D | E | Register

 |0 15|16 31|32-42|xxx| Bits in Counter

 | SECS | FRAC | Secs/Fractions of sec

 |23 0|-1 -19|xxx| 2**? secs

 Note the layout of the SCET in a packet for comparison (and its offset)

 23 0 -1 -16

 | Coarse Time | Fine |

 function UNCORRECTED_OBT return OBT_TYPE is

 Ensure exclusive use of RBI configuration register
 while we peform a Freeze operation.

 "Freeze" the current time by writing appropriate instruction
 to the RBI configuration register.

 Release the register for use by other code.

 Read and store bits 0-15 of the result.

 Read bits 16-31 of the result

 Read remaining bits 32-42 (result in high order bits)

 Return the stored result (i.e. the OBT as defined above).

 function CORRECT_OBT(UNCORRECTED_OBT_VALUE : in OBT_TYPE) return OBT_TYPE is

 if bits 32 to 42 of the counter freeze 2 is greater than 3ff hex

 subtract 1 from bits 0 to 31

 Otherwise

 subtract one from 2nd word

 Return the result (a corrected OBT).

 function CORRECTED_OBT return OBT_TYPE is

 Get the OBT and correct it.

 procedure SET_OBT(OBT_VALUE : in OBT_TYPE) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

98

 Prevent use of Freeze register while we do this.

 Write the most significant 16 bits of the provided OBT
 into the 1st RBI OBT update register

 Write the next 16 bits of the provided OBT
 into the 2nd RBI OBT update register

 Release Freeze register

 function "+"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE is

 Prevent Overflows on addtions.

 Convert the OBT's to long integers, add and convert back.

 function "-"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE is

 Prevent Overflows on subtractions.

 Convert the OBT's to long integers, subtract and convert back.

 function TO_OBT_TYPE(INPUT : in LONG_INTEGER) return OBT_TYPE is

 This routine is used internally to the package to convert
 a supplied 64 bit integer into an OBT format (3*16 bit words).

 function TO_LONG_INT(INPUT : in OBT_TYPE) return LONG_INTEGER is

 This routine is used internally to the package to convert
 a supplied OBT (3*16 bit words) into a 64 bit integer.

 procedure SET_SYNC_READY(SYNC_ENABLE : BOOLEAN) is

 Get the RBI configuration register value

 If the Synchronisation Enable bit is not as required

 Toggle it

 task body WATCHDOG_TYPE is

 Begin infinite loop

 Await a call to one of the rendevous points

 If a call to the set params entry point is made

 Remember the specified timout period (units = 1/256 secs)
 and reset interval

 Flag as valid.

 If a call to enable the watchdog is made

 Determine if watchdog is already enabled

 Write timout period to appropriate register

 If necessary, enable watchog

 If a call to disable the watchdog is made

 Determine if watchdog is enabled

 If so, disable it

 OR

 Provided the watchdog is enabled

 and if no call to a rendevous is made for reset period

 Reset counter in watchdog (thus as long as the ICU code
 is running, the timout counter is never allowed to get
 to zero.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

99

 procedure INIT is

 Set up the comms area by writing appropriate values to registers

 Ensure TC and TM ready flags are disabled for now

 function TM_READY return BOOLEAN is

 Get the RBI Status register value

 Extract and return the TM_READY bit

 procedure SET_TM_READY(SET_TO_ON : BOOLEAN) is

 If the telemetry ready for transmission (TM_READY) bit is not
 already in the requested status

 Toggle it so it is

 procedure TOGGLE_TM_READY is

 Toggle the current RBI TM_READY (telemetry ready for transmission)
 bit state

 function TC_READY return BOOLEAN is

 Get RBI status register value

 Extract and return the TC_READY
 (ready to receive a telecommand) bit

 procedure SET_TC_READY(SET_TO_ON : BOOLEAN) is

 Get current status RBI register.

 If bit 11 (the TC_READY- ready to receive a telecommand) is
 already in the required status

 Do nothing

 Otherwise if it needs to be on

 Set it on in the RBI status read back earlier

 else

 Clear it in RBI status read back earlier.

 Finally, write back the resulting RBI status word to the
 register (NOTE: only bits 11-15 can be written to)

 procedure SET_COMM_AREA_TM_INFO(START_ADDRESS : UINT16;
 PACKET_LENGTH : UINT16) is

 Store the start address of the TM packet in bytes,
 relative to the start adddress of the CCA, in the CCA,

 Store the packet length in the CCA in words but
 with 1 subtracted and the MSB set, as per specification.

 procedure SET_COMM_AREA_TC_INFO(START_ADDRESS : UINT16) is

 Store in TC packet start address in bytes relative to the start
 of the CCA, in the CCA.

 function CONFIG_REGISTER return UINT16 is

 Get the config register value

 function STATUS_REGISTER return UINT16 is

 Get the status register value

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

100

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

101

6.3.2.33 rbi_ih.ads

Extracted from file "rbi_ih.ads"

 Function
 ========

 This file contains the specification for the XMM-OM rbi interrupt handler.
 The interrupt handler is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

102

6.3.2.34 rbi_ih.asm

File is rbi_ih.asm

 This follows closely the document:
 OBDH Bus Protocol Requirement Specification
 XM-IF-DOR-0002
 Fetch the interrupt counter
 Check for impending overflow
 If it's OK, increment it
 otherwise avoid overflow
 read config_reg
 get the bits we're interested in
 is it lossn (0)?
 is it instruction to user (1)?
 is it instruction to rbi (2)?
 is it other_it (3)?

 otherwise serious error so safe

 Read value from appropriate register
 (which also clears the interrupt)
 read instruction to user reg
 If the register is 0, jump to tcq_add
 when it's an Instruction to RBI interrupt

 read instruction to rbi reg
 This could be caused by warm reset and we
 call back into the bootstrap (TBI)

 If it's any other sort of interrupt
 This is an error (so we safe or discard with exception, TBD)
 and finish off

 tcq_add **

 set tc_ready to false
 if full
 Tell s/c we can't accept packets (This ought never happen as we take packets away in
time?)
 read input_pointer from memory
 add one
 mod it with no_tc_slots
 keep for future
 store it again
 Now set up new address for next packet
 start_address = 16#404# + r0*248
 if not tc_q.is_full
 i.e.
 if (input_pointer+1)&3 != output_pointer
 (increment input_pointer)
 the required mask is 0
 else required mask = set_tc_ready_mask (16#0010#)
 Read status
 'and' this status with set_tc_ready_mask (16#0010#);
 Compare this with the required mask
 If they're the same, finish off
 if REQUIRED_MASK = SET_TC_READY_MASK (16#0010#)
 'or' the status that was read with set_tc_ready_mask (16#0010#)
 else 'and' the status that was read with clear_tc_ready_mask (16#ffef#)
 xio this to the rbi_status reg
 finish off
 Read status
 If the tm_ready bit is set
 write a reset output transfer request to the rbi config reg
 Increment the output_pointer
 Read the input_pointer and compare output_pointer with input_pointer
 If they're equal
 finish off
 Otherwise calculate the address and write it to cca_tm_start
 Calculate the length and write it to cca_tm_length
 Read the RBI status
 'and' it with the tm_ready_mask (16#0080#)
 finish off
 if zero, write a reset_output_transfer_request to the RBI config reg
 finish off
 Tidy up after finishing
 FINISH OFF:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

103

 Recover registers
 Turn on interrupts
 Back from whence we came

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

104

6.3.2.35 reset.ads

Extracted from file "reset.ads"

 Function
 ========

 This file contains the specifications for the XMM-OM reset package.
 reset is written in assembler and linked as a foreign.

package RESET is

procedure RESET(PARAM : UINT16);

 This procedure changes the mode of the ICU.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

105

6.3.2.36 reset.asm

File is reset.asm

 Name
 reset

 Description
 When called, enables the start up ROM and jumps to
 location zero.
 Disable interrupts
 Stop timer B
 Make sure we are in address state 0
 Copy new interrupt vectors to data space
 Copy new interrupt vectors to instruction space
 Reselct page 0
 Clear all interrupts
 Now start op code
 Now start operational code

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

106

6.3.2.37 ssi_driver.ads

Extracted from file "ssi_driver.ads"

 procedure SSI_INTERRUPT;

 SSI_INTERRUPT is the SSI interrupt handler (written in Ada but
 connected via the assembly code ssi_ih.asm)

 procedure RESET;

 This procedure resets the SSI link
 (software only---there is no hardware reset)

 SSI_ERROR_COUNT : UINT16 := 0;

 This variable is a counter for the number of SSI errors that have occured

 HEARTBEAT_COUNTER : UINT16 := 0;

 This variable is a counter for the number of heartbeats that have occured
 It wraps at 0xffff back to 0 then 1 etc.

 SSI_INT_COUNT : UINT16 := 0;

 This variable is a counter for the number of SSI interrupts received
 It wraps back to 0 after 0xffff

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

107

6.3.2.38 ssi_driver.adb

Extracted from file "ssi_driver.adb"

 Function
 ========

 This file contains the body for package ssi_driver.
 It writes to and reads from the SSI interface.

 Reference
 =========

 The SSI interface is described in a document.

 Dependencies
 ============

with SYSTEM;
with UNCHECKED_CONVERSION;
with INTRINSICS ; use INTRINSICS;
with ARTCLIENT;

with DEBUG;
with MEMLOC;

 Suppress all checks to speed up

package body SSI_DRIVER is

 The first word of an SSI block read back by the ssi_ih interrupt handler
 is stored at MEMLOC.SSI_FIRST_WORD_LOCATION for speed.

 procedure SSI_INTERRUPT is

 This (Ada code) is called from ssi_ih.asm (assembler code)

 interrupts are already disabled by the 31750's microcode

 - Read Data -

 Read first word of SSI block from the special address that
 the assembler code (ssi_ih) wrote to

 remember the initial timer B value

 Turn on RBI interrupts

 loop

 get the SSI status

 If there's more data to read - read it

 if the count of words in this block gets far too large, store an error

 otherwise increment the READ count

 reset the old stored value of timer B because we haven't stopped receiving data yet

 but if there's nothing to read this time round
 check the timer

 if timer B has wrapped round, add on 64K

 exit the loop when we've been waiting to read something for 40 timer-B ticks (4 ms)

 read the SSI status

 if there's been an overflow

 clear the overflow

 do a dummy read to clear

 store an error "-8"

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

108

 end loop

 get the second word of the SSI block from the output buffer
 this contains the number of words minus two that should be in the block
 if the number read is just too large

 remember an error "-11"

 read the SSI status

 if there's been an overflow

 clear the overflow

 do a dummy read to clear

 store an error "-7"

 clear SSI interrupt by writing to the SSI interface

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

109

6.3.2.39 ssi_ih.ads

Extracted from file "ssi_ih.ads"

 Function
 ========

 This file contains the specification for the XMM-OM ssi interrupt handler.
 The interrupt handler is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

110

6.3.2.40 ssi_ih.asm

File is ssi_ih.asm

 Sort out the stack
 Read first word of SSI block from DPU to ICU and store for Ada
 Jump to Ada SSI interrupt handler
 Tidy up
 Beware of strange arithmetic (eliminate complaints)
 Prohibit preemption
 Recover R15 contents
 Release interrupt stack
 Recover register R15
 Recover registers R0 to R3
 Return from interrupt

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

111

6.3.2.41 task_report.ads

Extracted from file "task_report.ads"

 Function
 ========

 This file contains the specification for package TASK_REPORT.

 The function of this package is to provide routine(s) to construct and
 place Task Parameter Report packets into the telemetry queue
 prior to their being transmitted to the ground.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package TASK_REPORT is

 procedure PUT(TID : UBYTE;
 FID : UBYTE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER);

 The procedure PUT constructs and places a Task Param Report packet
 associated with TID and FID
 in the telemetry queue. The interface is as follows:

 where:

 PARAMS specifies an array of parameters to be loaded into the packet.
 Note - the index range of the parameter array should start at 0.

 SIZE specifies the number of parameters to be loaded from PARAMS.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

112

6.3.2.42 task_report.adb

Extracted from file "task_report.adb"

 Function
 ========

 This file contains the body for package TASK_REPORT.

 The function of this package is to provide routine(s) to construct and
 place Task Parameter Report packets into the telemetry queue
 prior to their being transmitted to the ground.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package body TASK_REPORT is

 procedure PUT(TID : UBYTE;
 FID : UBYTE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER) is

 Flag presence or absence of CRC in data field header

 Calculate and load packet length

 Load parameters into packet

 Put packet record into queue

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

113

6.3.2.43 taskman.ads

Extracted from file "taskman.ads"

 Function
 ========

 This package contains the specification for the TASKMAN package.
 The function of this package is to interpret the Task
 Management Telecommands and forward them to the appropriate code.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package TASKMAN is

 function REQUEST(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN;

 The function REQUEST provides the means of passing the telecommand
 to the package for action.

 where:

 TC_PACKET contains the packet to be interpreted and executed.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

114

6.3.2.44 taskman.adb

Extracted from file "taskman.adb"

 Function
 ========

 This package contains the body for the TASKMAN package.
 The function of this package is to interpret the Task
 Management Telecommands and forward them to the appropriate code.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package body TASKMAN is

 function REQUEST(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

 Set up default error condition of command not being accepted.

 Select action on the basis of packet subtype.

 When the packet subtype is Start Task...

 Set up default error of illegal TID

 Select Action on the basis of the Task Identifier (TID)

 if its a normal TMPSU normal heater configuration command

 Turn on 1 heater

 Wait a bit

 then turn on 2nd heater

 Flag as accepted

 If its a secondary voltages command

 Enable them and flag as accepted

 If its a DEMPSU reset

 Reset/Turn-on the DPU

 And flag as accepted

 If its a watchdog command

 Enable it

 and flag as accepted

 If its an HK command

 Start it

 and flag as accepted

 If it's an ICB Direct command.

 Allow direct writing to the ICB

 and flag as accepted.

 when TID is any other value

 End of selection

 When the packet subtype is Stop Task...

 Set up default error of illegal TID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

115

 Select Action on the basis of the Task Identifier (TID)

 If it's a TMPSU heater command

 Turn off one heater

 Wait a bit

 then turn off the other heater

 Flag as accepted

 If it's a secondary voltage command

 Disable them and flag as accepted

 If it's a watchdog command

 Disable it

 and flag as accepted

 If it's an HK command

 Disable it

 and flag as accepted

 If it's an ICB Direct Command

 Disallow direct writing to the ICB ports

 and flag command as accepted.

 when TID is any other value --------------------------------

 Flag as invalid task

 End of Selection

 When the packet subtype is Load Task...

 Set up default error of illegal FID

 Select Action on the basis of the Task Identifier (TID)

 when it's a ICB Direct command

 and the FID value indicates a write to an ICB port.

 and direct writing to ICB ports is enabled

 Output supplied datum to specified
 address and subaddress

 In this code, always flag as accepted.

 Otherwise

 Issue an Unsuccessful Acceptance Packet

 and flag command as unaccepted.

 Any othe value of FID

 Flag it as an invalid command.

 If it's a watchdog command

 If the FID indicates a watchdog timout class of command

 Reset the controlling parameters

 Otherwise

 Flag as an invalid command

 when TID is any other value

 Flag as a coomand error of illegal an TID

 End of Selection

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

116

 When the packet subtype is Report Task...

 Set up default error of illegal FID

 Look at the TID

 If it's a valid read ICB port type

 and direct access to the ICB is enabled

 Request the appropriate task report packet
 and flag as an accepted command

 otherwise

 Issue an unsuccessful acceptance packet.

 and flag as such

 Otherwise

 Flag as an illegal comand with a TID error

 When the packet subtype is Mode Transition...

 Set up a default error of illegal mode

 Then perform change to operational mode via the Mode Manager
 code.

 If the supplied command was an invalid task management command,

 inform the ground with an Unsuccessful Acceptance Command packet.

 Return success only if we had both a valid task command and
 it was not rejected by called functions as a bad command.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

117

6.3.2.45 tc_q.ads

Extracted from file "tc_q.ads"

 Function
 ========

 This file contains the specification for the package TC_Q. That package
 supplies the routines that manipulate the telecommand queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010
 The OBDH protocol is defined in XM-IF-DOR-0002

package TC_Q is

 Define number of slots NO_SLOTS in Telecommand Queue

 Define telecommand queue data structure as follows

 Description Size (Words)
 =========== ============

 * Packet Slot 0 * 124

 * ... and so on until... * 124

 * Packet Slot n-1 * 124

 Two pointers are used to indicicate the 'occupation' of the queue.

 The Input Pointer indicates the packet slot into which the
 the next packet will be written.

 The Output Pointer indicates the packet slot from which the
 the next packet should be taken.

 In addition, there is a communication area which the spacecraft examines
 to determine the location of a TM packet to be collected or into which
 a TC packet should be loaded.

 * RBI Status Word *

 * Start Address of TM Source Packet *

 * Length of TM Source Packet *

 * Start Address of TC Source Packet *

 Create instance of Q data structure, and fix at location in memory

 Define the input and output pointers at a fixed location in memory.

 procedure RESET;

 This procedure resets (i.e. clears) the TC queue

 procedure REMOVE(PCKT : in out PACKET.TC_TYPE);

 This procedure removes a packet from the TC queue

 where:

 PCKT is the packet removed from the TC queue.

 procedure ADD;

 This procedure informs the ICU that the s/c had DMAd a TC packet

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

118

 NOTE: This routine is now obsolete and should have been removed.
 Its function is now handled by a low level assembler routine
 in package RBI_IH.

 function IS_EMPTY return BOOLEAN;

 This function determines whether the TC queue is empty
 It returns TRUE if the queue is empty

 function IS_FULL return BOOLEAN;

 This function determines whether the TC queue is full
 It returns TRUE if the queue is full

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

119

6.3.2.46 tc_q.adb

Extracted from file "tc_q.adb"

 Function
 ========

 This file contains the body for the package TC_Q. It
 supplies the routines that manipulate the telecommand queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010.
 The OBDH protocol is defined in XM-IF-DOR-0002

package body TC_Q is

 Define telecommand queue data structure as follows

 Description Size (Words)
 =========== ============

 * Packet Slot 0 * 124

 * ... and so on until... * 124

 * Packet Slot n-1 * 124

 Two pointers are used to indicicate the 'occupation' of the queue.

 The Input Pointer indicates the packet slot into which the
 the next packet will be written.

 The Output Pointer indicates the packet slot from which the
 the next packet should be taken.

 In addition, there is a communication area which the spacecraft examines
 to determine the location of a TM packet to be collected or into which
 a TC packet should be loaded.

 * RBI Status Word *

 * Start Address of TM Source Packet *

 * Length of TM Source Packet *

 * Start Address of TC Source Packet *

 procedure RESET is

 Set the start and end pointers to the 1st packet

 Store the Start address of the 1st packet in the comm area

 Inform s/c we are ready to receive a packet by setting the
 appropriate RBI status word bit.

 procedure REMOVE(PCKT : in out PACKET.TC_TYPE) is

 Copy packet from current slot

 calc next pointer value

 Inform s/c we are ready to receive a packet again by setting the
 appropriate RBI status word bit (provided the queue is not full).

 procedure ADD is

 NOTE: This routine is now obsolete and should be removed.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

120

 Its function is now handled by a low level assembler routine in
 package RBI_IH.

 Tell s/c we can't receive TC packets

 Packet has already been stored by s/c
 So calculate next slot index

 Now set up new address for next packet

 Now tell s/c we can accept TC packets again if q not full

 function IS_EMPTY return BOOLEAN is

 Return TRUE if Input Pointer equals the Output Pointer

 otherwise return FALSE

 function IS_FULL return BOOLEAN is

 calc index of next (after current) packet slot to be written

 return TRUE if same as next location to be read

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

121

6.3.2.47 tc_verify.ads

Extracted from file "tc_verify.ads"

 Function
 ========

 This file contains the specification for the TC_VERIFY package.

 That package supplies the routines that construct and send the
 telecommand verification packets.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package TC_VERIFY is

 procedure SUCCESSFUL_ACCEPTANCE
 (TC_SEQ_COUNT_AND_SRC: UINT16);

 This procedure constructs and sends a successful telecommand acceptance
 packet to the telemetry queue.

 where:

 TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
 telecommand being verified.

 procedure UNSUCCESSFUL_ACCEPTANCE
 (TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY);

 This procedure constructs and sends an unsuccessful telecommand
 acceptance packet to the telemetry queue.

 where:

 TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
 telecommand being verified.

 ERROR_CODE specifies the reason for failure

 PARAMS specify any parameters associated with the
 error code (NOTE - unlike other routine in the
 ICU code, the first index of this array must be 1)

 procedure UNSUCCESSFUL_EXECUTION
 (TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY);

 This procedure constructs and sends an unsuccessful telecommand
 execution packet to the telemetry queue.

 where:

 TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
 telecommand being verified.

 ERROR_CODE specifies the reason for failure

 PARAMS specify any parameters associated with the
 error code (NOTE - unlike other routine in the
 ICU code, the first index of this array must be 1)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

122

6.3.2.48 tc_verify.adb

Extracted from file "tc_verify.adb"

 Function
 ========

 This file contains the body for the TC_VERIFY package.

 That package supplies the routines that construct and send the
 telecommand verification packets.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package body TC_VERIFY is

 The specification for this package's internal routine follows:
 ==

 procedure UNSUCCESSFUL(
 SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
 TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY);

 where:

 SUB_TYPE is the packet sub-type being created

 TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
 telecommand being verified.

 ERROR_CODE specifies the reason for failure

 NO_PARAMS specifies how many params are supplied

 PARAMS specify any parameters associated with the
 error code

 The body for this package's internal routine follows:
 ===

 procedure UNSUCCESSFUL(
 SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
 TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY) is

 Create verification packet of requested sub-type

 Get the time and place it in packet

 Flag CRC as present

 Store the number of parameters supplied

 Calculate and load packet length

 Copy originating sequence count and source flag into packet

 Copy error code into packet

 and then copy in the associated parameters

 Place packet in queue

 The bodies for this package's externally visible routines follow:
 ===

 procedure UNSUCCESSFUL_EXECUTION

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

123

 (TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY) is

 Call UNSUCCESSFUL with sub-type specifying Unsuccessful Execution

 procedure UNSUCCESSFUL_ACCEPTANCE
 (TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY) is

 Call UNSUCCESSFUL with sub-type specifying Unsuccessful Acceptance

 procedure SUCCESSFUL_ACCEPTANCE
 (TC_SEQ_COUNT_AND_SRC: UINT16) is

 Create verification packet of sub-type Succesful Acceptance

 Get the time and place it in packet

 Flag CRC as present

 Calculate and load packet length

 Copy originating sequence count and source flag into packet

 Place packet in queue

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

124

6.3.2.49 tcq.ads

Extracted from file "tcq.ads"

 Function
 ========

 This file contains the specification for the package TCQ.
 That package supplies the low level routines that manipulate the
 telecommand queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010.
 The OBDH protocol is defined in XM-IF-DOR-0002.

package TCQ is

 procedure RESET;

 This procedure resets (i.e. clears) the telecommand queue

 procedure GET(PCK : in out PACKET.TC_TYPE;
 GOOD_PACKET : out BOOLEAN);

 This procedure returns the next valid telecommand packet received
 to the caller

 where:

 PCK is the returned packet.

 GOOD_PACKET - always returns TRUE.

 procedure ADD renames TC_Q.ADD;

 The procedure is called when an EOTC Instruction to User
 interrupt is received (i.e. that a TC packet has been added to the
 TC queue).
 NOTE: This routine is now obsolete and should have been removed.
 Its function is now handled by a low level assembler routine
 in package RBI_IH.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

125

6.3.2.50 tcq.adb

Extracted from file "tcq.adb"

 This package body implements the specification given in TCQ.ADS

 Dependencies
 ============

with TC_Q;
with TMQ;
with TC_VERIFY;
with TYPES; use TYPES;
with CRC;
with HK;
with DEBUG;

package body TCQ is

 Data Global to this package
 ===========================

 As this package only returns valid packets, it holds a table
 of types and subtype, and any associated error conditions,
 as follows:

 Subtype 0 1 2 3 4 5 * Comments
 Type
 1 ? ? ? ? ? ? ?
 2 I o o I I I I Device Commanding
 3 ? ? ? ? ? ? ?
 4 ? ? ? ? ? ? ?
 5 I o o o o o I Task Management
 6 I o o o I I I Memory Maintenance
 7 ? ? ? ? ? ? ?
 8 ? ? ? ? ? ? ?
 9 I o I o o o I Telemetry Maintenance
 10 I I o o I o I Time Management
 11 ? ? ? ? ? ? ?
 12 ? ? ? ? ? ? ?
 13 I o I I I I I Test Commands
 14 ? ? ? ? ? ? ?
 15 ? ? ? ? ? ? ?

 where:

 o = valid type/subtype, i = invalid subtype, ? = invalid type

 function VALID_PACKET(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

 If a good packet

 Perform Valid APID check

 If not, note and flag it

 If still a good packet

 Perform Packet Length Check (is it in a valid range)

 If not, note and flag it

 If still a good packet

 Perform CRC check

 If the CRC check fails

 Note and flag it

 If still thought to be OK

 Look up error condition, if any, as a function of packet type
 and subtype, from the table described above.

 Select next action on the basis of the value returned.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

126

 When packet OK

 Return a value of TRUE

 When an invalid packet is present

 Determine correct error code

 Load up the packet type and subtype into the parameter
 array

 Finally flag as bad

 If it's not a good packet so far

 Construct and place Unsuccessful Acceptance
 Telemetry Packet in the telemetry queue.

 and count the bad packets

 Return status of packet

 procedure RESET is

 Perform Reset of the TC queue.

 procedure GET(PCK : in out PACKET.TC_TYPE;
 GOOD_PACKET : out BOOLEAN) is

 Commence loop

 If the telecommand queue is empty

 then wait a while

 otherwise

 Remove a packet from the queue

 Use function VALID_PACKET to check the packet.
 If it returns a value of TRUE
 (i.e. we have a valid packet).

 then exit from this procedure, indicating success

 End Loop

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

127

6.3.2.51 time_man.ads

Extracted from file "time_man.ads"

 Function
 ========

 The file contains the specification for the Time Manager Package TIME_MAN.
 This package, together with the package BCP4_IH, supplies routines to
 support On-Board Time Management.

package TIME_MAN is

 function REQUEST(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN;

 This routine implements the On-Board Time Management Packets TC(10,x)
 contained in TC_PACKET. The format of these packets is defined in
 the Packet Structure Definition document PX-RS-0032. Of those, only
 the following are required to be supported.

 TC(10,2) - Enable Time Synchronization.
 TC(10,3) - Add Time Code.
 TC(10,5) - Enable Time Verification.

 In this release, the function always returns TRUE.

 function VERIFICATION_ACTIVE return BOOLEAN;

 Returns TRUE if time verification is active

 function SYNCHRONISATION_ACTIVE return BOOLEAN;

 This function returns TRUE if the process of synchronizing the time
 is in progress.

 function TIME_STAMP return PACKET.TIME_TYPE;

 This function returns the current on-board time in a format suitable
 for direct insertion into a packet.
 (see the RBI package for details of the format).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

128

6.3.2.52 time_man.adb

Extracted from file "time_man.adb"

 Function
 ========

 The file contains the body for the Time Manager Package TIME_MAN.
 This package, together with the package BCP4_IH, supplies routines to
 support On-Board Time Management.

package body TIME_MAN is

 function REQUEST(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

 Determine action on the basis of the packet sub-type.

 If we have received a Time Sync Packet

 Inform world that we are synchronising by setting
 the appropriate flag.

 Enable time synchronisation by commanding the
 RBI configuration register appropriately.

 If we have received an Add Time Code Packet

 Remember the most significant byte from the time information
 supplied by the packet.

 Copy remaining significant 4 bytes into work array

 Convert them to RBI OBT (On-Board Time) format and
 load into RBI registers

 Now disable Time synchronisation by commanding the RBI
 configuration register accordingly.

 Finally, tell world we are no longer synchronising by resetting
 the appropriate flag.

 and ensure other flag is set off to indicate time is now valid

 If we have received an Enable Time Verification Packet

 Inform world we are verifying the time by setting the
 appropriate flag

 Start BCP4 processing task (see below)

 and leave it to do the work

 For any other packet sub-types.

 Do nothing.

 In this release, always return success.

 task body BCP4 is

 Begin looping

 Wait until a call to start the task occurs

 Enable BCP4 processing at interrupt level

 then wait for bcp4 int to be processed by code in
 package RBI_IH (i.e. load up the OBT)

 Correct the On Board Time obtained from RBI

 Create instance of a Time Management Report packet

 Now build Time Verification Packet

 Flag CRC as present

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

129

 Calculate and load packet length

 Construct Most Sig Byte of time stamp from value
 extracted from Add Time Code packet and held in memory.

 Construct remaining bytes from corrected OBT

 And send it to to TM queue.

 and disable BCP4 processing

 and inform world we have finished verifying the time.

 function SYNCHRONISATION_ACTIVE return BOOLEAN is

 Return the value of the synchronising flag

 function VERIFICATION_ACTIVE return BOOLEAN is

 Return the value of the verification flag

 function TIME_STAMP return PACKET.TIME_TYPE is

 Construct Most Sig Byte of time stamp from value extracted
 earlier from the Add Time Code packet and held in memory

 Get current corrected On-Board Time from the RBI

 Construct remaining bytes of time stamp from it;

 Return the time stamp.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

130

6.3.2.53 tm_man.ads

Extracted from file "tm_man.ads"

 Function
 ========
 This file contains the specification for the telementry manager package, TM_MAN.

 Reference
 =========

 XMM-OM/MSSL/ML/0010.1

package TM_MAN is

function REQUEST(TM_MAN_PACKET : PACKET.TC_TYPE) return BOOLEAN;

 This function provides the means of passing the telecommand
 to the package for action.

 where :

 TM_MAN_PACKET contains the tc packet to be interpreted and executed.

function SID_STATUS(SID : PACKET.SID_TYPE) return BOOLEAN;

 This function reports on the TM packet generation status of a
 packet with the corresponding packet type specified by SID.

 where :

 SID is the tm packet sid to be reported

 If the generation of a TM packet with this SID is enabled then
 the function will return TRUE, FALSE otherwise.

function REPORT_STATUS(SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

 This procedure is responsible for generation of a TM(9,1) packet in
 response to a TC(9,1) packet.

 where :

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if command was successfully accepted

---- function CHANGE_ALL(ENABLE_DISABLE : BOOLEAN;
---- SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

 This procedure changes the generation status of all applicable
 TM packets to that specified by ENABLE_DISABLE. The
 SEQUENCE_COUNT_AND_SRC parameter is needed in case of unsuccessful
 command execution

---- function CHANGE_SPECIFIC(ENABLE_DISABLE : BOOLEAN;
---- SID : PACKET.SID_RECORD_ARRAY;
---- SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

 This procedure changes the generation status of the TM packets
 specified by the SID parameter to that specified by ENABLE_DISABLE.
 SEQUENCE_COUNT_AND_SRC parameter is needed in case of unsuccessful
 command execution

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

131

6.3.2.54 tm_man.adb

Extracted from file "tm_man.adb"

 Function
 ========

 This file implements the body of the package TM_MAN for BASIC

 Reference
 =========

 XMM-OM/MSSL/ML/0010.1

package body TM_MAN is

 Create the enabled array which contains true if a particular
 sid is to be enabled (ie a tm packet with that sid can be
 generated)

 Create the valid array which contains true if a particular
 sid is defined

 function REQUEST(TM_MAN_PACKET : PACKET.TC_TYPE) return BOOLEAN is

 Check whether CRC is present

 Now determine packet subtype and act accordingly

 1 for a Report TM Packet Generation Status

 2 for an enable Generation of all TM Packets

 3 for a Disable Generation of all TM Packets

 4 for an Enable Generation of Specific Packets

 5 for a Disable Generation of Specific Packets

 Any other value return false

 function SID_STATUS(SID : PACKET.SID_TYPE) return BOOLEAN is

 Return the SID value in the valid sid array
 or'ed with the value in the enables array

 function REPORT_STATUS(SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN is

 Loop over the valid sid array, getting all SID enabled status
 and put them in an array making up the data portion of the
 telemetry packet

 Now create rest of the telemetry packet

 Now put complete packet into the tm queue

 function CHANGE_ALL(ENABLE_DISABLE : BOOLEAN;
 SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN is

 Loop over the enabled sid array

 Record enabled status in the array

 function CHANGE_SPECIFIC(ENABLE_DISABLE : BOOLEAN;
 SID : PACKET.SID_RECORD_ARRAY;
 SEQUENCE_COUNT_AND_SRC : UINT16;
 PKT_LENGTH : UINT16) return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

132

 Calculate the number of sids to change

 If valid number of sids then

 Set up error parameters just in case

 Test whether sid to change is a valid one

 If this is a valid sid

 If enabling this sid

 Determine sid type is

 When fast hk

 If slow hk is already enabled then

 cannot enable fast hk

 When slow hk

 If fast hk already enabled then

 cannot enable slow hk

 incorrect number of sids

 Cannot change any sids

 If status of the sid can be changed then

 Record changed sid status

 else

 send unsuccessful acceptance packet

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

133

6.3.2.55 tm_q.ads

Extracted from file "tm_q.ads"

 Function
 ========

 This file contains the specification for package TM_Q.

 That package supplies the low level routines that manipulate the
 telemetry queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010
 The OBDH protocol is defined in XM-IF-DOR-0002

package TM_Q is

 Two pointers are used to indicate the 'occupation' of the queue.

 The Input Pointer indicates the packet slot into which the
 the next packet will be written.

 The Output Pointer indicates the packet slot from which the
 the next packet should be taken.

 Define the input and output pointers at a fixed location in memory.

 procedure RESET;

 This procedure resets (i.e. clears) the TM queue

 procedure ADD(PCKT : in PACKET.TM_TYPE);

 This procedure adds a packet to the TM queue

 where:

 PCKT is the packet to be added to the TM queue.

 function IS_FULL return BOOLEAN;

 This function determines whether the TM queue is full

 where IS_FULL returns TRUE if the queue is full

 procedure REMOVE;

 This procedure remove a packet from the telemetry queue after
 the s/c indicates it has taken a copy with an
 EOTM Instruction to User.

 NOTE: This routine should have been removed as its function is now
 performed by a low-level assembler routine in package RBI_IH.

 function PACKET_COUNT return UINT16;

 Returns current packet sequence count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

134

6.3.2.56 tm_q.adb

Extracted from file "tm_q.adb"

 Function
 ========

 This file contains the body for package TM_Q.

 That package supplies the low level routines that manipulate the
 telemetry queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010.

 The OBDH protocol is defined in XM-IF-DOR-0002

package body TM_Q is

 The telemetry queue is a area of memory defined as follows:

 Description Size (Words)
 =========== ============

 * Packet Slot 0 * 259

 * ... and so on until... * 259

 * Packet Slot n-1 * 259

 Two pointers are used to indicate the 'occupation' of the queue.

 The Input Pointer indicates the packet slot into which the
 the next packet will be written.

 The Output Pointer indicates the packet slot from which the
 the next packet should be taken.

 In addition, there is a communication area which the spacecraft examines
 to determine the location of a TM packet to be collected or into which
 a TC packet should be loaded.

 * RBI Status Word *

 * Start Address of TM Source Packet *

 * Length of TM Source Packet *

 * Start Address of TC Source Packet *

 Create instance of Q data structure, and fix at location in memory

 function IS_EMPTY return BOOLEAN is

 Return TRUE if Start of Data Pointer equals End of Data
 pointer

 otherwise return FALSE

 Specify bodies for routines visible externally
 ==

 procedure RESET is

 Set the start and end pointers to the 1st packet

 Reset the sequence count to zero

 procedure ADD(PCKT : in PACKET.TM_TYPE) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

135

 If the queue is full

 Then raise a TM Q Overflow exception (This should never happen
 as TMQ package should guard against this?)

 Otherwise

 Store packet at next free slot

 Store sequence count in packet

 Prepare sequence count for next packet, performing 'wraparound'
 if necessary

 If CRC required

 Convert packet to an array of 16 bit word

 Calc CRC location in words from pre calc. packet length in bytes

 Calculate CRC value

 and place it at CRC location

 Check here whether queue is now shown as empty.
 If it is then the
 queue was empty prior to packet insertion.
 (Note: this is so because we haven't updated the pointers yet
 and so still reflect pre-insertion status.)

 If so, we need to inform s/c of the new packet address
 (derived from the Output Pointer) which is now available.
 Also tell the spacecraft its length.
 Note that the INPUT_POINTER = OUTPUT_POINTER at this stage.

 Finally, ensure TM_READY bit is up,
 to let spacecraft know about there are packets to take.

 Otherwise

 Do nothing, because there are still packets to be
 removed and therefore the spacecraft has the information
 it needs from a previous pass.

 Finally, calculate next slot index by incrementing the
 input pointer (and 'wrapping around' if necessary).

 procedure REMOVE is

 NOTE: This routine should have been removed as its function is now
 performed by a low-level assembler routine in package RBI_IH.

 Ensure TM_READY bit is down while we process this

 Calculate new output index following packet removal

 If the queue is now empty

 Leave TM_READY bit low to inform s/c of the fact

 Otherwise, inform s/c of packet info for next packet fetch

 Ensure TM_READY bit is up, to let s/c more packets to come

 function IS_FULL return BOOLEAN is

 Calc index of next (after current) packet slot to be written

 Return TRUE if same as next location to be read

 function PACKET_COUNT return UINT16 is

 Return the current packet sequence count

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

136

6.3.2.57 tmpsu.ads

Extracted from file "tmpsu.ads"

 Function
 ========

 This file contains the specification for the TMPSU package. The package
 contains the software to control and monitor the Telescope Module Power
 Supply. It is based on document XMM-OM/IALS/SP/0002 -
 "TMPSU Electrical Specification".

package TMPSU is

 procedure SEND(
 SUBADR : in SUB_ADDRESS_TYPE;
 DATUM : in UINT16;
 OK : out BOOLEAN);

 Sends the data value DATUM to the MACS subaddress SUBADR of the
 TMSPU. OK is set to TRUE if no errors occur.

 procedure ACQUIRE(SUBADR : in SUB_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN);

 Reads the data value DATUM from the MACS subaddress SUBADR of the
 TMSPU. OK is set to TRUE if no errors occur.

 function SET_SECONDARY_VOLTAGES(ON_OFF : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Enables or disables (ON_OFF = TRUE or FALSE respectively)
 the secondary
 voltages that power the blue electronics.
 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function SECONDARY_VOLTAGES_ENABLED return BOOLEAN;

 Returns the status of the Secondary Voltages (TRUE = ON) for display
 in Housekeeping.

 function SET_COARSE_POSITION_SENSOR_CURRENT(CURRENT : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Sets the current for the coarse sensor illuminating LED in 'raw' units
 to be used when moving the filter wheel. The value is not used until
 a call to COARSE_SENSOR is made.
 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function COARSE_SENSOR_CURRENT return UINT16;

 Returns the current for the coarse sensor illuminating LED
 in 'raw' units
 that is used when moving the filter wheel.

 procedure COARSE_SENSOR(ON_OFF : BOOLEAN);

 Turns on/off (ON_OFF = TRUE/FALSE) the illuminating LED used
 by the filter wheel coarse sensor. It uses the current specified in an
 earlier call to SET_COARSE_POSITION_SENSOR_CURRENT.

 function SET_PHASE(DEVICE : in DEVICE_TYPE;
 PHASE : in UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

137

 Enables the phase coils for the stepper motor driving DEVICE
 (FILTER_WHEEL or DICHROIC) as specified by the bit pattern contained
 in PHASE (1 = enabled) as follows:

 L.S.B.

 | Phase 1 | Phase 2 | Phase 3 | Phase 4 |

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function FW_PHASE return UINT16;

 Returns a bit pattern specified by earlier calls to SET_PHASE
 commanding the filter wheel stepper motor for which the bit pattern
 PHASE was non zero. As before, the bits are defined as follows
 (1 = enabled)

 L.S.B.

 | Phase 1 | Phase 2 | Phase 3 | Phase 4 |

 function DM_PHASE return UINT16;

 Returns the last commanded dichroic phase
 Returns a bit pattern specified by ealier calls to SET_PHASE
 commanding the dichroic stepper motor for which the bit pattern
 PHASE was non zero. As before, the bits are defined as follows
 (1 = enabled)

 L.S.B.

 | Phase 1 | Phase 2 | Phase 3 | Phase 4 |

 function SET_HEATER_CONFIG(CONFIG : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 The bit pattern in CONFIG specifies which heater should be on or off
 (1 = on) as follows:
 L.S.B.

 | Temperature Control | Focussing |

 | Main | Forward | Metering | Secondary |
 | | | Rods | Mirror |
 | (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4) |

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function HEATER_CONFIG return UINT16;

 Returns a bit pattern specifying the current heater configuration
 as follows:
 L.S.B.

 | Temperature Control | Focussing |

 | Main | Forward | Metering | Secondary |
 | | | Rods | Mirror |
 | (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4) |

 function CURRENT(SECONDARY_VOLTAGE : UINT16) return UINT16;

 Returns the current (in 'raw' units) for the secondary supply circuit
 specified by SECONDARY_VOLTAGE as follows:

 +25 V : 0
 +15 V : 1
 +11 V : 2

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

138

 +5.3 V : 3
 -5.3 V : 4
 -15 V : 5
 +28 V : 6
 + 5 V : 7

 The values returned are used in the Housekeeping.

 function COARSE_POSITION_SENSED return BOOLEAN;

 Returns TRUE if the filter wheel coarse sensor is currently detected.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

139

6.3.2.58 tmpsu.adb

Extracted from file "tmpsu.adb"

 Function
 ========

 This file contains the body for the TMPSU package. The package
 contains the software to control and monitor the Telescope Module Power
 Supply. It is based on document XMM-OM/IALS/SP/0002 -
 "TMPSU Electrical Specification".

package body TMPSU is

 procedure SEND(
 SUBADR : in SUB_ADDRESS_TYPE;
 DATUM : in UINT16;
 OK : out BOOLEAN) is

 Send the DATUM to MACS sub-address SUBADR at the MACS address
 corresponding to the TMPSU on the Instrument Control Bus.

 OK is TRUE if no errors occur.

 procedure ACQUIRE(SUBADR : in SUB_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN) is

 Gets the DATUM at MACS sub-address SUBADR at the MACS address
 corresponding to the TMPSU on the Instrument Control Bus.

 OK is TRUE if no errors occur.

 function SET_SECONDARY_VOLTAGES(ON_OFF : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Remember the last commanded secondary status.

 As the bit defining the status of the secondaries is
 combined with other bits, construct the bit pattern from the
 requested status of the secondaries and the last known values
 of the other bits.

 The layout is as follows:
 MSB

 |CS0|CS1|CS2|SC0|SC1|SC2|SE |

 where CS0->CS2 specify which secondary circuit is being monitored.
 SC0->SC1 specify the coarse sensor illuminating current.
 SE specifies whether the secondaries are enabled.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus).

 Allow electronics to settle.

 If we had a macsbus error

 Restore record of current status to that of the last status.

 Always return OK as the ICB routines inform the ground if there
 was an error.

 function SECONDARY_VOLTAGES_ENABLED return BOOLEAN is

 Return the recorded status of the secondary supplies.

 function SET_COARSE_POSITION_SENSOR_CURRENT(CURRENT : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

140

 Store the sensor current for later use (note that unlike
 operational mode code there is no check on the value).

 Always return OK.

 function COARSE_SENSOR_CURRENT return UINT16 is

 Return the 'raw' current to be used when powering the illuminating
 LED for the filter wheel coarse sensor.

 procedure COARSE_SENSOR(ON_OFF : BOOLEAN) is

 If the LED is to be turned on

 Determine the current value from the earlier value(given by
 SET_COARSE_POSITION_SENSOR_CURRENT or a default value).

 otherwise

 specify it as zero

 As the bits defining the 'raw' current to drive the illuminating
 LED of the filter wheel coarse sensor is combined with other bits,
 construct the bit pattern from the determined value of current and
 the last known values of the other bits.

 The layout is as follows:
 MSB

 |CS0|CS1|CS2|SC0|SC1|SC2|SE |

 where CS0->CS2 specify which secondary circuit is being monitored.
 SC0->SC1 specify the coarse sensor illuminating current.
 SE specifies whether the secondaries are enabled.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus).

 function SET_PHASE(DEVICE : in DEVICE_TYPE;
 PHASE : in UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

 It should be noted that the same TMSPU MACSbus sub address
 is used to command the stepper motor phases for both the
 filter wheel and dichroic as follows

 MSB

 | F1 | F2 | F3 | F4 | D1 | D2 | D3 | D4 |

 where D1->D4 are the dichroic motor phases.
 F1->F4 are the filter wheel motor phases.

 Determine which device is being commanded.

 If the filter wheel is being commanded

 Insert the requested phase bit pattern into the
 the appropriate part of the command word to be
 to be sent to the mechanisms.

 If it's a non zero phase, remember for recall
 as last active phase for the filter wheel.

 If it's the dichroic that's being commanded

 Insert the requested phase bit pattern into the
 the appropriate part of the command word to be
 to be sent to the mechanisms.

 If it's a non zero phase, remember for recall
 as last active phase for the dichroic.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus).

 Always return OK as the ICB routines inform the ground if there

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

141

 was an error.

 function FW_PHASE return UINT16 is

 Return the last non zero phase pattern sent to the filter wheel.

 function DM_PHASE return UINT16 is

 Return the last non zero phase pattern sent to the dichroic.

 function SET_HEATER_CONFIG(CONFIG : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Loop over permitted heater configurations

 If the request heater configuration is one of them

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus).

 Remember the requested heater configuration for
 HK and heater control purposes.

 and exit with a success flag.

 Otherwise exit (in this release, also with a success flag).

 function HEATER_CONFIG return UINT16 is

 Return the last commanded heater configuration.

 function CURRENT(SECONDARY_VOLTAGE : UINT16) return UINT16 is

 If the requested circuit is outside the allowed range of circuits

 return 0

 As the bits defining which secondary circuit is to be monitored are
 combined with other bits, construct the bit pattern from the
 requested secondary circuit and the last known values
 of the other bits.

 The layout is as follows:
 MSB

 |CS0|CS1|CS2|SC0|SC1|SC2|SE |

 where CS0->CS2 specify which secondary circuit is being monitored.
 SC0->SC1 specify the coarse sensor illuminating current.
 SE specifies whether the secondaries are enabled.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus).

 Wait for electronics to settle.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus) to initiate an analogue to digital conversion.

 Wait a bit

 Get datum containing the value from the appropriate address
 on the MACSbus.

 The format of the datum now received is as follows:

 |C0|C1|C2|C3|C4|C5|C6|C7|XX|XX|XX|XX|XX|XX|XX|CS|

 where C0->C7 is the 'raw' current of the requested secondary circuit.
 XX is "don't care".
 CS is coarse sensor status, 1 = 'seen'

 Extract current value from the C0->C7 field within the datum

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

142

 and return it.

 function COARSE_POSITION_SENSED return BOOLEAN is

 Get datum containing the value from the appropriate address
 on the MACSbus.

 The format of the datum now received is as follows:

 |C0|C1|C2|C3|C4|C5|C6|C7|XX|XX|XX|XX|XX|XX|XX|CS|

 where C0->C7 is the 'raw' current of the requested secondary circuit.
 XX is "don't care".
 CS is coarse sensor status, 1 = 'seen'.

 Extract sensor status from the CS field within the datum
 and return it.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

143

6.3.2.59 tmq.ads

Extracted from file "tmq.ads"

 Function

 ========

 This file contains the specification for the TMQ package.
 The function of that package is to provide routines to control
 access to the telemetry queue

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

 The protocol it implements is defined in the OBDH Bus Protocol
 Requirement Specification XM-IF-DOR-0002

package TMQ is

 procedure RESET;

 The procedure RESET resets (i.e. clears) the telecommand queue

 procedure REMOVE;

 The procedure REMOVE is called upon receipt of an EOTM Instruction to
 User from the spacecraft. This indicates that a TM packet has been
 taken

 NOTE: This routine should be removed as its function is now
 performed by a low-level assembler routine in package RBI_IH.

 task GUARDED is
 pragma PRIORITY(IMPORTANCE.TMQ_GUARDED);
 entry PUT(PCK : in PACKET.TM_TYPE);
 end GUARDED;

 PUT access to the telemetry queue is via the above task GUARDED
 to force queuing for access to the TM queue.

 The task entry PUT places a packet in the telemetry queue

 where:

 LEVEL indicates the priority

 PCK is the packet to be inserted into the queue.

 function PACKET_COUNT return UINT16
 renames TM_Q.PACKET_COUNT;

 Rename (for convenience) the PACKET_COUNT function of package TM_Q.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

144

6.3.2.60 tmq.adb

Extracted from file "tmq.adb"

 Function
 ========

 This file contains the body for the TMQ package.
 The function of that package is to provide routines to control
 access to the telemetry queue. It, in turn, call lower level routine in
 package TM_Q.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

 The protocol it implements is defined in the OBDH Bus Protocol
 Requirement Specification XM-IF-DOR-0002

package body TMQ is

 where:

 PCK is the packet to be inserted into the queue

 procedure SEND_TO_TM_Q (PCK : in PACKET.TM_TYPE) is

 Commence infinite loop

 If the telemetry queue is full

 Wait a bit

 Otherwise

 Place packet in queue (via TM_Q.ADD)

 and exit from loop

 end infinite loop

 task body GUARDED is

 First, reset the telemetry queue.

 Then commence infinite loop

 Now wait on a rendevous at the PUT entry point

 Send the packet to the telemetry queue
 (via SEND_TO_TM_Q)

 End of infinite loop

 procedure RESET is

 Reset the telemetry queue

 procedure REMOVE is

 Call the 'remove packet' routine for the telemetry queue.

 NOTE: This routine should have been removed as its function is now
 performed by a low-level assembler routine.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

145

6.3.2.61 types.ads

Extracted from file "types.ads"

 Function
 ========

 The function of this package specification is to define the basic data
 types used throughout the ICU ADA code.

 Definitions
 ===========

 Define Unsigned Byte type UBYTE

 Define Signed Byte type BYTE

 Define Unsigned 16 bit integer type UINT16

 Define Signed 16 bit integer type INT16

 Define Signed 32 bit type INT32

 Define Unsigned Byte Unconstrained Array type UBYTE_ARRAY

 Define Signed Byte Unconstrained Array type BYTE_ARRAY

 Define Unsigned 16 bit Integer Unconstrained Array type UINT16_ARRAY

 Define Signed 16 Bit Integer Unconstrained Array type INT16_ARRAY

 Define Unsigned Nibble type

 Define Unsigned Nibble Array Type

 Define single bit Integer Unconstrained Array type BIT_ARRAY

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

146

6.3.2.62 USERDEFS.asm

File is USERDEFS.asm

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

147

6.4 Operational Code
Operational code is built from the following files:-

ADA Assembler

Specifications Bodies

bcp4_ih.ads bcp4_ih.asm

crc.ads crc.adb

debug.ads debug.adb

dempsu.ads dempsu.adb

detanalog.ads detanalog.adb

detdigital.ads detdigital.adb

detector.ads

dpu.ads dpu.adb

dpu_mem_manager.ads dpu_mem_manager.adb

dpu_mnemo.ads

heater.ads heater.adb

hk.ads hk.adb

icb.ads icb.adb

icb_driver.ads icb_driver.adb

 icu.ada

icu_mem_manager.ads icu_mem_manager.adb

 INTVEC.ASM

importance.ads

mechanism.ads mechanism.adb

mem_manager.ads mem_manager.adb

memdpu.ads memdpu.adb

memloc.ads

modeman.ads modeman.adb

mutex.ads mutex.adb

nhk.ads nhk.adb

packet.ads

peek_poke.ads peek_poke.asm

rbi.ads rbi.adb

rbi_ih.ads rbi_ih.asm

reset.ads reset.asm

science_fm.ads science_fm.adb

ssi_driver.ads ssi_driver.adb

ssi_ih.ads ssi_ih.asm

ssi_in.ads ssi_in.adb

ssi_out.ads ssi_out.adb

task_report.ads task_report.adb

taskman.ads taskman.adb

tc_q.ads tc_q.adb

tc_verify.ads tc_verify.adb

tcq.ads tcq.adb

time_man.ads time_man.adb

timer_a_ih.ads timer_a_ih.adb

tm_man.ads tm_man.adb

tm_q.ads tm_q.adb

tmpsu.ads tmpsu.adb

tmq.ads tmq.adb

types.ads

 USERDEFS.ASM

The following pages contains ‘Structured English’ extracted from comments in the file. They should be studied in
conjunction with the code listings as they have additional comments regarding implementation details but are omitted
in this document for clarity.

• The comments extracted from the specification files (*.ads) describe ‘what’ a given package does.
• The comments extracted from the associated body files (*.ads or *.asm) describe ‘how’ a given package

performs the operations defined by the specification.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

148

In addition, the file icu.xtof can be supplied. It may be used in conjunction with the TARTAN utilit y
adaref1750a to extract the dependencies, list of calls and inverse calls and cross reference information.

To extract the call graph (of ‘ callers’).

adaref1750a –input icu.xtof –call_graph

To extract the call graph (of ‘ called by’).

adaref1750a –input icu.xtof –call_graph -reverse

To extract the call graph (of ‘ callers’) from one package.

adaref1750a –input icu.xtof –call_graph –from package_name

To extract a list of dependent relationships.

adaref1750a –input icu.xtof –dependency_graph

To extract a list of dependent relationships from one package.

adaref1750a –input icu.xtof –dependency_graph –from package_name

To extract a alphabetical li st of user defined entities, containing source location of declaration, source location of
where it is set and used.

adaref1750a –input icu.xtof –xref

To extract a alphabetical li st of user defined entities, containing source location of declaration, source location of
where it is set and used for one package.

adaref1750a –input icu.xtof –xref –about package_name

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

149

6.4.1 Main Program

6.4.1.1 icu.ada

Extracted from file "icu.ada"

 Function
 ========

 This procedure is the 'main' program for the ICU. It

 1) Initialises the ICU then...
 2) Routes all valid received telecommand packets as appropriate

procedure ICU is

 Initializations
 ===============

 Initialise RBI related matters
 (including the communications area and TC and TM ready bits)

 Start the RBI Watchdog.

 Reset the ICB interface

 Wait a bit, then turn on secondary power,
 thus enabling the blue electronics.

 Once secondaries settled, we now initialise the mechanism
 package (primarily to ensure we have an initial value of the
 coarse and fine sensors to be used in housekeeping)

 First ensure actual initial configuration is the same as default
 assumed in code.

 Then start the automatic heater algorithms

 Then start the automatic heater control algorithms

 Ensure that telemetry queues are initialised

 Ensure the telecommand queues are initialised (after which we can
 receive telecommands

 Now start the DPU processing package.

 Now start the Housekeeping.

 Now begin the endless control loop

 Wait for a valid telecommand packet (via TMQ.GET procedure)

 When a valid packet is obtained, route it to the appropriate package
 on the basis of the packet type

 For a Task Management Packet

 Send it to the TASKMAN package

 For a Memory Maintenance Packet

 Send it to the MEM_MANAGER package.

 For a Telemetry Management Packet

 Send it to the TM_MAN package.

 For a Time Management Packet

 Send it to the TIME_MAN package.

 For a Test packet

 do nothing

 For all other packet types

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

150

 do nothing (as this shouldn't happen)

 end of selection by packet type

 If nothing has indicated that the packet was bad

 Place a Successful Acceptance Telemetry Packet in the
 telemetry queue.

 Increment the 'Good Packet' counter (modulo 65536) for
 inclusion in the HK.

 Otherwise

 Increment the 'Bad Packet' counter (modulo 65536) for
 inclusion in the HK.

 End the controlling loop

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

151

6.4.2 Packages

6.4.2.1 bpc4_ih.ads

Extracted from file "bcp4_ih.ads"

 Function
 ========

 This file merely contains the specification for the XMM-OM bcp4 interrupt
 handler. It specifies that the body of bcp4_ih is written in assembler
 and therefore directs the linker to link it as foreign.
 The interrupt handler had to be written in assembler for speed so as not to
 block other interrupts for too long.

package BCP4_IH is
 pragma FOREIGN_BODY("ASM");
end BCP4_IH;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

152

6.4.2.2 bcp4.ih.asm

File is bcp4_ih.asm

 Save some space for the Linkage Pointer
 Save some space for the Stack Pointer
 Registers r0-r1 can be trashed.
 All other registers must be preserved.
 So save R0 and R1 on the stack
 Fetch the interrupt counter
 Check for impending overflow (is it 7fffh)
 If it's OK (not 7fffh), increment it
 otherwise avoid an overflow by setting it to 8000h
 Then write it back to memory
 Check the BCP flag and if it is not 1, we don't have to bother doing any
 work so jump to to the cleanup and end
 "Freeze" the current time by reading the "freeze_obt_instr" register
 and writing the value to the config register.
 Perform dummy xio to give the RBI time to freeze (just a delay)
 Read bits 0-15
 and write to memory
 Read bits 16-31
 and write to memory
 Read remaining bits 32-42 (result in high order bits)
 and write to memory
 Set the BCP flag (in memory) to 2 to show we've now got a time available
 Recover registers
 Turn interrupts back on
 Return back from whence we came

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

153

6.4.2.3 crc.ads

Extracted from file "crc.ads"

 Function
 ========
 This file contains the specification for the CRC package.
 This contains the CRC algorithms for XMM which
 are based on the algorithm described in ESA technical note PX-TN-00540

package CRC is

 function CALC(DATA : UBYTE_ARRAY; NUMBER : UINT16) return UINT16;

 This function returns the unsigned 16 bit integer checksum of the
 first NUMBER locations in unsigned byte array DATA.

 function CHECK_TC(TC : PACKET.TC_TYPE) return UINT16;

 This function calculates the checksum of a whole TC packet,
 using the packet length stored within the packet to determine its
 length. Returns value of zero if as expected, otherwise returns
 value of checksum found, NOT including the 2 byte checksum
 field at the end of the packet.
 It thus checks whether that packet TC contained a valid CRC.

 function CALC_TM(TM : PACKET.TM_TYPE) return UINT16;

 This function calculates the value to be inserted into
 the checksum field of packet TM, using the packet length stored
 within the packet to determine the length of the data to be checksumed
 (i.e. NOT including the checksum field at the end of the packet).

 function CALC_MEM(CURRENT_CRC : UINT16;
 MEM : UINT16_ARRAY;
 NO_WORDS : INTEGER) return UINT16;

 This function is used to calculate a checksum for a large block
 of data on the assumption that not all the data will be available
 at once. Therefore, it uses the CURRENT_CRC value returned by a prior
 call as input to the current call and then calculates the CRC of the
 NO_WORDS 16-bit words of data contained in MEM. The result is the CRC
 for all blocks of data supplied (NOTE: the sequence is restarted by
 supplying a value of all binary ones for CURRENT_CRC).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

154

6.4.2.4 crc.adb

Extracted from file "crc.adb"

 Function
 ========
 This file contains the body for the CRC package.
 This contains the CRC algorithms for XMM which
 are based on the algorithm described in ESA technical note PX-TN-00540

package body CRC is

 function CLC(SYNDROME : UINT16; DATA : UBYTE_ARRAY; NUMBER : UINT16)
 return UINT16 is

 This function returns the unsigned 16 bit integer checksum of the
 first NUMBER locations in unsigned byte array DATA. An initial value
 of the currently 'running' checksum is contained in SYNDROME.
 It is a function internal to this package.

 The following test data was used (taken from the reference above).

 DATA CRC
 ++++ +++
 00 00 1D 0F
 00 00 00 CC 9C
 AB CD EF 01 04 A2
 14 56 F8 9A 00 01 7F D5

 First define the lookup table for efficient calculation (equivalent of
 routine InitLtbl in above reference.

 loop over NUMBER data points

 Calculate RHS term by

 1) Shift right the input checksum by 8.

 2) Exclusive Or result with current datum.

 3) Mask off the 8 least significant bits of the result.

 4) Use result to index into table of pre-calculated coefficients.

 Calculate LHS term by

 1) Shift left the input checksum by 8.

 2) Mask off the 8 most significant bits of the result.

 Calculate checksum by Exclusive Oring the two terms.

 Return final value of the checksum.

 function CALC(DATA : UBYTE_ARRAY; NUMBER : UINT16) return UINT16 is

 Call the CLC routine with SYNDROME set to all binary 1's.

 function CHECK_TC(TC : PACKET.TC_TYPE) return UINT16 is

 This function calculates the checksum of a whole packet,
 using the packet length stored within the packet to determine its
 length. Returns value of zero if OK, otherwise returns
 value of checksum found, NOT including the 2 byte checksum
 field at the end of the packet.
 It thus checks whether that packet contained a valid CRC.

 Call routine CALC (using the whole packet as data and deriving
 its length from internal length information) to check that the result
 (i.e. the checksum of whole packet) is zero

 If it is, return zero

 Otherwise

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

155

 Return checksum found (not including the CRC field).

 function CALC_TM(TM : PACKET.TM_TYPE) return UINT16 is

 This function calculates the value to be inserted into
 the checksum field of packet TM, using the packet length stored
 within the packet to determine the length of the data to be checksumed
 (i.e. NOT including the checksum field at the end of the packet).

 Calculate the appropriate length to be used from the length
 field in the packet, then use routine CALC to calculate the
 checksum of packet TM and return the value.

 function CALC_MEM(CURRENT_CRC : UINT16;
 MEM : UINT16_ARRAY;
 NO_WORDS : INTEGER) return UINT16 is

 This function is used to calculate a checksum for a large block
 of data on the assumption that not all the data will be available
 at once. Therefore, it uses the CRC value returned by a prior
 call as input to the next one.

 Loop over the block of data, 1 16 bit word at a time.

 Call function CLC to calculate the 'running' CRC for just 1 word.

 Return the resulting CRC.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

156

6.4.2.5 debug.ads

Extracted from file "debug.ads"

 Function
 ========

 This file contains the specification and body for the package DEBUG.
 As its name implies, it contains a collection of routines useful
 for debugging.

 Dependencies
 ============

with TYPES; use TYPES;
with SYSTEM;
with MEMLOC;

package DEBUG is

 procedure PROGRESS(ITEM : UINT16);

 Where ITEM is the progress number to write to memory

 --
 procedure PROGRESS_SPECIAL(ITEM : UINT16);
 --

 Where ITEM is the progress number to write to memory
 This procedure writes the number "ITEM" to a fixed location in memory
 and is used to keep a record of how far the running code has progressed.
 When this memory location is read later, after a crash, it will provide
 good idea as to what was running as the code crashed.

 procedure PROGRESS_SPECIAL2(ITEM : UINT16);

 Where ITEM is the progress number to write to memory
 This is another progress indicator like the above.

 --
 procedure EXCEPTION_REPORT(ITEM : UINT16);
 --

 Where ITEM is the exception number to write to memory
 When the running code produces an Ada exception, the Ada exception
 handler should call this procedure which will write the exception
 number to a special known location in memory that can be read afterwards
 to help understand why the code crashed.

 Define some constants for the progress and exception numbers.
 In this way, the high order bits of the code numbers used indicate the
 package involved. These are detailed in the introduction to the
 Detailed Design Document.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

157

6.4.2.6 debug.adb

Extracted from file "debug.adb"

 Function
 ========

 This file contains the specification and body for the package DEBUG.
 As its name implies, it contains a collection of routines useful
 for debugging.

with PACKET;
with NHK;

package body DEBUG is

 procedure PROGRESS(ITEM : UINT16) is

 Where ITEM is the progress number to write to memory

 ITEM identifies which part of the code is running: the package and
 a location in that package

 If we haven't had an Ada exception

 Write ITEM to the FIRST_EXCEPTION standard memory location
 ITEM identifies which part of the code is running: the package and
 a location in that package
 After an Ada exception the value stored at this address
 will not change

 Write ITEM to the LAST_PROGRESS memory location
 This will continue to update after an Ada exception

 procedure PROGRESS_SPECIAL(ITEM : UINT16) is

 Where ITEM is the progress number to write to memory
 Like procedure package, this writes a vaule to a special location
 in memory for debug purposes. It is used so as not to interfere
 with the location used by procedure PROGRESS.

 Write ITEM to a standard memory location
 (also called PROGRESS_SPECIAL)

 procedure PROGRESS_SPECIAL2(ITEM : UINT16) is

 Where ITEM is the progress number to write to memory

 Write ITEM to a standard memory location
 (also called PROGRESS_SPECIAL2)

 procedure EXCEPTION_REPORT(ITEM : UINT16) is

 Where ITEM is the progress number to write to memory

 If this is the first exception trapped

 Write ITEM to the fixed memory location FIRST_EXCEPTION
 reserved to store the first exception.
 This will not be overwritten.
 ITEM identifies in which part of the code the exception occured:
 the package and which exception was handled

 Then write ITEM to the fixed memory location reserved to store the
 last exception (LAST_EXCEPTION).
 This is overwritten at each exception.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

158

6.4.2.7 dempsu.ads

Extracted from file "dempsu.ads"

 Function
 ========

 This file contains the specification for the DEMPSU package
 It provides routines to control the Digital Electronics Module
 Power Supply Unit.

package DEMPSU is

 procedure DPU_RESET;

 Resets the DPU after a 'latch-up' or turns it on again if it is
 powered down.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

159

6.4.2.8 dempsu.adb

Extracted from file "dempsu.adb"

 Function
 ========

 This file contains the body for package DEMPSU
 It provides routines to control the Digital Electronics Module
 Power Supply Unit.

package body DEMPSU is

 procedure DPU_RESET is

 To reset/turn on the DPU, write a "don't care" bit
 pattern to the DPU Reset Register of the DEMPSU control card.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

160

6.4.2.9 detanalog.ads

Extracted from file "detanalog.ads"

 Function
 ========

 This file contains the specification for the detanalog package. It
 controls the analogue card of the detector electronics. This card is
 described in document XMM-OM/MSSL/SP/81.2, "Blue Detector Analogue Card
 Requirement Specification"

package DETANALOG is

 function SET_FINE_POSITION_SENSOR_CURRENT(CURRENT : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 CURRENT specifies the illuminating LED current (in 'raw' units)
 to be used for the filter wheel fine position sensor when the filter
 wheel is moved.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns TRUE if the command is accepted.

 function FINE_SENSOR_CURRENT return UINT16;

 Returns the current (in 'raw' units) for the fine sensor
 specified by an earlier call to SET_FINE_POSITION_SENSOR_CURRENT.

 procedure FINE_SENSOR(ON_OFF : BOOLEAN);

 If ON_OFF is TRUE, turns on the illuminating LED of the Filter Wheel Fine
 Sensor using a 'raw' current value supplied by an earlier call to
 SET_FINE_POSITION_SENSOR_CURRENT.
 If ON_OFF is FALSE, the current is set to zero.

 function FINE_POSITION_SENSED return BOOLEAN
 renames TIMER_A_IH.FINE_POSITION_SENSED;

 Returns TRUE when the filter wheel fine position sensor is detected

 function SET_FLOOD_LED_BIAS_CURRENT(LED : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Sets the flood led's bias current to the value in LED ('raw' units).

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns TRUE if the command is accepted.

 procedure SET_HV_ENABLE(ENABLED : BOOLEAN);

 Enable or Disables (ENABLED = TRUE or FALSE respectively) the High Voltage
 Facility on the analogue card.

 NOTE: This is done by writing to the appropriate ICB MACSbus port
 with the relevant bit set.
 It should be noted that this port is also used to set the value for
 Vmcp1. Consequently, the last value of Vmcp1 requested is resent.

 procedure SET_HV(HV : HV_TYPE;
 VALUE : UINT16);

 Sets the High Voltage HV to 'raw' bit pattern VALUE.
 The raw bit pattern is obtained from CONVERT_HV_TO_BITS.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

161

 HV specifies one of mcp23 (DETECTOR.V_MCP23)
 mcp1 (DETECTOR.V_MCP1) or
 Vcathode (DETECTOR.V_CATHODE,

 function LOAD_HV_RAMP_PARAMETERS(VOLTAGE : UINT16;
 VALUE : UINT16;
 RAMP_RATE : UINT16;
 FORCE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Loads and checks the ramp parameters for a single mcp voltage

 where :

 VOLTAGE specifies one of mcp23, mcp1 or Vcathode
 VALUE is the voltage level required
 RAMP_RATE is the rate of ramping in volts/second
 FORCE causes the hv ramp task to ignore errors
 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if the command was successfully accepted

 function HV_RAMP_START(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Starts the hv ramp task

 where :

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if the command was successfully accepted

 function HV_RAMP_STOP(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Stops the hv ramp task

 where :

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if the command was successfully accepted

 function PERFORM_HV_SAFING(LEVEL : UINT16; SRC_SEQ_COUNT : UINT16) return BOOLEAN;

 Performs safing of the high voltages

 where :

 LEVEL determines whether to perform full (DETECTOR.FULL_SAFE)
 or intermediate safing (DETECTOR.HALF_SAFE).
 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if the function was successfully executed

 function SAFE_ONE_HV(VOLTAGE : HV_TYPE; SRC_SEQ_COUNT : UINT16) return BOOLEAN;

 Safes one high voltage

 where :

 VOLTAGE specifies one of mcp23 (DETECTOR.V_MCP23)
 mcp1 (DETECTOR.V_MCP1) or
 Vcathode (DETECTOR.V_CATHODE,

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

162

 Returns TRUE if the function was successfully executed

 function GET_SET_GO(VOLTAGE : HV_TYPE) return INTEGER;

 Checks that value is between the upper and lower ranges (obsolete)

 function CONVERT_HV_TO_BITS(VOLTAGE : HV_TYPE; VALUE : INTEGER) return UINT16;

 Converts the value of voltage to a bit pattern suitable for output to the hv card

 where :

 VOLTAGE specifies one of mcp23 (DETECTOR.V_MCP23)
 mcp1 (DETECTOR.V_MCP1) or
 Vcathode (DETECTOR.V_CATHODE,

 VALUE is the voltage level requested in engineering units (volts)

 Returns UINT16 bit pattern representing VALUE

 function GET_CONVERTED_HV(VOLTAGE : HV_TYPE) return INTEGER;

 Gets the hv level of voltage in engineering units

 where :

 VOLTAGE specifies one of mcp23 (DETECTOR.V_MCP23)
 mcp1 (DETECTOR.V_MCP1) or
 Vcathode (DETECTOR.V_CATHODE,

 Returns the voltage level

 procedure SET_ADC_ACCURACY(ACCURACY : UINT16);

 Sets the analogue to digital accuracy of the card as follows:
 5 = 1 %
 7 = 0.1 %
 9 = 0.01%

 function GET_ADC_ACCURACY return UINT16;

 Gets the analogue to digital accuracy of the card as specified by SET_ADC_ACCURACY

 function GET(ADC_ITEM : UINT16)
 return UINT16;

 Initiates an analogue to digital conversion of channel ADC_ITEM to collect and
 returns its value measured to accuracy ACCURACY set by SET_ADC_ACCURACY.
 The items are as follows:

 Channel Description
 ------- -----------
 0 Thermistor 0 - BPE
 1 Thermistor 1 - Reference B
 2 Thermistor 2 - Reference C
 3 Thermistor 3 - Main
 4 Thermistor 4 - Forward 1
 5 Thermistor 5 - Forward 2
 6 Thermistor 6 - CCD
 7 Thermistor 7 - Reference A
 8 Vcathode
 9 Vmcp1
 10 Vmcp23
 11 +5V
 12 +15V
 13 -15V
 14 Precision Reference Voltage
 15 Filter Wheel Analogue Reference

 Note - due to noise 'spikes' on the returned values, 5 readings are taken
 in quick succession and an average of the middle 3 in value is returned.

 function HV_ENABLED return BOOLEAN;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

163

 Returns the status of the HV enabled flag from the status word.

 function FLOOD_LED_BIAS_CURRENT
 return UNIBBLE ;

 Returns the value of the last commanded flood led current

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

164

6.4.2.10 detanalog.adb

Extracted from file "detanalog.adb"

 Function
 ========

 This file contains the body for the detanalog package. It
 controls the analogue card of the detector electronics. This card is
 described in document XMM-OM/MSSL/SP/81.2, "Blue Detector Analogue Card
 Requirement Specification". This defines the data structures used in this
 package.

package body DETANALOG is

 function SET_FLOOD_LED_BIAS_CURRENT(LED : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 If the ICU is not in engineering mode

 Send ground an appropriate command rejection message

 And return a failure condition of FALSE.

 Update the record of data about to be written to port
 and ensure it is within range (max value 15).
 Note - as the flood LED port is also used to control the Fine Sensor LED
 Current for the filter wheel, we must merge the supplied flood LED bit
 pattern with last recorded value used to command the fine sensor LED.

 Write result to appropriate port on the ICB MACSbus.

 Return a success condition of TRUE.
 Note, in the event of a ICB error at this point,
 the ground should notice that the ICB error
 count has increased.

 procedure SET_HV_ENABLE(ENABLED : BOOLEAN) is

 Update the data to be written to port (this is a merging of the
 requested HV enable setting and the last Vmcp1 commanded (as they
 share the same port).
 (Note, no failsafe commanding of voltage levels, we assume
 user knows what they're doing!)

 Write result to the port on the ICB MACSbus.

 procedure SET_HV(HV : HV_TYPE;
 VALUE : UINT16) is

 Examine which HV is being commanded.

 If it is Vcathode

 Merge with previous value used for Vmcp23
 (as they share the same port)

 Make a note we are to write to that port

 If it is Vmcp1

 Merge with previous value used for HV enable
 (as they share the same port)

 Write result to the port on the ICB MACSbus.

 If it is Vmcp23

 Merge with previous value used for Vcathode
 (as they share the same port)

 Make a note we are to write to that port

 If we noted that we are to write to the Vcathode/Vmcp23 port

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

165

 Write the merged values to that port on the ICB MACSbus.

 function GET(ADC_ITEM : UINT16)
 return UINT16 is

 Ensure exclusive use of the MUX channel using a mutex semaphore
 (this is to prevent other routines
 selecting another channel while we are still processing this one).

 Specify required MUX Channel by writing the channel number
 to the appropriate 'Set MUX Address' ICB MACSbus port.

 Allow analogue voltage to settle.

 Repeat the following 5 times.

 Start ADC Conversion by reading from the 'Start ADC' port.

 Wait 10 ms

 Read from the 'ADC Read' port

 Extract data bit field from returned datum and store it in a table.

 Sort into order the 5 returned values.

 Release MUX channel for use by others by clearing MUTEX semaphore.

 Return average of the middle 3 of the sorted values.

 function HV_ENABLED return BOOLEAN is

 Get Datum from the appropriate MUX port on the ICB MACSbus.

 Extract the bit from the datum corresponding to the HV Enabled status
 and return it.

 procedure SET_ADC_ACCURACY(ACCURACY : UINT16) is

 Note requested accuracy in variable ADC_ACCURACY.

 function GET_ADC_ACCURACY return UINT16 is

 Return requested accuracy stored in variable ADC_ACCURACY.

 function FLOOD_LED_BIAS_CURRENT
 return UNIBBLE is

 Return the value of the last flood LED value written.

 function SET_FINE_POSITION_SENSOR_CURRENT(CURRENT : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Ensure that value supplied does not exceed maximum,
 then store its value in variable SENSOR_CURRENT,
 but perform no other action.

 Always return success (TRUE).

 function FINE_SENSOR_CURRENT return UINT16 is

 Return the last value of the Fine Sensor current supplied
 to SET_FINE_POSITION_SENSOR_CURRENT stored in variable SENSOR_CURRENT.

 procedure FINE_SENSOR(ON_OFF : BOOLEAN) is

 If the sensor is to be turned on

 Construct the datum to be used to write to the appropriate port
 using the last supplied value of Fine Sensor current stored in
 SENSOR_CURRENT with the last recorded Flood LED current
 (this is because it shares the port with the Flood LED control port).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

166

 Otherwise

 Construct the datum to be used to write to the appropriate port
 using a zero value for Fine Sensor current
 and the last recorded Flood LED current
 (this is because it shares the port with the Flood LED control port).

 Write the datum to the appropriate port on the ICB MACSbus.

 function LOAD_HV_RAMP_PARAMETERS(VOLTAGE : UINT16;
 VALUE : UINT16;
 RAMP_RATE : UINT16;
 FORCE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 then send 'busy' error report and return false

 If the requested mcp voltage is in range

 then check rest of the tc parameters

 If requested voltage is Vcathode

 Cathode must be less than or equal to Vmcp1 or zero

 If requested voltage is Vmcp1

 Vmcp1 must be for turn on :
 below V mcp23
 greater than V cathode
 V mcp23 must be greater than the mcp23_lower_limit for mcp1 to rise

 For turn off, V cathode must already be off

 If requested voltage is Vmcp23

 If not turning off, mcp23 must be
 greater than mcp1
 gretaer than the mcp1 collapse voltage if mcp1 is on
 If turning off, both mcp1 and cathode must already be off

 Also check ramp rate is valid and that the FORCE parameter is valid.

 If parameters check OK

 then save copy of parameters in a table for later use
 by HV_RAMP_START and HV_RAMP_STOP.

 and return success (TRUE)

 else error in parameters

 so mark all parameters as undefined

 and send an illegal parameters values error packet

 and return a failure condition (FALSE).

 function HV_RAMP_START(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 If in safe mode

 then send 'invalid mode' error report and return false

 If already ramping, we cannot start another ramp

 then send 'busy' error report and return false

 If the HV ramp parameters are not already defined

 then send 'parameters not loaded' error report and return false

 All seems to be in order, lets hope it's not going to blow the instrument up
 Start the HV ramping task by calling HV_PROCESS entry START
 and return true

 function HV_RAMP_STOP(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

167

 Pass the stop message onto ramp task HV_PROCESS by calling entry STOP.

 task body HV_PROCESS is

 Start infinite loop

 Await...

 1) a call to START entry point

 Copy current settings so that load task won't interfere

 Determine direction of ramp and
 set up controlling parameters accordingly

 But if we are ramping up and filter wheel is not in blocked

 Issue appropriate execution failed message

 and return without setting task running flag.

 Otherwise

 Initialize current value to previous level

 If Vmcp23 is not off then ensure HV enabled bit is set

 Initialize variables for actual HV task

 Set task running flag

 2) a call to the STOP entry point

 Set running flag to false

 Record voltage attained before being stopped

 Set HV parameters to undefined

 Send unsuccessful execution packet to ground

 Otherwise, if task is enabled to run

 wait a bit

 Loop 10 times

 Get current voltage setting

 Set ramped ok flag if voltage in range

 Force exit from loop if ramped ok flag set

 Force exit from loop if call to STOP entry received

 Set the STOPPED flag if forced exit.

 or

 wait a second.

 If voltage level is OK

 Calculate next voltage level

 Perform range check and adjust if necessary

 Convert voltage level to bits using CONVERT_HV_TO_BITS

 Output bits

 else either error in ramping or voltage level reached

 Set up error codes

 Ensure HV parameters are not defined and stop task

 If not ramped ok

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

168

 Send unsuccessfull execution packet

 else either ramp stopped or completed successfully

 If ramp stopped

 Send unsuccessfull execution packet

 Else ramped ok

 If turning off Vmcp23

 Then disable HV

 Send blue event report ...

 ... only if source sequence count is not FFFF
 because internal commands have a source and sequence
 count of this value

 function CONVERT_HV_TO_BITS(VOLTAGE : HV_TYPE;
 VALUE : INTEGER)
 return UINT16 is

 If voltage level in the lower band then

 Convert convert voltage

 If channel is primary then

 Perform rounding and adjust if necessary

 Else voltage level is in higher band
 Convert to bit pattern

 If channel is primary

 Perform rounding and adjust if necessary

 Return bit pattern

 function GET_CONVERTED_HV(VOLTAGE : HV_TYPE) return INTEGER is

 Return the value read in from the adc, converted to a voltage level

 function GET_SET_GO(VOLTAGE : HV_TYPE) return INTEGER is

 Now obsolete

 function PERFORM_HV_SAFING(LEVEL : UINT16;
 SRC_SEQ_COUNT : UINT16)
 return BOOLEAN is

 If the safing level is a full safe

 then loop through voltages setting them to zero
 using SAFE_ONE_HV

 Return false if safing failed

 else safe only the cathode with SAFE_ONE_HV

 function SAFE_ONE_HV(VOLTAGE : HV_TYPE;
 SRC_SEQ_COUNT : UINT16)
 return BOOLEAN is

 If hv is not enabled then do nothing and return true

 Set up the ramp parameters with appropriate values
 using LOAD_HV_RAMP_PARAMETERS

 Start the hv ramp task HV_RAMP_START

 Wait for the hv ramp task to finish

 If voltage ramped OK return true else return false

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

169

 Else if we couldn't load the ramp parameters

 return FALSE.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

170

6.4.2.11 detdigital.ads

Extracted from file "detdigital.ads"

 Function
 ========

 This file contains the specification for the detdigital package.
 This package controls the digital card of the blue processing
 electronics (BPE).

package DETDIGITAL is

 function LOAD_CENTROID_TABLE(START : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Starts or stops (START = TRUE/FALSE respectively) the loading of the
 Centroid Lookup Table. The table contents are derived from parameters
 supplied by an earlier call to SET_TABLE_BOUNDARIES.

 Returns TRUE if the command is accepted.

 function SET_TABLE_BOUNDARIES(X_AND_Y_TABLES : PACKET_CENTROID_TYPE;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Specifies the parameters to be used by LOAD_CENTROID_TABLE.

 where:

 X_AND_Y_TABLES(0) = 0 /1 (Disable/Enable) and requests whether the
 table contents should be verified after loading.
 X_AND_Y_TABLES(1->9) contain the X centroid table boundaries.
 X_AND_T_TABLES(10->18) contain the Y centroid table boundaries.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function LOAD_WINDOW_TABLE(START : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Starts or stops (START = TRUE/FALSE respectively) the loading of the
 Window Bitmap Table. The table contents are derived from parameters
 supplied by an earlier call to SET_WINDOW_DESCRIPTION.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns TRUE if the command is accepted.

 function SET_WINDOW_DESCRIPTION(WINDOW_TABLE : PACKET_WINDOW_TYPE;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN ;

 Specifies the parameters to be used by LOAD_WINDOW_TABLE.

 where:

 WINDOW_TABLE(0) = 0 /1 (Disable/Enable) and requests whether the
 table contents should be verified after loading.
 WINDOW_TABLE(1) - the number of windows (N) to be loaded (1->15)
 WINDOW_TABLE(2+(n-1)*4) - the Xlow coordinate (CCD pixels), window n.
 WINDOW_TABLE(3+(n-1)*4) - the Ylow coordinate (CCD pixels), window n.
 WINDOW_TABLE(4+(n-1)*4) - the Xsize coordinate (CCD pixels), window n.
 WINDOW_TABLE(5+(n-1)*4) - the Ysize coordinate (CCD pixels), window n.
 NOTE: n is in the range 1->N.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns TRUE if the command is accepted.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

171

 function INTEGRATION(ENABLE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 ENABLE = TRUE/FALSE will enable/disable the blue detector integration
 (i.e. when events are sent to the DPU). The start is synchronised to
 the next end of frame transfer phase of the CCD.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns a TRUE value of no errors occur during commanding.

 function SET_ACQUISITION_MODE(MODE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Sets the acquisition mode of the detector.

 MODE can one of the following values:

 Value Meaning
 ----- ----------------------------
 0 Low Resolution, Windowed.
 1 Low Resolution Full Frame.
 2 High Resolution, Windowed.
 3 High Resolution, Full Frame.
 4 Engineering, x m/n data.
 5 Engineering, y m/n data.
 6 Engineering, event height.
 7 Engineering, event energy.

 NOTE: 4 and 5 are equivalent, 6 and 7 are equivalent.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns a TRUE value of no errors occur during commanding.

 function SET_EVENT_THRESHOLD(THRESHOLD : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Sets the threshold of events the detector will accept.

 THRESHOLD gives the value of the peak CCD pixel value above which
 events are detected.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function GET_EVENT_THRESHOLD return UINT16;

 Returns the value for THRESHOLD (for HK purposes) supplied by an earlier
 call to SET_EVENT_THRESHOLD.

 function DISABLE_FRAME_TAG(ON_OFF : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Controls the insertion of frame tag words into the data stream sent to
 the DPU.

 ON_OFF = TRUE/FALSE = Do NOT Insert/ Do Insert respectively
 (note inversion of normal conventions).

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns TRUE if the command is accepted.

 function RESET_CAMERA_HEAD_ELECTRONICS(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 This commands resets the camera head electronics.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

172

 associated telecommand.

 Returns TRUE if the command is accepted.

 function CAMERA_RUNNING(RUNNING : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN ;

 If RUNNING is TRUE, the camera mode is set to 'Started'
 If RUNNING is FALSE, the camera mode is set to 'Standbye'. In this mode
 it is possible to load the window bitmap RAM.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns TRUE if the command is accepted.

 function STATUS return UINT16;

 Returns the Blue Processing Electronics status word.
 The contents are as follows:

 LSB

 | | | | | | | | |
 | IA | Int Mode | FE | XX | TE | ME |

 IA - Integration Active = 1.
 Int Mode - as per SET_ACQUISITION_MODE.
 FE - Frame Tag, 1 = No Frame Tags
 XX - "Don't Care"
 TE - 0/1 = BPE/ICU can access Centroid Tables
 ME - 0/1 = Clocks halted, ICU access Window Bitmap/ Camera Started

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

173

6.4.2.12 detdigital.adb

Extracted from file "detdigital.adb"

 Function
 ========

 This file contains the body for the detdigital package.
 This package controls the digital card of the blue processing
 electronics (BPE).

 This algorithms used here are derived from the document "Software
 Setup of the Blue Detector Electronics", XMM-OM/MSSL/SP/77.

package body DETDIGITAL is

 The following routines are totally internal to detdigital.

 function MIC_OUT(MACS_ACTION : INTEGER;
 SUBADR : ICB.SUB_ADDRESS_TYPE;
 DATUM : UINT16) return BOOLEAN;

 function TABLE_ADDRESS(M : INTEGER; N : UINT16) return UINT16;

 function MAP_ADDRESS(X : UINT16; Y : UINT16) return UINT16;

 function TABLE_DATA(XSUB : INTEGER; YSUB : INTEGER) return UINT16;

 The following tasks are totally internal to detdigital.

 task LOAD_CENTROID_TABLE_TASK;
 task type LOAD_WINDOW_TABLE_TASK_TYPE;

 function MIC_OUT(MACS_ACTION : INTEGER;
 SUBADR : ICB.SUB_ADDRESS_TYPE;
 DATUM : UINT16) return BOOLEAN is

 This routine performs those functions associated with reading
 or writing to the Instrument Control Bus using the MACSbus protocol.

 Delay a bit if this routine is called a lot to allow other tasks to run

 If the requested action is to write data.

 Write the datum to the supplied sub-address.

 If there was a MACSbus error.

 Increment the error count.

 Otherwise, the action is to verify the datum.

 If it is a request to write to the centroid lookup table.

 Read back the datum from the supplied sub-address instead.

 If the value read back is not the same as the supplied datum.

 Increment the verification error count.

 else if it is a request to write to the window bitmap table.

 Read back the datum from the supplied sub-address instead.

 If the value read back is not the same as the supplied datum.

 Increment the verification error count.

 otherwise, we treat the request as a normal write to the supplied
 sub-address.

 Count any macsbus errors that occurred as well.

 Always return OK.

 function TABLE_ADDRESS(M : INTEGER; N : UINT16) return UINT16 is

 Construct a centroid lookup table address from the supplied M,N values

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

174

 Address = N ored with (M shifted left by 8 places)

 function MAP_ADDRESS(X : UINT16; Y : UINT16) return UINT16 is

 Construct a window bitmap table address from the supplied X,Y values
 Address = X ored with (Y shifted left by 8 places)

 function TABLE_DATA(XSUB : INTEGER; YSUB : INTEGER) return UINT16 is

 Construct a centroid lookup table datum from the supplied x and y
 Sub Pixel values (XSUB and YSUB).
 Datum = XSUB ored with (YSUB shifted left by 4 places)

 task body LOAD_CENTROID_TABLE_TASK is

 This ADA task loads up the centroid lookup table in the BPE.

 Commence infinite loop

 Await a request to start processing.

 Convert stored uplinked boundary values to actual values

 Determine if we are also verifying the data

 Zero error counts

 Now start a maximum of 2 passes (write + optional verify)

 First enable the centroid lookup table for ICU access using MIC_OUT

 Now begin outer loop over all values of M

 Check whether an abort instruction has come in

 If it has

 exit from loop over M

 Otherwise, do nothing

 Load the initial table address to write to using MIC_OUT
 and TABLE_ADDRESS (and rely on auto-inc AFTERWARDS)

 Now commence loop over all useful values of N

 Calculate equivalent fractional position (with blurring)
 for this M,N combination.

 Find the sub-pixel values for the x table

 Find the sub-pixel values for the y table

 Output the resulting sub-pixel data (using MIC_OUT and TABLE_DATA)
 to the current table location (note that the location written to will
 auto icrement by one after this write).

 Finally, disable for ICU access using MIC_OUT

 If there were no errors during the load

 Send Ground an appropriate event packet.

 Otherwise

 Send an appropriate exception packet to ground.

 task body LOAD_WINDOW_TABLE_TASK_TYPE is

 This ADA task loads up the window bitmap table in the BPE.

 This code is based on the algorithm described in "software Setup
 of the Blue Detector Electronics", XMM-OM/MSSL/SP/77.

 Await Start request

 Initialise counters and assume default minimum and maximum row pairs.

 Loop over all possible windows

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

175

 if window active

 Increment count of active windows

 Scale, copy and convert uplinked window info to
 high, low pixel pair units for this window.

 Assign Window ID to this window.

 Check whether this is minimum row pair so far.

 Check whether this is the maximum row pair so far.

 We have now
 1) Determined the number of valid/active windows,
 2) Scaled window parameters to pixel pair units
 3) Determined the maximum and minimum row pair used

 Now proceed to load the window bitmap table.

 Zero error counts

 If we have no active windows, exit from task

 Determine if we are also verifying the data

 Now start (maximum 2) passes (write + optional verify)

 Perform initialisations prior to table loading

 Enable MIC table for loading using MIC_OUT

 Begin loop over used row pairs

 First check whether an abort instruction has come in

 If it has

 exit from loop over row pairs.

 Otherwise, do nothing.

 Load up default window of zero (i.e no window) for all of this row pair.

 Set default row action of vertical transfer if this row pair
 does not intersect any windows.

 If current row pair is greater than or equal to the
 minimum row pair used by the windows

 We can now look for windows intersected by this row pair

 Loop over all active windows */

 If this window is intersected by the current row pair

 Loop over the column pairs within crossed window

 If we are at 1st row pair of a window,...

 Do nothing

 Otherwise assign the window ID to this column pair.

 Change the row action code to indicate the presence of a window.

 If the row action code indicates a window intersection.

 Calculate where the row pair is in the block of window intersections.

 otherwise, we have left a block, so reset the calculation.

 now write appropriate action code for current row pair using MIC_OUT
 and MAP_ADDRESS.

 Determine if we need to rewrite PRIOR row pair action code

 If we are at the 1st row pair within a window intersection block,
 and it's not the first row pair overall

 We are about to rewrite a value in a table.
 However, if we are in the compare phase

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

176

 Cancel the previous error caused by an earlier mismatch
 caused by the next instruction.

 Rewrite action code as 'readout and dump' for prior row using MIC_OUT
 and MAP_ADDRESS.

 Now, if it's a a READOUT row, output the window ID's noted earlier using MIC_OUT
 and MAP_ADDRESS.

 Move on to next row pair

 Finally, load final 2 rows of action codes (always 'Vertical Transfer'
 followed bt 'Terminate and Skip') using MIC_OUT and MAP_ADDRESS.

 Make MIC ready for use by starting the camera using MIC_OUT.

 If there are no errors.

 Send ground a suitable event report.

 Otherwise

 Send ground a suitable exception report.

 function LOAD_CENTROID_TABLE(START : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Attempt to start the load centroid table task
 LOAD_CENTROID_TABLE_TASK

 Return a success condition if it is accepted.

 send the ground an unsuccessful command message.

 and return a failure exit condition.

 function SET_TABLE_BOUNDARIES(X_AND_Y_TABLES : PACKET_CENTROID_TYPE;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Save the supplied params

 In this release, simply return TRUE. Future releases should check
 validity of params and return FALSE and issue an invalid command
 acceptance packet

 function LOAD_WINDOW_TABLE(START : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Attempt to start the load window bitmap table task
 LOAD_WINDOW_TABLE_TASK

 Return a success condition if it is accepted.

 but if there is no response after a while

 Send the ground an unsuccessful command message.

 and return a failure exit condition.

 function SET_WINDOW_DESCRIPTION(WINDOW_TABLE : PACKET_WINDOW_TYPE;
SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Save the supplied params

 Set up valid window flags for windows for which data was supplied.

 In this release, simply return TRUE. Future releases should check
 validity of params and return FALSE and issue an invalid command
 acceptance packet

 function INTEGRATION(ENABLE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

177

 Note: We allow integration enabling only if in science or engineering mode
 but always allow disabling

 If the above conditions are true, perform the requested action
 using MIC_OUT.

 Return a success condition (TRUE).

 Otherwise

 Send a suitable command execution failure

 Return a failure condition (FALSE).

 function SET_ACQUISITION_MODE(MODE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Ensure supplied acquisition mode is in range and merge with
 last value of frame tag requested (because they share the same port).

 Send the appropriate command the detector electronics
 using MIC_OUT.

 In this release, return success flag.
 In the event of a MACSbus error, we should send a command
 failure , however the MACSbus error count in HK will increase
 instead.

 function SET_EVENT_THRESHOLD(THRESHOLD : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Load up 2's complement of supplied threshold (as required by Detector
 electronics) via the ICB MACSbus using MIC_OUT.

 If no errors

 Store the threshold value requested.

 In this release, always return success flag.
 In the event of a MACSbus error, we should send a command
 failure message, however the MACSbus error count in HK will increase
 instead

 function GET_EVENT_THRESHOLD return UINT16 is

 Return the threshold value store by SET_EVENT_THRESHOLD.

 function DISABLE_FRAME_TAG(ON_OFF : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Merge frame tag setting requested with last value of acquisition
 (because they share the same port).

 Send to the appropriate port via the ICB MACSbus using MIC_OUT.

 In this release always return a success condition.
 (In the event of a MACSbus error, we should send
 an execution failure message, however the MACSbus error count in HK
 will increase instead)

 function RESET_CAMERA_HEAD_ELECTRONICS(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Send the appropriate command to the appropriate port via the ICB MACSbus
 using MIC_OUT.

 In this release always return a success condition.
 (In the event of a MACSbus error, we should send
 an execution failure message, however the MACSbus error count in HK will
 increase instead)

 function CAMERA_RUNNING(RUNNING : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

178

 If the request is to start the camera.

 Send the appropriate command to the appropriate port via the ICB MACSbus
 using MIC_OUT.

 Otherwise

 Send the appropriate command to the appropriate port via the ICB MACSbus
 using MIC_OUT to place it in standby.

 In this release always return a success condition.
 (In the event of a MACSbus error, we should send
 an execution failure message, however the MACSbus error count in HK
 will increase instead)

 function STATUS return UINT16 is

 Get the Word containing the status word from the appropriate sub-address
 on the ICB MACSbus.

 Extract and return the relevant bits.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

179

6.4.2.13 detector.ads

Extracted from file "detector.ads"

 Function
 ========

 This file contains the specification for the detector package.

 It effectively acts as a 'wrapper' for two other packages,
 DET_DIGITAL controlling an monitoring the digital functions
 of the detector electronics, while DET_ANALOG is the analogue equivalent.
 This is to provide a common interface.

package DETECTOR is

 function SET_FINE_POSITION_SENSOR_CURRENT(CURRENT : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETANALOG.SET_FINE_POSITION_SENSOR_CURRENT;

 function FINE_SENSOR_CURRENT return UINT16
 renames DETANALOG.FINE_SENSOR_CURRENT;

 function SET_FLOOD_LED_BIAS_CURRENT(LED : in UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETANALOG.SET_FLOOD_LED_BIAS_CURRENT;

 procedure SET_HV_ENABLE(ENABLED : BOOLEAN)
 renames DETANALOG.SET_HV_ENABLE;

 procedure SET_HV(HV : HV_TYPE;
 VALUE : UINT16)
 renames DETANALOG.SET_HV;

 function LOAD_HV_RAMP_PARAMETERS(VOLTAGE : UINT16;
 VALUE : UINT16;
 RAMP_RATE : UINT16;
 FORCE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETANALOG.LOAD_HV_RAMP_PARAMETERS;

 function HV_RAMP_START(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETANALOG.HV_RAMP_START;

 function HV_RAMP_STOP(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETANALOG.HV_RAMP_STOP;

 function PERFORM_HV_SAFING(LEVEL : UINT16;
 SRC_SEQ_COUNT :
UINT16)
 return BOOLEAN
 renames DETANALOG.PERFORM_HV_SAFING;

 function SAFE_ONE_HV(VOLTAGE : HV_TYPE;
 SRC_SEQ_COUNT : UINT16)
 return BOOLEAN
 renames DETANALOG.SAFE_ONE_HV;

 function GET_SET_GO(VOLTAGE : HV_TYPE) return INTEGER
 renames DETANALOG.GET_SET_GO;

 procedure SET_ADC_ACCURACY(ACCURACY : UINT16)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

180

 renames DETANALOG.SET_ADC_ACCURACY;

 function GET_ADC_ACCURACY
 return UINT16
 renames DETANALOG.GET_ADC_ACCURACY;

 function GET_ANALOG(ADC_ITEM : UINT16)
 return UINT16
 renames DETANALOG.GET;

 function FINE_POSITION_SENSED
 return BOOLEAN
 renames DETANALOG.FINE_POSITION_SENSED;

 function FLOOD_LED_BIAS_CURRENT
 return UNIBBLE
 renames DETANALOG.FLOOD_LED_BIAS_CURRENT;

 function HV_ENABLED
 return BOOLEAN
 renames DETANALOG.HV_ENABLED;

 function LOAD_CENTROID_TABLE(START : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETDIGITAL.LOAD_CENTROID_TABLE;

 function SET_TABLE_BOUNDARIES(X_AND_Y_TABLES : PACKET_CENTROID_TYPE;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETDIGITAL.SET_TABLE_BOUNDARIES;

 function LOAD_WINDOW_TABLE(START : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETDIGITAL.LOAD_WINDOW_TABLE;

 function SET_WINDOW_DESCRIPTION(WINDOW_TABLE : PACKET_WINDOW_TYPE;

 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETDIGITAL.SET_WINDOW_DESCRIPTION;

 function INTEGRATION(ENABLE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETDIGITAL.INTEGRATION;

 function GET_EVENT_THRESHOLD return UINT16
 renames DETDIGITAL.GET_EVENT_THRESHOLD;

 function DISABLE_FRAME_TAG(ON_OFF : BOOLEAN ;

SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETDIGITAL.DISABLE_FRAME_TAG;

 function RESET_CAMERA_HEAD_ELECTRONICS(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETDIGITAL.RESET_CAMERA_HEAD_ELECTRONICS;

 function CAMERA_RUNNING(RUNNING : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN
 renames DETDIGITAL.CAMERA_RUNNING;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

181

 function DIGITAL_STATUS
 return UINT16
 renames DETDIGITAL.STATUS;

 procedure FINE_SENSOR(ON_OFF : BOOLEAN)
 renames DETANALOG.FINE_SENSOR;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

182

6.4.2.14 dpu.ads

Extracted from file "dpu.ads"

 Function
 ========

 This file contains the specifications for the DPU package. That package
 controls and monitors the DPU via commands and data records described in
 the ICU-DPU Protocol Document (XMM-OM/MSSL/ML/0011).

package DPU is

 function COMMAND(WORD : UINT16_ARRAY;
 SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

 where the array WORD contains the DPU command to be sent to the DPU
 via the SSI interface.

 function HEARTBEATS return UINT16;

 returns DPU heartbeat count since startup. It 'wrapsaround' at 65535.

 function STATUS return UINT16;

 returns the DPU Status word contained in the DPU heartbeat.
 The contents of the status word are defined in the ICU-DPU
 Protocol Document (XMM-OM/MSSL/ML/0011) in the section describing thr
 DA_HBEAT record.

 function DRIFT_X return LONG_INTEGER;

 Returns the drift in x extracted from the most recent DA_TRK record.
 The units are 1/1000 centroided pixels.

 function DRIFT_Y return LONG_INTEGER;

 Returns the drift in y extracted from the most recent DA_TRK record.
 The units are 1/1000 centroided pixels.

 function ROLL return LONG_INTEGER;

 Returns the drift in roll extracted from the most recent DA_TRK record.
 The units are 1000000*sin(roll).

 function FRAME_COUNT return UINT16;

 Returns the frame count for this exposure extracted from the most
 recent DA_TRK record.

 function FRAMES_PER_EXPOSURE return UINT16;

 Returns frames so far for this exposure extracted from
 the most recent DA_BEGOF_EXP record.

 function EXPOSURE_ID return LONG_INTEGER;

 Returns the Exposure ID contained in the most recent DPU heartbeat.

 function DATA_ALERTED return UINT16;

 Returns the ID of the type of science data (DD_xxx records) that
 is currently being processed. This information is extracted from
 the DA_DATA_ALERT record.

 task HEARTBEAT_WATCHDOG is

 entry START;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

183

 entry STOP;
 entry RESET;

 end HEARTBEAT_WATCHDOG;

 This task monitors the DPU heartbeat and issues an appropriate Exception
 if it stops.

 HEARTBEAT_WATCHDOG.START starts the heartbeat monitoring task.
 HEARTBEAT_WATCHDOG.STOP stops the heartbeat monitoring task.
 HEARTBEAT_WATCHDOG.RESET effectively stops then starts the heartbeat
 monitoring task in order to reset its internal timout timers.

 procedure INIT;

 Initialises the SSI hardware interface and starts the data monitoring
 task.

 procedure BENT_PIPE(ENABLE : BOOLEAN);

 Enable/disables the 'bent-pipe' diagnostic - this ensures that all
 DPU data records are sent out as packets, even when the corresponding
 packets types are disabled.

 procedure ENABLE_REQ_DATA(ACTION : BOOLEAN);

 Enable/disables (ACTION = TRUE = Enabled) the icu-dpu 'handshake'
 which automatically ensures that DD_xxx blocks and DR_xxx blocks are
 send on to ground as soon as they are available.

 procedure SET_FILTER(MODE : UINT16);

 Inform DPU of current filter MODE in use.

 procedure POWER_DOWN;

 Power Down the DPU.

 procedure SYNCH_CLOCK(SECS : UINT16);

 Inform DPU of spacecraft time to the nearest second (contained in
 SECS) on the occurence of next BCP2/4 pulse.

 procedure ABORT_EXP;

 Abort current exposure

 procedure INIT_DPU;

 Init DPU (zeroes memory, readies swap units - a "Dave"

 procedure DISABLE_SSI_OUTPUT(DISABLED : BOOLEAN);

 Disable all SSI output except Heartbeats

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

184

6.4.2.15 dpu.adb

Extracted from file "dpu.adb"

 Function
 ========

 This file contains the body for the DPU package. The package
 controls and monitors the DPU via commands and data records described in
 the ICU-DPU Protocol Document (XMM-OM/MSSL/ML/0011). All data structures
 used in this package are implicitly defined inthat document.

package body DPU is

 Create buffer to hold all data received from DPU

 Create buffer to hold DP_WDW derived info

 Create buffer to hold DD_ENG derived info

 Define routines/tasks specifications internal to the package.

 task DATA_MANAGER is
 pragma priority(IMPORTANCE.DPU_DATA_MANAGER);
 entry START;
 end DATA_MANAGER;

 where the DATA_MANAGER task monitors ALL data from the DPU
 and takes appropriate action (e.g. counts heartbeats etc).

 procedure REQ_DATA;

 where REQ_DATA causes a request for 1 block of data to
 be sent to the DPU. This is only meaningful after receiving a
 DA_DATA_ALERT from the DPU

 Define the bodies of internal routines/tasks

 task body HEARTBEAT_WATCHDOG is

 Start infinite loop

 Await a call to an entry point.

 If a call to the RESET entry is made,
 this resets the timout count.

 Or

 If call to the START is made, start the
 DPU heartbeat watchdog monitor.

 Or

 If call to STOP is made, stop the DPU heartbeat watchdog.

 Otherwise

 Provided the task is set to be running

 and nothing is done for timout period (30 sec)

 send a DPU Heartbeat Exception packet.

 procedure REQ_DATA is

 causes a request for 1 block of data to
 be sent to the DPU. This is only done after receiving a
 DA_DATA_ALERT from the DPU

 If the ICU-DPU science data 'handshake' is enabled (the default)

 Send an IC_REQ_DATA command to the DPU via the SSI interface.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

185

 Wait a bit

 Otherwise

 Set the data pending flag.

 procedure ENABLE_REQ_DATA(ACTION : BOOLEAN) is

 If we are enabling the science data handshake and data is pending

 Request it using aan IC_REQ_DATA DPU command.

 and clear the data pending flag

 Store requested state (enable/disable) of handshake
 for later comparison.

 task body DATA_MANAGER is

 This task monitors ALL data from the DPU
 and takes appropriate action (e.g. counts heartbeats etc).

 In order to follow the logic of this code, you must be aware that
 the data block received from the DPU via the SSI interface has the
 following format

 ++
 + Word 0 + Word 1 + Word 2 -> Word N+2 +
 ++
 + Block + Word + +
 + Type + Count + DPU Data Block +
 + + N + +
 ++

 Wait for start instruction from main program to synchronize with
 other code.

 Start DPU Heartbeat Watchdog using HEARTBEAT_WATCHDOG.START.

 Begin infinite loop

 Begin second infinite loop

 Get the next DPU block using SSI_IN.GET

 only exit from loop if it's a valid block.

 Extract the block type from the 1st word

 If it's priority science data block (i.e. DP_xxx block type)

 If appropriate SID for this block type is enabled

 Forward to the priority data output routine in
 the SCIENCE_FM package.

 If it's a DP_WDW record

 and the ICU is not in engineering mode

 Provided we have between 1 and 15 windows
 (some DPU eng modes have > 15)

 Then we need to set up the detector electronics
 from information stored in the DP_WDW record.

 1) loop over the windows decribed in the record,
 extracting the x0, y0, xsize, ysize
 parameters for the detector windows contained in the
 DP_WDW record
 2) scale them to CCD pixels (which is a
 function of the BPE binning to be used in the exposure
 and was extracted earlier from a IC_BPE_BINNING command)
 3) add the active area offset (which is a function of
 whether this is the prime or redundant half).

 4) Load up the Window Bitmap tables in MIC
 to correspond to these detector windows using
 the DETECTOR package.

 If it's regular science data (i.e. a DD_xxx block type)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

186

 Determine SID associated with this particular DD_xxx block
 from a lookup table.

 Forward Regular data if appropriate SID is enabled

 Forward to the regular data output routine in
 the SCIENCE_FM package.

 If it's a DD_ENG record

 Count how many DD_ENG records so far.

 If it's the 1st DD_ENG record after a DA_ALERT saying
 DD_xxx data is available, then check if it's the
 channel boundary data (sub-type 3).

 Set flag forcing data will be verified

 Extract the channel boundaries from the DP_XXX record

 Load up the MIC centroid tables accordingly using the
 DETECTOR package.

 If it's an alert (i.e. a DA_xxx record)

 Determine default NHK sub-type (event or exception)
 from command code
 and SID associated with this DA_xxx block from look-up table.

 (Now perform actions that are alert specific)

 If it's a heartbeat

 Count heartbeats (wrapping around if necessary)

 Reset heartbeat watchdog to prevent a timout
 using HEARTBEAT_WATCHDOG.RESET.

 Extract DPU Status Word from heartbeat and store.

 Correct for DPU ROM bug (as per NCR 89)

 Determine from status word which DPU code we are running.
 (i.e. 'Fred' (ROM code) or 'Jim' (Uplinked Code))

 Extract Exposure ID from the heartbeat record.

 Inform waiting filter wheel movement request
 (if any) that h/beat has occurred
 using MECHANISM. AWAIT_DPU_HEARTBEAT.

 If it's a 'Fred' (DA_DPU_BOOT_READY)
 i.e. we have just started running the
 the DPU ROM code.

 If we were not expecting one (i.e. no preceding IC_RESET_DSP)

 Note that the NHK packet will be a major anomaly,
 and change the SID accordingly

 Ensure any prior mem dumps that might have been in
 progress are flushed (NCR 182) using MEMDPU.FLUSH.

 Similarly, ensure any science data group currently
 being dumped is flushed (NCR 182) using SCIENCE_FM.FLUSH.

 If it's a 'Jim' (DA_DPUOS_READY) - i.e. we have just started
 running the uplinked DPU code.

 Ensure engineering record (DD_ENG) data counters are reset.

 If it's a clock sync error (DA_CLK_SYNCH_ERROR) block

 Extract the commanded and previous times from DPU block

 If the commanded time is the same as the old time
 we will note that its associated NHK packet event will be
 an event rather than an exception (and modify SID accordingly)

 If it's a data alert (DA_DATA_ALERT)

 Note which type of regular data we have an alert for

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

187

 for use when we process the DA_DATA_END block later.

 Request 1 block of data via the REQ_DATA routine

 If it's a data_end (DA_DATA_END)

 If it's the end of regular science data
 (deduced when we processed the DA_DATA_ALERT)

 Flush the current science packet group buffer
 (via SCIENCE_FM.FLUSH)

 and also reset the DD_ENG record counter as failsafe.

 If it's the end of RAM/ROM dump packets (DR_xxx blocks)

 Flush out the current memory dump packet buffer
 (via MEMDPU.FLUSH).

 Otherwise, do nothing

 Clear the datatype flag which notes which type of regular
 data is being processed.

 If it's a DPU_MNEMO.DA_TRK alert

 Extract the current frame count from the record.

 Extract the drift information from the record.

 If it's a DA_BEGOF_EXP

 Extract the frames for this exposure from the record.

 If it's a ENDOF_EXP

 Ensure detector integration is turned off
 using DETECTOR.INTEGRATION.

 If it's a multi-bit error

 Reset level of associated NHK report to Major Anomaly

 (Now do things that are generic to all alerts)

 Forward all alerts as auxiliary data packets if enabled
 via SCIENCE_FM.AUXILIARY_DATA

 Possibly send to ground as an NHK packet (event or exception)
 via NHK.PUT but only if SID is enabled
 (whether a given SID is enabled is decided internally by
 the package NHK, and thus whether the packet is actually sent)

 If they are memory dump blocks (DR_xxx)

 Output them (via MEMDPU.PUT) as memory
 Dump packets

 If they are anything else

 Do nothing.

 Define bodies of externally visible tasks/procedures

 function COMMAND(WORD : UINT16_ARRAY;
 SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN is

 Reserve memory for command buffer.

 Loop over the number of words in the command
 (derived from the second location of the input command)..

 and copy the command words into a temporary command buffer

 If it's a zero length IC_SYNCH_CLK time sync command.

 Wait for next BCP4 pulse, and get On-Board-Time
 (via Time Manager package)

 Extract Secs field from the On-Board-Time

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

188

 Add one to it, with possible wraparound, to deduce time at next BCP4.

 Modify the IC_SYNCH_CLK command in the temporary command buffer
 accordingly by restoring it to its correct length and adding in
 the least 14 sig bits of the seconds field derived above.

 If it's a 'Fred' (IC_RESET_DSP) command.

 Reset DPU heartbeat watchdog using HEARTBEAT_WATCHDOG.RESET.

 Set a flag indicatiing we now expect a 'Fred' (DA_DPU_BOOT_READY)

 If it's a 'Jim' (IC_LOAD_DPUOS) command.

 Reset heartbeat watchdog using HEARTBEAT_WATCHDOG.RESET.

 If it's an engineering mode command (IC_ENBL_ENG)

 Check whether the ICU is not in engineering mode

 and reject with a "Invalid for this Mode" message.

 Return with a failure condition of FALSE.

 If it's an Set BPE Binning command (IC_BPE_BINNING)

 Extract the requested BPE binning for later use
 when processing the DP_WDW record..

 Send temporary command buffer to the DPU via SSI.PUT.

 Return a success condition.

 function HEARTBEATS return UINT16 is

 Return the heartbeat count deduced when processing the heartbeats.

 function DRIFT_X return LONG_INTEGER is

 Return the drift in X extracted from DA_TRK.

 function DRIFT_Y return LONG_INTEGER is

 Return the drift in Y extracted from DA_TRK.

 function ROLL return LONG_INTEGER is

 Return the drift in Roll extracted from DA_TRK.

 function FRAME_COUNT return UINT16 is

 Return the frame so far this exposure extracted from DA_TRK.

 function FRAMES_PER_EXPOSURE return UINT16 is

 Return the Total Frames for this exposure extracted from DA_BEGOF_EXP.

 function EXPOSURE_ID return LONG_INTEGER is

 Return the Exposure ID extracted from the heartbeat record.

 function STATUS return UINT16 is

 Return the DPU Status Word extracted from the heartbeat record.

 function DATA_ALERTED return UINT16 is

 If the Block ID of the regular data currently being 'handshaked'
 corresponds to regular science (DD_xxx)

 Return that ID

 Otherwise

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

189

 Return 0

 procedure INIT is

 Initialize the SSI Card and Controlling Software
 using SSI_OUT.RESET.

 Start the DPU Data Manager processing the DPU output
 using DATA_MANAGER.START.

 procedure SET_FILTER(MODE : UINT16) is

 Construct an IC_LOAD_FILT_CONF with filter set according to
 the value MODE.

 Provided the DPU is not in boot mode

 Send the command to the DPU.

 procedure POWER_DOWN is

 Construct an IC_POWER_DOWN_DOWN command.

 Send the command to the DPU via the SSI interface
 using SSI_OUT.PUT.

 procedure SYNCH_CLOCK(SECS : UINT16) is

 Construct an IC_SYNCH_CLK using the value SECS accordingly.

 Send it to the DPU using SSI_OUT.PUT.

 procedure ABORT_EXP is

 Construct an IC_ABORT_DPU command.

 procedure INIT_DPU is

 Construct an IC_INIT_DPU command.

 procedure DISABLE_SSI_OUTPUT(DISABLED : BOOLEAN) is

 Construct an IC_LOCAL_RAM command.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

190

6.4.2.16 dpu_mem_manager.ads

Extracted from file "dpu_mem_manager.ads"

 function LOAD_MEMORY(MID: UINT16;
 START_ADDRESS: LONG_INTEGER;
 DATA: UINT16_ARRAY;
 LENGTH: UINT16;
 SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

 where MID is the MID
 where START_ADDRESS is the start address of the load
 where DATA is the data to load as an array of unsigned 16 bit words
 where LENGTH is the length of the data in words
 where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
 returns a boolean: true on success and false on failure
 function LOAD_MEMORY loads memory corresponding to the MID

 function DUMP_MEMORY(MID: UINT16;
 ADDRESS: LONG_INTEGER;
 LENGTH: UINT16;
 SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

 where MID is the MID
 where ADDRESS is the address of the dump request
 where LENGTH is the length of the requested memory dump in words
 where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
 returns a boolean: true on success and false on failure
 function DUMP_MEMORY dumps memory corresponding to the MID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

191

6.4.2.17 dpu_mem_manager.adb

Extracted from file "dpu_mem_manager.adb"

 Dependencies
 ============

with INTRINSICS;
with UNCHECKED_CONVERSION;
with ARTCLIENT;
with SYSTEM;

with PACKET;
with TC_VERIFY;
with TMQ;
with PEEK_POKE;
with CRC;
with DPU_MNEMO;
with SSI_OUT;
with DEBUG;
with NHK;
with MEMLOC;

package body DPU_MEM_MANAGER is

 function DUMP_MEMORY(MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

 returns array 0 .. packet.MAX_TM_MEM_PARAMS_M1

 DPU local RAM
 If length is out of range, send an error packet

 If address is out of range, send an error packet

 If the address is OK, form an SSI block

 and send block down SSI

 DPU global memory 24-bit words
 If address is out of range, send an error packet

 If the address is OK, form an SSI block

 and send block down SSI

 DPU global memory 16-bit words
 If address is out of range, send an error packet

 If the address is OK, form an SSI block

 and send block down SSI

 When the MID is 20-27
 (length is a 16-bit number of 24-bit words to dump)
 If address is out of range, send an error packet

 If the address is OK, form an SSI block

 and send block down SSI

 For other MIDs send unsuccessful acceptance

 function DPU_CHECKSUM(DPU_ARRAY: UINT16_ARRAY) return UINT16 is

 where DPU_ARRAY is an array of words to load into the DPU
 returns the checksum as an unsigned 16-bit integer

 Start with checksum of 0

 For each word starting with the third to the end ...

 Add each byte of the current word to the checksum

 At the end of the block, xor with 0xffff

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

192

 Return the checksum

 function LOAD_MEMORY(MID: UINT16; START_ADDRESS: LONG_INTEGER; DATA: UINT16_ARRAY; LENGTH:
UINT16; SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

 LENGTH is in 16-bit words

 If the MID is 16#13# load local memory

 For each DPU-word of data

 Form the DPU block

 Remember to convert because DPU uses 3-byte words and we're loading with 2-byte
words

 Put the DPU block down the SSI

 If the MID is 16#14# load global memory (24-bit words)

 For each DPU-word of data

 Form the DPU block

 Remember to convert because DPU uses 3-byte words and we're loading with 2-byte
words

 Put the DPU block down the SSI

 If the MID is 16#15# load global memory (16-bit words)

 For each DPU-word of data

 Form the DPU block

 Put the DPU block down the SSI

 If the MID is 20-27 load program RAM

 Select EEPROM

 Unlock

 For each word of data

 Form the DPU block

 Remember to convert because DPU uses 3-byte words and we're loading with 2-byte
words

 Put the DPU block down the SSI

 Lock

 When the MID is wrong

 send unsuccessful acceptance (illegal mid) packet

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

193

6.4.2.18 dpu_mnemo.ads

Extracted from file "dpu_mnemo.ads"

package DPU_MNEMO is

 This specification only package contains the values of Command and Data
 mnemonics as defined in the ICU-DPU Protocol Definitions
 XMM-OM/MSSL/ML/0011

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

194

6.4.2.19 heater.ads

Extracted from file "heater.ads"

 Function
 ========

 This file contains the specification for the HEATER package.
 The algorithms implemented therein are outlined in document
 XMM-OM/MSSL/SP/165. "OM Heater Control"

package HEATER is

 function SET_MARK_SPACE(HEATER_NO : UINT16;
 ON_TIME : UINT16;
 TOTAL_TIME : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN;

 where

 HEATER specifies heater to be controlled by the open loop algorithm

 ON_TIME specifies the number of 10 seconds the heater should be on

 OFF_TIME specifies the number of 10 seconds the heater should be off

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns TRUE if the command is accepted.

 NOTE : This function has been superceded by SET_FUNCTION and is no longer
 used.

 function SET_FUNCTION(FID : UBYTE;
 PARAM1 : UINT16;
 PARAM2 : UINT16;
 PARAM3 : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN;

 This function specified how each heater is to be controlled by which
 automatic algorithm as follows:

 FID Heater Description PARAM1 PARAM2 PARAM3
 --- ------ ----------- ------ ------ ------
 1 Interface Closed, Free Tmin Tmax -
 2 Interface Open, Free On Time Cycle Time -
 3 Forward Closed, Synched Tmin Tmax Thermistor
 4 Forward Closed, Free Tmin Tmax Thermistor
 5 Forward Open, Synched On Time Cycle Time -
 6 Forward Open, Free On Time Cycle Time -
 7 Focussing -/+ Focussing On Time Cycle Time Direction
 8 - Set Sample Time Sample Time - -

 Notes:
 1) On Time and Cycle Time are in units of Sample Time.
 2) Thermistor = 0/1 = Prime/Redundant forward thermistor.
 3) Tmin and Tmax are in 'raw' units.
 4) Focus Direction = -ve = HTR4(Secondary)
 = 0 = HTR3 and HTR4 off.
 = +VE = HTR3(Metering) powered.

 5) Sample Time is in units of seconds.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Returns TRUE if the command is accepted.

 function START return BOOLEAN;

 Starts the automatic heater control algorithms.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

195

 function STOP return BOOLEAN;

 Stops the automatic heater control algorithms

 function LOAD_CONFIG_DIRECTLY(CONFIG : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 The bit pattern in CONFIG specifies which heater should be on or off
 (1 = on) as follows:
 L.S.B.

 | Temperature Control | Focussing |

 | Main | Forward | Metering | Secondary |
 | | | Rods | Mirror |
 | (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4) |

 NOTE: This command is ignored if the automatic heater algorithms
 are running.

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 Return TRUE in this release

 procedure BRIEF_DISABLE(ENABLE : BOOLEAN);

 If ENABLE = TRUE, turns off all heaters.

 If ENABLE = FALSE, restores prior configation of heaters if the
 automatic algorithms are NOT running, otherwise resumes the automatic
 algorithms.

 function CONFIG return UINT16
 renames TMPSU.HEATER_CONFIG;

 Renames, for convenience, the TMPSU package function that returns
 the current heater configuration.

 The bit pattern in CONFIG specifies which heater is on or off
 (1 = on) as follows:
 L.S.B.

 | Temperature Control | Focussing |

 | Main | Forward | Metering | Secondary |
 | | | Rods | Mirror |
 | (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4) |

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

196

6.4.2.20 heater.adb

Extracted from file "heater.adb"

 Function
 ========

 This file contains the body for the HEATER package.
 The algorithms implemented therein are outlined in document
 XMM-OM/MSSL/SP/165. "OM Heater Control"

 Define Specification for Tasks and Procedures used internally.

 task CONTROL is

 pragma priority(IMPORTANCE.THERMAL_CONTROL);

 entry START;
 entry STOP;
 entry SET_ON_OFF(HEATER_NO : UINT16;
 ON_TIME : UINT16;
 TOTAL_TIME : UINT16);

 end CONTROL;

 START starts automatic heater control (open or closed loop)
 STOP stops automatic heater control (open or closed loop)
 SET_ON_OFF specifies on/off time when in open loop control

 Note: Default heater/algorithm settings are:

 I/F Heater limits are 19.5 +/- 0.5 under closed loop control
 Forward Heater limits are 19.5 +/- 1.5 under closed loop control
 Focussing heaters are off under open loop control.

 procedure CHANGE_CONFIG(NEW_CONFIG : UINT16);

 Changes the heater configuration to 4 lsb of NEW_CONFIG
 (1 = ON).

 Now specify bodies for internal routines and tasks.

 task body CONTROL is

 Begin infinite loop

 If a call to the START entry point is made

 Get current time.

 Start task running.

 Reset the 'cycle' counter.

 Obtain last known heater configuration using TMPSU.HEATER_CONFIG.

 Or if a call to the STOP entry point is made

 Ensure all heaters off using CHANGE_CONFIG.

 Remember that configuration.

 Then stop algorithm

 Or if a call to the heater parameter entry point is made

 store length of ON time for specified heater.

 store length of duty cycle for specified heater.

 Or, provided heating algorithm is already running

 delay until start of next 'Sample Time'.

 Commence loop over the heaters

 If the open loop algorithm is active for this particular heater

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

197

 Provided we have a non-zero 'cycle time'

 Determine where we are in the cycle for this heater.

 Set flag indicating whether the heater should be on or off.

 otherwise

 Set flag indicating that the heater is off.

 Otherwise we have a closed loop algorithm

 Determines whether the heater is already on from the last
 known configuration.

 If we are dealing with the forward heater.

 Get the control temperature from the specified thermistor

 Otherwise

 Get the control temperature from an average of
 MAIN, REF A and REF B thernistors.

 If heater was on

 and control temperature is above maximum allowed.

 Set flag indicating that the heater should be turned off.

 Otherwise

 If the control temperature is below minimum allowed.

 Set flag indicating that the heater should be turned on.

 If synchronisation of heaters is enabled

 Enable forward switch on if interface heater is flagged as being
 about to be switched off

 If a switch on (from off) of the forward heater has been
 requested by the automatic algorithm.

 Only flag as allowed if forward switch on is enabled

 Determine resulting heater configuration from flags set.

 Request the TMPSU to command the heaters accordingly
 using CHANGE_CONFIG.

 Remember this configuration for comparison next time.

 Calculate time of next sampling of thermistors

 Count no of heater cycles

 Now specify bodies for external routines and tasks.

 function SET_MARK_SPACE(HEATER_NO : UINT16;
 ON_TIME : UINT16;
 TOTAL_TIME : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN is

 Specify On time within Cycle Time for specified heater.
 NOTE: This function now obsolete and no longer called.

 function SET_FUNCTION(FID : UBYTE;
 PARAM1 : UINT16;
 PARAM2 : UINT16;
 PARAM3 : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN is

 If the function specified is "Interface, Closed Loop, Free Running"

 then store that fact together with the temperature limits.

 If the function specified is "Interface, Open Loop, Free Running"

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

198

 Then store that fact together with the on and total times.

 If the function specified is "Forward, Closed Loop, Synched"

 Then store that fact together with the temperature limits and thermistor
 to be used.

 If the function specified is "Forward, Closed Loop, Free Running"

 Then store that fact together with the temperature limits and thermistor
 to be used.

 If the function specified is "Forward, Open Loop, Synched"

 Then store that fact together with the on and total times.

 If the function specified is "Forward, Open Loop, Free Running"

 Then store that fact together with the on and total times.

 If the function specified is "Focussing"

 If the focus direction is zero

 Then ensure both focussing heaters will be off.

 If the focus direction is greater than zero

 Then store that the metering rods heater will be on for
 the specified times.

 If the focus direction is less than zero

 Then store that the secondary mirror heater will be on for
 the specified times.

 Otherwise, if we a resetting the sample time.

 Store the new value.

 And for any other values of FID

 Return a failure condition of FALSE.

 The above stored values will be acted upon
 at the start of the next 'Sample Time'

 Return a Success condition of TRUE.

 function START return BOOLEAN is

 Start the automatic heater control algorithms
 using CONTROL.START.

 Return Success condition.

 function STOP return BOOLEAN is

 Stop the automatic heater control algorithms
 using CONTROL.STOP.

 Return Success condition.

 function LOAD_CONFIG_DIRECTLY(CONFIG : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Provided the automatic heater algorithms are not running

 Load the supplied heater configuration via the TMPSU using
 TMPSU.SET_HEATER_CONFIG.

 Return a Success condition.

 procedure BRIEF_DISABLE(ENABLE : BOOLEAN) is

 Provided we did not perform the requested action last time

 If we wish to pause the heater algorithm(s)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

199

 Note whether automatic version is running

 If the automatic version is running

 then stop it using CONTROL.STOP.

 but if we are relying on ground control

 Remember the current config using TMPSU.HEATER_CONFIG.

 Then turn all heaters off

 If we wish to unpause the heater algorithms

 and the automatic version was running

 Restart it using CONTROL.START.

 But if we were relying on ground control

 restore old config using CHANGE_CONFIG.

 Finally, remember what action was requested ready for next call.

 procedure CHANGE_CONFIG(NEW_CONFIG : UINT16) is

 Remember current config to compare against

 Initialise working config to that of current

 Loop over all heaters

 If this heater has changed in requested configuration

 Wait a bit to avoid switching two heaters together

 Change record of working configuration to new value for this heater

 Now request (via TMPSU.SET_HEATER_CONFIG) the real heater configuration
 become that of the working configuration, thus updating the actual
 configuration for just this heater.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

200

6.4.2.21 hk.ads

Extracted from file "hk.ads"

 Function
 ========

 This file defines the specification for the HK package. The package
 acquires and sends the Housekeeping Packets (HK), the contents of
 which are defined in the XMM-OM Telecommand and
 Telemetry Specification document, XMM-OM/MSSL/ML/0010

package HK is

 procedure ON;

 This procedure enables the acquisition of the HK packet type

 procedure OFF(HK_WAS_RUNNING : out BOOLEAN);

 This procedure disables the acquisition of the HK.

 procedure BLOCK(ACTION : BOOLEAN);

 if Action = TRUE, Blocks the HK if active
 if Action = FALSE, restore HK condition to the last call with ACTION set to TRUE

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

201

6.4.2.22 hk.adb

Extracted from file "hk.adb"

 Function
 ========

 This file defines the body for the HK package. The package
 acquires and sends the Housekeeping Packets (HK), the contents of
 which are defined in the XMM-OM Telecommand and
 Telemetry Specification document, XMM-OM/MSSL/ML/0010

package body HK is

 task PROCESS is
 pragma priority(IMPORTANCE.HK_PROCESS);
 entry ON;
 entry OFF(HK_WAS_RUNNING : out BOOLEAN);
 end PROCESS;

 The above is the specification for the internal task that performs the HK
 acquisition

 Entry ON starts the task.
 Entry OFF stops the task
 and returns whether or not it was already stopped.

 Default to current SID is that associated with 10 second interval between
 packets.

 task body PROCESS is

 Default that the task is running.

 Default requested next HK packet to be acquired at current time.

 Create an instance of an HK packet

 Set up initial time delay interval by subtracting current time from next
 requested HK acquisition time.

 Commence infinite loop

 Await for either:

 1) A request to start HK acquisition (already on by default)

 If ON request comes in

 then enable HK acquisition

 Initiliase the next time for HK acquisition to be now

 2) A request to stop HK acquisition

 If OFF request comes in

 then disable acquisition

 3) otherwise, provided HK is enabled (the default)
 and no ON or OFF requests pending

 Wait for the calculated time delay before
 starting to acquire the next HK packet

 Provided the wait interval was not too negative and HK is not blocked

 Ensure HK packet contents zeroed

 If TMPSU secondaries enabled

 Get detector ADC accuracy from DETECTOR.GET_ADC_ACCURACY
 and store in packet.

 Get Thermistor readings from DETECTOR.GET_ANALOG
 and store in packet.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

202

 Get HV enabled status from DETECTOR.HV_ENABLED and store in packet.

 Get Fine Pos Sensor Status from MECHANISM.AT_FINE_SENSOR
 and DETECTOR.FINE_SENSOR_CURRENT
 and store in packet.

 Get HV values from DETECTOR.GET_ANALOG
 and store in packet.

 Get Low Voltage values from DETECTOR.GET_ANALOG
 and store in packet.

 Get fine pos current from DETECTOR.GET_ANALOG and store in packet.

 Get Flood LED Reading from DETECTOR.FLOOD_LED_BIAS_CURRENT
 and store in packet.

 Get Detector Electronics Status Word from DETECTOR.DIGITAL_STATUS
 and store in packet.

 Get heater status from HEATER.CONFIG and store in packet.

 Get coarse sensor current info from TMPSU.COARSE_SENSOR_CURRENT
 and MECHANISM.AT_COARSE_SENSOR and store in packet.

 Get secondary Voltage status from TMPSU.SECONDARY_VOLTAGES_ENABLED
 and store in packet.

 Get f/w phase and position info from TIMER_A_IH.FW_PHASE
 and MECHANISM.FW_POSITION and store in packet.

 Get dichroic info from TIMER_A_IH.DM_PHASE and MECHANISM.DM_POSITION
 and and store in packet.

 Get TMPSU Secondary Currents from TMPSU.CURRENT and store in packet.

 Get status of ICB from ICB.STATUS and store in packet.

 Get SSI I/F error count from SSI_DRIVER.ERROR_COUNT
 and store in packet.

 Get Timing status's from TIME_MAN.SYNCHRONISATION_ACTIVE
 and TIME_MAN.VERIFICATION_ACTIVE
 and store in packet.

 Get RBI Status's from RBI.STATUS_REGISTER and RBI.CONFIG_REGISTER
 and store in packet.

 Get ICB Error Count from ICB.ERROR_COUNT and store in packet.

 Get TC Good Packet Counter from HK.TC_GOOD and store in packet.

 Get TC Bad Packet Counter from HK.TC_BAD and store in packet.

 Get OM Mode from MODEMAN.MODE and store in packet.

 Set ICU State to operational (=1) and store in packet.

 Get Which chain from value stored in ROM (i.e Prime or Redundant)
 and store in packet.

 Get S/W Version from value stored in ROM
 and store in packet.

 Get DPU Info from the DPU package and store in packet.

 then set the HK Packet SID field accordingly

 Get the current time and store in packet.

 Indicate CRC present

 Calculate and set the packet length field in the packet.

 Provided one of the 2 possible SID's are enabled

 Send packet to telemetry queue

 Check whether currently enabled HK SID has changed
 using TM_MAN.SID_STATUS.

 Calculate the next HK sample time

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

203

 (derived by adding last start of acquition time
 to the time interval between packets implied by the SID).

 Subtract it from the current time and delay the
 code by the result, thus ensuring the average time interval
 between HK packets is the expected time interval.

 end of infinite loop

 procedure OFF(HK_WAS_RUNNING : out BOOLEAN) is

 Disable the HK acquisition program by calling the PROCESS.OFF entry point.

 procedure ON is

 Ensure HK program is running by calling the PROCESS.ON entry point.

 procedure BLOCK(ACTION : BOOLEAN) is

 Block HK by setting an appropriate flag.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

204

6.4.2.23 icb.ads

Extracted from file "icb.ads"

 Function
 ========

 This file contains the specification for the ICB package. The package
 controls access to lower-level routines that interface directly with
 the Instrument Control Bus (ICB). The ICB is implemented using the
 MACSbus protocol.

package ICB is

 Define SUBADDRESS_TYPE

 procedure PUT(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUB_ADDRESS_TYPE;
 DATUM : UINT16;
 OK : out BOOLEAN);

 Writes DATUM to sub-address SUBADR at MACSbus destination DEST.

 Returns OK = TRUE if no errors occur.

 procedure GET(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUB_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN);

 Reads DATUM from sub-address SUBADR at MACSbus destination DEST.

 Returns OK = TRUE if no errors occur.

 procedure RESET;

 Resets the ICB MACSbus interface.

 function REPORT(TID : UBYTE;
 FID : UBYTE)
 return BOOLEAN;

 The function implements the "Read ICB Address Directly" command
 as described in section 2.2.5 of the Telecommand and Telemetry
 Specification, XMM-OM/MSSL/ML/0010.

 Specifically, it constructs a Task Parameter Report [TM(5,4)] containing
 the datum read back from subaddress FID at destination TID-40(hex), as
 documented in section 3.5 of the above document.

 In this release, it always returns TRUE.

 function STATUS
 return UBYTE
 renames ICB_DRIVER.HK_STATUS;

 For convenience, renames a low-level routine which returns
 the ICB interface status word - see package ICB_DRIVER for
 more details.

 function ERROR_COUNT
 return UBYTE
 renames ICB_DRIVER.ERROR_COUNT;

 Returns the ICB error count (modulo 256) since the ICU was started.

 function BUSY return BOOLEAN;

 Returns TRUE if the ICB interface is being used by other code.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

205

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

206

6.4.2.24 icb.adb

Extracted from file "icb.adb"

 Function
 ========

 This file contains the body for the ICB package. The package
 controls access to lower-level routines that interface directly with
 the Instrument Control Bus (ICB). The ICB is implemented using the
 MACSbus protocol.

package body ICB is

 The following procedures are internal to this package.

 procedure SEIZE;
 procedure RELEASE;

 SEIZE does not exit until it has seized the ICB interface
 for exclusive use.

 RELEASE release the ICB interface for use by other code.

 N.B. As the ICB interface code might be
 called at interrupt level, the required semaphore mechanism
 is implemented using critical sections
 (which are valid at interrupt level) in these procedures
 whilst manipulating a BUSY flag.
 The alternative of using the MUTEX package is not valid
 at interrupt level as it uses ADA tasking.

 Specify a default BUSY flag status of FALSE.

 procedure RESET is

 If we are not already at interrupt level (failsafe test)

 Ensure that this routine has exclusive use of the MACSbus interface
 using SEIZE.

 Call the ICB driver low level reset function

 If we are not already at interrupt level (failsafe test)

 Release the MACSbus interface for use by other code using RELEASE.

 procedure PUT(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUB_ADDRESS_TYPE;
 DATUM : UINT16;
 OK : out BOOLEAN) is

 If we are not already at interrupt level (failsafe test)

 Ensure that this routine has exclusive use of the MACSbus interface
 using SEIZE.

 Send the datum to the low level ICB PUT routine

 If we are not already at interrupt level (failsafe test)

 Release the MACSbus interface for use by other code using RELEASE.

 procedure GET(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUB_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN) is

 If we are not already at interrupt level (failsafe test)

 Ensure that this routine has exclusive use of the MACSbus interface
 using SEIZE.

 Obtain a datum via the ICB low level driver GET function

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

207

 If we are not already at interrupt level (failsafe test)

 Release the MACSbus interface for use by other code using RELEASE.

 function REPORT(TID : UBYTE;
 FID : UBYTE) return BOOLEAN is

 Get the datum at the address and sub-address corresponding
 with the supplied TID and FID.

 Supply the datum to the TASK_REPORT package to construct
 and send the aappropriate Report Task Parameters Packet.

 Return Success.

 procedure SEIZE is

 Begin infinite loop

 Enter critical section

 If the BUSY flag is set

 Leave critical section

 Otherwise

 Set BUSY flag

 Leave critical section.

 Exit procedure.

 Wait a bit

 Then try again.

 procedure RELEASE is

 Enter Critical Section.

 Set the BUSY flag to false.

 Leave Critical Section.

 function BUSY return BOOLEAN is

 Return status of BUSY flag.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

208

6.4.2.25 icb_driver.ads

Extracted from file "icb_driver.ads"

 Function
 ========

 This file contains the specification for the ICB_DRIVER package.
 The package provides the lower-level routines that interface directly
 with the Instrument Control Bus (ICB). The ICB is implemented using the
 MACSbus protocol.

package ICB_DRIVER is

 procedure PUT(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUBADR_ADDRESS_TYPE;
 DATUM : UINT16;
 OK : out BOOLEAN);

 This procedure write the datum DATUM to sub-address SUBADR at
 MACSbus destination DEST. OK is set to TRUE if no errors occur.

 procedure GET(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUBADR_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN);

 This procedure gets the datum DATUM from sub-address SUBADR at
 MACSbus destination DEST. OK is set to TRUE if no errors occur.

 procedure RESET;

 This procedure resets the MACSbus interface.

 function HK_STATUS return UBYTE;

 This procedure returns the status word of the ICB MACSbus interface
 BUT only for the last occurring error.

 function ERROR_COUNT return UBYTE;

 This returns the (modulo 256) error count of MACSbus errors since
 the ICU code started running.

 Provide a flag to be set when ICB_DRIVER is being called at interrupt level
 but default it to FALSE.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

209

6.4.2.26 icb_driver.adb

Extracted from file "icb_driver.adb"

 Function
 ========

 This file contains the body for the ICB_DRIVER package.
 The package provides the lower-level routines that interface directly
 with the Instrument Control Bus (ICB). The ICB is implemented using the
 MACSbus protocol.

 Dependencies
 ============

package body ICB_DRIVER is

 NOTE: The structure of the status register is as follows:

 --
 | msb | | | | | | | lsb |

 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

 | DEAD BITS | | TX | EXT | SYNC | END |
 | | | ERR | ERR | ERR | COMM |
 --

 Note: the structure of the ICB command register is:

MSB LSB
ext

 function GET_STATUS return ICB_STATUS_TYPE is

 Read the ICB MACSbus status register port.

 Extract and return the status word

 function HK_STATUS return UBYTE is

 Return the last noted status word ** at the last error **.

 procedure PUT(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUBADR_ADDRESS_TYPE;
 DATUM : UINT16;
 OK : out BOOLEAN) is

 Construct command word to be written to command register
 based on supplied DEST and SUBADR
 (Note, Instr = RD = 010 binary, Ext = 101 binary)

 Write Datum to datum register port

 Write command word to command register (thus initiating transfer)

 Poll status word using GET_STATUS and then
 wait for completion of command (END COMM bit set),
 an error (i.e. TX ERR, EXT ERR or SYNC ERR bit set) or a timout, and
 remember the resulting status.

 Flag an error if any error bit was set , a timout or all 'dead bits' set.
 Otherwise, assume OK.

 If no error

 Do nothing.

 Otherwise

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

210

 Hand status, command word and datum over to be
 processed by the ANALYSE_ERRORS procedure.

 Finally, ensure interface is reset prior to next operation by
 calling procedure RESET

 procedure GET(DEST : DEST_ADDRESS_TYPE;
 SUBADR : SUBADR_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN) is

 Construct command word to be written to command register
 based on supplied DEST and SUBADR
 (Note, Instr = TI = 100 binary, Ext = 101 binary)

 Write command word to command register port
 (which initiates transfer).

 Poll status word using GET_STATUS and then
 wait for completion of command (END COMM bit set),
 an error (i.e. TX ERR, EXT ERR or SYNC ERR bit set) or a timout, and
 remember the resulting status.

 Flag an error if error bit set or a timout or all 'dead' bits set.
 Otherwise assume OK.

 Get datum (this will be bad data if there was an error)

 If no error

 Do nothing.

 Otherwise

 Hand status, command word and datum over to be
 processed by the AANALYSE_ERRORS procedure.

 Finally, ensure status register is reset prior to next operation by
 calling procedure RESET.

 procedure RESET is

 Reset the ICB interface by writing a "don't care" bit (i.e. any)
 pattern to the Status Register Port

 Note new status.

 procedure ANALYSE_ERRORS(COMMAND_WORD : UINT16;
 DATUM : UINT16;
 STATUS : ICB_STATUS_TYPE) is

 Remember this error status for reporting by HK_STATUS.

 Increment the error count (modulo 256)

 Construct the appropriate 'MACSbus Error' Exception Report.

 Provided the 'at interrupt level' flag is not set

 send the appropriate 'MACSbus Error' Exception Report.

 function ERROR_COUNT return UBYTE is

 Return the (modulo 256) error count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

211

6.4.2.27 icu_mem_manager.ads

Extracted from file "icu_mem_manager.ads"

 Dependencies
 ============

with TYPES; use TYPES;
with SYSTEM;

package ICU_MEM_MANAGER is

 function LOAD_MEMORY(MID: UINT16;
 START_ADDRESS: LONG_INTEGER;
 DATA: UINT16_ARRAY;
 LENGTH: UINT16;
 SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

 where MID is the MID
 where START_ADDRESS is the start address of the load
 where DATA is the data to load as an array of unsigned 16 bit words
 where LENGTH is the length of the data in words
 where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
 returns a boolean: true on success and false on failure
 function LOAD_MEMORY loads memory corresponding to the MID

 function DUMP_MEMORY(MID: UINT16;
 ADDRESS: LONG_INTEGER;
 LENGTH: UINT16;
 SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

 where MID is the MID
 where ADDRESS is the address of the dump request
 where LENGTH is the length of the requested memory dump in words
 where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the
 sequence count and source
 returns a boolean: true on success and false on failure
 function DUMP_MEMORY dumps memory corresponding to the MID

 function CALCULATE_MEMORY_CHECKSUM(MID: UINT16;
 ADDRESS:LONG_INTEGER;
 LENGTH: UINT16;
 SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN;

 where MID is the MID
 where ADDRESS is the address of the crc request
 where LENGTH is the length of the requested block of memory to crc in words
 where SEQUENCE_COUNT_AND_SOURCE is a 16 bit word containing the sequence count and source
 returns a boolean: true on success and false on failure
 function CALCULATE_MEMORY_CHECKSUM calculates the checksum of the memory
 region corresponding to the MID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

212

6.4.2.28 icu_mem_manager.adb

Extracted from file "icu_mem_manager.adb"

 Dependencies
 ============

with UNCHECKED_CONVERSION;
with ARTCLIENT;
with SYSTEM;
with INTRINSICS;

with MEMLOC;
with TYPES; use TYPES;
with PACKET;
with TC_VERIFY;
with TMQ;
with PEEK_POKE;
with CRC;
with DEBUG;
with TIME_MAN;
with NHK;
with ICB;

package body ICU_MEM_MANAGER is

 task MEMORY_DUMP is

 procedure SEND_PACKET(SUB_TYPE: PACKET.TELEMETRY_SUBTYPE; ADDRESS: LONG_INTEGER; DATA :
UINT16_ARRAY; LENGTH : UINT16; MID: UINT16) is

 Flag CRC as present

 Check if CRC is present

 If subtype is for a memory_dump

 Write the address into the packet

 Write the packet_length into the packet

 Write the data into the packet

 If subtype is for a memory_checksum_report

 Write the address into the packet

 Write the packet_length into the packet

 Write the memory_length into the packet

 Send the packet

 procedure READ_BLOCK(MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: INTEGER; DATA: in out
UINT16_ARRAY; SEQUENCE_COUNT_AND_SOURCE: UINT16) is

 returns array 0 .. PACKET.MAX_TM_MEM_PARAMS_M1

 Check the MID

 Check whether we want ICU, Window Bitmap Table or Centroid Lookup Table

 When the MID is 0: icu operand/data space
 For each word of data to be read

 Calculate the address state

 Enter critical section

 Read from the address

 Leave critical section

 Read status

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

213

 If not accessible by ICU

 make it so

 Set the start address
 Be careful: only least sig 8 bits autoincrement

 Send the address again if the least sig 8 bits are 0

 Restore status

 Read status

 If not accessible by the ICU

 make it so
 If not accessible enable for ICU access

 Set the start address
 The 16 bits autoincrement

 Finally, disable for ICU access

 When the MID is 1: icu instr space
 For each word of data

 Calculate the address_state

 Enter critical section

 Read from the address

 Leave critical section

 When the MID is wrong
 Send unsuccessful acceptance packet

 task body MEMORY_DUMP is

 begin an infinite loop

 if a call to start is made

 Finish when there's nothing left

 If there's more than a packet left

 Read the memory

 Send the data in a packet

 Recalculate the no of words left

 If there's less than or just one packet left
 Read the memory

 Send the data in a packet

 function LOAD_MEMORY(MID: UINT16; START_ADDRESS: LONG_INTEGER; DATA: UINT16_ARRAY; LENGTH:
UINT16; SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

 When the MID is 0: icu operand/data space
 For each word to be loaded

 if address is in the interrupt vector table - don't write it

 Calculate address state and address offset

 Enter critical section to
 protect from address state change

 Write

 Leave critical section

 When the MID is 1: icu instruction space
 For each word to be loaded

 Calculate address state and address offset

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

214

 Protect from address state change by entering critical section

 Write the value to memory

 Leave critical section

 Otherwise the MID must be wrong
 put params in array

 Send unsiccessful acceptance (illegal mid) packet

 function DUMP_MEMORY(MID: UINT16; ADDRESS: LONG_INTEGER; LENGTH: UINT16;
SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

 Remember the dump parameters

 Try to ask for dump

 for 0.5 second

 if can't dump, return false so that an unsuccessful execution can be sent

 function CALCULATE_MEMORY_CHECKSUM(MID: UINT16;
 ADDRESS: LONG_INTEGER;
 LENGTH: UINT16;
 SEQUENCE_COUNT_AND_SOURCE: UINT16) return BOOLEAN is

 Set crc syndrome to ffff to start with

 loop

 until there's nothing left to crc

 If there's more than or just one packet's worth left

 Read a block of memory

 crc it

 recalculate length remaining

 If there's less than a packet's worth left
 Read a block of memory

 crc it

 finish

 Send a memory checksum report with the checksum just calculated

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

215

6.4.2.29 importance.ads

Extracted from file "importance.ads"

 Function
 ========

 This file contains the specification only package IMPORTANCE.
 This package defines the priority of tasks

 The range of priorities is 10..200
 The default is SYSTEM.DEFAULT_PRIORITY := 10;

 Priorities are allocated in bands as follows:-

 H/W Simulators (for debugging) 191 -> 200
 RBI Watchdog reset 190
 S/W Watchdogs 171 -> 189
 "Semaphore" Tasks 131 -> 140
 "Monitor Tasks" (eg. DPU, TM) 111 -> 130
 "Working Tasks" e.g. HK, Science, Blue 11 -> 110
 "Idle" Task 10

package IMPORTANCE is

 Priority Definitions
 ====================

 CPU Watchdog Reset

 CPU_RESET : constant SYSTEM.PRIORITY := 190;

 Software Watchdogs

 DPU Heartbeat Watchdog Task

 DPU_HEARTBEAT : constant SYSTEM.PRIORITY := 171;

 "Semaphore" Tasks

 Priority of Mutual exclusion semaphore task type

 MUTEX_SEMAPHORE : constant SYSTEM.PRIORITY := 132;

 Timer A Resource

 TIMER_A : constant SYSTEM.PRIORITY := 133;

 "Monitor Tasks" (eg. DPU, TC)

 Priority of Task to monitor DPU data for events

 DPU_DATA_MANAGER : constant SYSTEM.PRIORITY := 111;

 Priority of Task to monitor Telecommand queue

 TCPROC : constant SYSTEM.PRIORITY := 113;

 SAFING : constant SYSTEM.PRIORITY := 112;

 "Working Tasks" (e.g. HK, Science, Blue)
 --

 Load Blue Centroid Table

 LOAD_CENTROID_TABLE : constant SYSTEM.PRIORITY := 91;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

216

 Load Blue Window Table

 LOAD_WINDOW_TABLE : constant SYSTEM.PRIORITY := 92;

 Priority of task that collects and send HK data

 HK_PROCESS : constant SYSTEM.PRIORITY := 93;

 HV ramp task

 HV_RAMP_TASK : constant SYSTEM.PRIORITY := 94;

 Priority of task to perform Thermal Control

 THERMAL_CONTROL : constant SYSTEM.PRIORITY := 95;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

217

6.4.2.30 INTVEC.asm

File is INTVEC.asm

; Interrupt Vectors
;
; This file defines the statically initialized interrupt vectors
; for the Tartan runtimes. It also defines the starting address of the
; program image. Users may wish to add interrupt vector definitions or
; modify the startup sequence as their applications evolve. NOTE: when
; using TLC or Adascope, unused interrupt vectors may be uninitialized;
; the debug kernel will intercept such unused interrupts.
;
; TAKE CARE to set the following configuration flags properly!
;**
EXPANDED_MEM EQU 0 ; ONE => Set up for expanded memory runtimes
DEBUG_VERSION EQU 1 ; ONE => Set up for use with debug kernel
TASM EQU 0 ; ONE => Tartan Assembler (do not set)
; end of configuration flags

 REFER NUMERIC_O_LP ; integer overflow linkage ptr
 REFER NUMERIC_O_SP ; integer overflow service ptr
 REFER TIMER_B_LP ; timer B linkage ptr
 REFER TIMER_B_SP ; timer B service ptr
 REFER ADAROOT ; starting point of Ada runtimes
 REFER BCP4_LP
 REFER BCP4_SP
 REFER SSI_LP
 REFER SSI_SP
 REFER RBI_LP
 REFER RBI_SP
 IF EXPANDED_MEM ;!!!!
 REFER BEX_STATE ; "branch to executive" linkage ptr
 REFER BEX_TABLE ; "branch to executive" service ptr
 ENDIF ;!!!!

 ABSOLUTE

;**
;
; The Ada runtime startup is at ADAROOT. How it is started depends upon
; the boot sequence for your system. Bare hardware starts up at 0,
; the debug kernel obeys the specified starting address. Expanded
; memory with the Tartan toolset uses a more careful init sequence.
;
;**
 IF DEBUG_VERSION ;!!!!!
; kernel uses power-up vector
 ELSE ;!!!!
; start by power-up sequence, jump to initialization code
 ORIGIN 0
 JC 7,INIT_RT
 ENDIF ;!!!!

 IF EXPANDED_MEM ;!!!!
; see exciting init code at the end of the file
 ELSE ;!!!!
; debug kernel starts us, just avoid overwriting his vectors
 ORIGIN 01E
INIT_RT JC 7,ADAROOT ; jump to real start addr
 ENDIF ;!!!!

;**
;
; MIL-STD-1750 Interrupt vectors. Only those needed by a debug version
; are initialized below.
;
;**
 ORIGIN 020 ; MIL-STD-1750 start of vectors
 DEFINE ART1750VEC ; runtimes refer by this name
ART1750VEC EQU $
; DATA ?,? ; (0) Power Down
; DATA ?,? ; (1) Machine Error
; DATA ?,? ; (2) Spare
 ORIGIN 026
 DATA NUMERIC_O_LP,NUMERIC_O_SP ; (3) Floating point overlow
 DATA NUMERIC_O_LP,NUMERIC_O_SP ; (4) Fixed point overflow
 IF EXPANDED_MEM & (DEBUG_VERSION==0) ;!!!!
 DATA BEX_STATE,BEX_TABLE ; (5) BEX
 ENDIF ;!!!!!
; DATA ?,? ; (6) Floating point underflow

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

218

; DATA ?,? ; (7) TIMER A
 ORIGIN 030
 DATA BCP4_LP,BCP4_SP ; (8) BCP4
 ORIGIN 032
 IF TASM ;!!!!
 DATA WEAK$TIMER_B_LP,WEAK$TIMER_B_SP ; (9) TIMER B
 ELSE ;!!!!
 DATA TIMER_B_LP,TIMER_B_SP ; (9) TIMER B
 ENDIF ;!!!!
 ORIGIN 034
 DATA SSI_LP,SSI_SP ; (10) SSI interrupt
; data ?,? ; (11) Spare
; DATA ?,? ; (12) IN/OUT 1
 ORIGIN 03a
 DATA RBI_LP,RBI_SP ; (13) RBI interrupt
; DATA ?,? ; (14) IN/OUT 2
; DATA ?,? ; (15) Spare

;**
;
; Program startup in expanded memory is more interesting because the
; world comes up in an unmapped state, but the image is linked to run
; in a mapped environment. Thus we must (carefully) at startup initialize
; the page registers. The code below solves this problem. The placement
; is selected to avoid the debug kernel.
;
;**
 IF EXPANDED_MEM ;!!!!
 REFER SEGMENT$TABLE ; page table built by the linker
AS1REGS EQU 010 ; offset for AS1 page registers
R0 EQU 0
R1 EQU 1
R2 EQU 2

 ORIGIN 0240
; We are started here by the debug kernel, or power-up.
; We assume that virtual I and D page 0 point to this code.
INIT_RT XIO R0,RIPR+0 ; get mapping for this page (ASSUMES VIRT 0!)
 XIO R0,WIPR+AS1REGS ; init AS1 I page 0 to point here
 XIO R0,WOPR+AS1REGS ; init AS1 D page 0 to point here
 LISP R2,1 ; AS1
 XIO R2,WSW ; now we are executing in AS1
 DL R0,ART_SEGLOC ; get PHYSICAL address of segment table
 DSLL R0,4 ; move page number bits to R0
 XIO R0,WOPR+AS1REGS+15 ; set into AS1 D page 15
 SRL R1,4 ; rejustify page offset
 ORIM R1,0F000 ; page offset in page 15
 VIO R2,0,R1 ; load up AS0 I pages
 VIO R2,18,R1 ; load up AS0 D pages
 LST TOADA ; go back to AS0 and ADAROOT
; associated data
ART_SEGLOC EQU $
 PHYSICAL SEGMENT$TABLE
TOADA DATA 0 ; mask
 LOGICAL ADAROOT ; sw, ic (ADAROOT must be in seg 0)
 ENDIF ;!!!!
 END INIT_RT

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

219

6.4.2.31 mechanism.ads

Extracted from file "mechanism.ads"

 Function
 ========

 This file contains the specification for the MECHANISM package. This
 represents the Filter Wheel and Dichroic mechanism objects

package MECHANISM is

 function MOVE_FILTER_WHEEL(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Instructs filter wheel to perform the movement specified
 by SET_FILTER_WHEEL_MOVEMENT

 where :

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if command was successfully accepted

 function SET_FILTER_WHEEL_MOVEMENT(FW_MOVEMENT : FW_MOVEMENT_TYPE;
 VALUE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Informs package of what type of filter wheel movement is to be performed
 by the next call to MOVE_FILTER_WHEEL.

 where :

 FW_MOVEMENT specifies the type of filter wheel movement required.
 4 : To the filter number (0 -> 11) given by VALUE
 5 : To the absolute position given by VALUE (0->2199 steps from datum)
 6 : To the relative number of steps from the current one
 7 : To VALUE number of fine sensor pulses
 8 : To the Datum position
 9 : To the first sensing of the coarse sensor.

 VALUE specifies any numerical value (e.g. how many steps) associated
 with the type of movement (only examined if relevant)

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if command was successfully accepted

 function SET_DICHROIC_DIRECTION(DIRECTION : INTEGER;
 METHOD : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Informs the package of the direction and type of dichroic motion
 to be executed on the next call to MOVE_DICHROIC.

 where :

 DIRECTION specifies the direction (-ve = Redundant to Primary, +ve
 Primary to Redundant) and, in the case of METHOD = 1, the number of
 steps the dichroic is to move.

 METHOD specifies the type of dichroic movement required:
 0 = Dichroic is moved to its maximum excursion in the direction
 indicated by the sign of DIRECTION
 1 = Dichroic is moved by the magnitude of DIRECTION in the direction
 indicated by the sign of DIRECTION

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

220

 Returns TRUE if command was successfully accepted

 function MOVE_DICHROIC(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Requests the dichroic to move as specified by the priorn call to
 SET_DICHROIC_DIRECTION

 where:

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if command was successfully accepted

 function CHANGE_FW_STEP_RATE(PULL_IN_RATE : UINT16;
 CRUISE_RATE : UINT16;
 ACCELERATION : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Changes the acceleration parameters for the filter wheel.

 where:

 PULL_IN_RATE is the startup pulse rate (hz)

 CRUISE_RATE is the maximum pulse rate (hz)

 ACCELERATION is the acceleration used to go from PULL_IN_RATE
 to CRUISE_RATE (hz/sec)

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if command was successfully accepted

 function CHANGE_DICHROIC_STEP_RATE(NEW_RATE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Changes the acceleration parameters for the dichroic.

 where:

 NEW_RATE is the new step rate (hz)

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if command was successfully accepted

 function STOP_FILTER_WHEEL(SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

 Stops the filter movement (if active).

 where:

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if command was successfully accepted

 function FW_POSITION return UINT16;

 Returns the current fw position for HK display

 0 -> 2199 : Number of steps from datum
 2200 : Filter Wheel position unknown
 2201 : Filter Wheel Moving

 function LAST_FW_MOVEMENT_OK return INTEGER;

 Returns result of last f/w movement

 -1 : Still Moving

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

221

 0 : Unsuccessful
 1 : Successful

 function DM_POSITION return INTEGER;

 Returns the current dichroic position for HK display

 -32 -> 31 : Number of steps from position at start of operational mode
 (-ve : toward Primary; +ve : Towards Redundant)

 function AT_COARSE_SENSOR return BOOLEAN;

 Returns TRUE if filter wheel coarse sensor was detected when
 last examined.

 function AT_FINE_SENSOR return BOOLEAN;

 Returns TRUE if filter wheel fine sensor was detected when
 last examined.

 procedure INIT;

 Initialises the mechanisms package

 procedure AWAIT_DPU_HEARTBEAT;

 This procedure is a rendevous point. It is called by the DPU package to
 inform the mechanism package that a DPU heartbeat has been received.
 It times out after 11 secs.

 function PERFORM_FW_SAFING(SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

 Request the Filter Wheel to move to a 'Safe' position.

 where:

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if command was successfully accepted

 The block of variables are now declared as part of the specification
 so that they are 'visible' to the TIMER_A_IH package which actually
 performs the movement. That package is compiled separately as it is run
 at interrupt level and therefore a different set of compilation flags
 must be used.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

222

6.4.2.32 mechanism.adb

Extracted from file "mechanism.adb"

 Function
 ========

 This file contains the body for the MECHANISM package. This
 represents the Filter Wheel and Dichroic mechanism objects

package body MECHANISM is

 The following are specifications for functions, procedures and
 tasks internal to the package.

 procedure TERMINATE_MOVEMENT;

 function CHANGE_PULSE_RATE(DEVICE : in DEVICE_TYPE;
 PULL_IN_RATE : in UINT16;
 CRUISE_RATE : in UINT16;
 ACCELERATION : in UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 task MECH is

 pragma priority(IMPORTANCE.TIMER_A);

 entry AWAIT_DPU_HEARTBEAT;

 entry ACTIVATE;

 entry DEACTIVATE;

 end MECH;

 where
 entry AWAIT_DPU_HEARTBEAT pauses the task until the next DPU heartbeat.
 entry ACTIVATE starts moving the specified mechanism
 entry DEACTIVATE aborts the mechanism movement

 Now commence descriptions of bodies.
 ====================================

 function SET_FILTER_WHEEL_MOVEMENT(FW_MOVEMENT : FW_MOVEMENT_TYPE;
 VALUE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Examine the requested filter wheel movement.

 If we are specifying a move to a filter position

 Provided we are not in safe mode

 Store the parameters
 Set up exit condition as 'after required steps commanded'

 Else

 Inform ground that this is not valid for this mode

 and return an error flag.

 If we are specifying a move to an absolute position

 Store the values
 Set up exit condition as 'after required steps commanded'

 If we are specifying a move to an relative position

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

223

 Store the values
 Set up exit condition as 'after required steps commanded'

 If we are specifying a move to fine sensor

 Store the values
 Set up exit condition as 'at next fine sensor detection'

 If we are specifying a move to datum

 Store the values
 Set up exit condition as 'at detection of coarse and fine sensor'

 If we are specifying a move to the coarse sensor

 Store the values
 Set up exit condition as 'at detection of coarse sensor'

 Otherwise

 Do nothing

 Remember which type of movement was requested in FW_MOVEMENT_REQUESTED.

 Return without error

 function MOVE_FILTER_WHEEL(SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 First get current position

 Is the F/W moving

 If so, tell ground it is busy

 and exit as an error

 Now set up f/w move on the basis of movement type stored in FW_MOVEMENT_REQUESTED.

 If it's a move to a filter position

 and if we are in safe mode

 tell the ground that this is invalid

 Store in LAST_FW_MOVEMENT that the last f/w movement was invalid

 and return with an error condition.

 (Re)Set up focussing heaters for this filter

 and the sample time

 Set parameter allowing acceleration of filter wheel at start

 If the f/w current position is unknown
 (e.g. not been to datum yet)

 Tell the ground

 Remember that this f/w movement was invalid

 and return with an error condition

 Determine the final step position the requested filter corresponds to

 If we are already at the requested position

 Send message to ground signifying success

 Store in LAST_FW_MOVEMENT that this f/w movement was valid

 Re-inform DPU of position of f/w (part of NCR 166) via DPU.SET_FILTER

 and return without error

 Otherwise

 Determine how many steps have to be moved from current position

 Store in INFORM_DPU that we must interact with the DPU when moving

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

224

 Also determine if it is valid to check fine sensor for this
 filter after movement (i.e. if final position is a multiple of 200)

 If its a move to an absolute position

 Set parameter allowing acceleration of filter wheel at start

 If the f/w current position is unknown
 (e.g. not been to datum yet)

 Tell ground about it

 Store in LAST_FW_MOVEMENT that this f/w movement was invalid

 and return and error condition.

 If we are already at requested position

 Send message to ground signifying success

 Store in LAST_FW_MOVEMENT that this f/w movement was a success

 Return with no error

 Otherwise

 Determine how many steps are to be moved

 If we are moving a relative number of steps

 Set parameter allowing acceleration of filter wheel at start

 If we are moving to a fine sensor position

 Set parameter NOT allowing acceleration of filter wheel at start

 Ensure fine sensor is on via DETECTOR.FINE_SENSOR.

 and flag that it should be checked for visiblity after movement

 If we are moving to the datum position

 Set parameter NOT allowing acceleration of filter wheel at start

 Flag that we should check fine sensor after movement

 Ensure coarse and fine sensors are on using TMPSU.COARSE_SENSOR
 and DETECTOR.FINE_SENSOR

 Wait a short while to allow them to settle.

 Check whether we can already see both the coarse and
 fine sensors.

 If so, we are already at datum

 Ensure fine and coarse sensors are off.

 Tell ground we are successful

 Flag in LAST_FW_MOVEMENT that this f/w movement was successful

 Set f/w position to zero

 Return with no error

 If we are moving to coarse

 Set parameter NOT allowing acceleration of filter wheel at start

 Ensure coarse sensor on using TMPSU.COARSE_SENSOR

 Wait a bit to allow it to settle.

 Check whether we can already see the coarse sensor

 If we can

 Ensure coarse sensor off

 Tell ground we are successful

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

225

 Note in LAST_FW_MOVEMENT that this f/w movement as successful

 Return without error.

 Otherwise

 Set parameter indicating we are about to move the f/w mechanism

 Set Initial Phase Increment to 1

 Get number of step movements to perform obtained earlier

 Get when we must exit determined in SET_FILTER_WHEEL_MOVEMENT

 Determine if this is an autosafing internally generated command.

 Check whether the f/w has not completed any previous commanded movement

 If so, issue a 'busy' message to ground.

 Otherwise

 Activate the movement (but don't wait for completion)

 Attempt to start the f/w moving using MECH.ACTIVATE

 and return without error

 Or timout if the code is busy

 and tell ground it is busy.

 and return with error flag set.

 Return without error.

 function MOVE_DICHROIC(
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 If if not in engineering mode

 Inform ground the command is invalid for this mode

 and return an error condition

 Note when commanded movement should cease
 (i.e. at requested +ve or -ve excursion)

 Set parameter indicating non-accelerating motion (always so for dichroic)

 Zero dichroic position counter

 Set parameter indicating that we are about to move the dichroic mechanism

 Set up iphase increment on basis of movement direction (1 for +ve, 3 for -ve)

 Allow no more than 35 steps

 Activate the motion (but don't wait for completion) using MECH.ACTIVATE

 Return without error

 task body MECH is

 Now commence main task body

 Ensure 31750 Timer A is stopped

 Begin infinite loop

 Await call to an 'accept' point

 allow acceptance of a activate request

 accept ACTIVATE do

 Inform the TIMER_A_IH package that we are now moving a mechanism
 --+ Inform the TIMER_A_IH package that we are now moving a mechanism

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

226

 TIMER_A_IH.MOVEMENT_FINISHED := FALSE;

 end ACTIVATE;

 Look at which mechanism is being commanded

 If it's the filter wheel we are moving

 Set flag indicating that filter wheel may no longer be in a safe position

 Remember current f/w position before moving

 Stop any DPU science data handshake using DPU.ENABLE_REQ_DATA

 Await a DPU heartbeat (or timout after 11 secs)

 Stop HK

 Turn on the coase and sensors

 If the current f/w position is unknown

 assume we are at the start

 Calc current phase on basis of current position

 Determine when we must start braking
 (as a function of acceleration and peak motion)

 Assume as a default success completion flag

 If it's the dichroic we are moving

 (Set Initial phase value)

 If we are moving to the maximum excursion

 Assume initial phase to be 1

 If we are moving n steps

 Set to last value used

 Set braking distance to zero

 Set mechansisms code as 'in use'

 Disable heaters, if any are on, to minimise power

 And load/start timer A with an interpulse gap value
 appropriate to pull-in speed for given mechanism

 Then send command to start Timer A pulse train using TIMER_A_IH.START

 or allow acceptance of an abort request

 accept DEACTIVATE do

 Stop Timer A interrupts procedure via TIMER_A_IH.STOP

 Flag that we are aborting

 Examine which device is being commanded

 If it's the filter wheel

 Determine appropriate failure message to send to ground

 Set F/W position in HK as unknown

 Flag last f/w movement as unsuccessful

 If it's the dichroic

 Determine appropriate failure message to send to ground

 Or if mechanisms are in use

 Every 1/2 sec

 Check to see if the movement has finished using TIMER_A_IH.MOVEMENT_FINISHED

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

227

 And terminate the moevement cleanly using TERMINATE_MOVEMENT

 Define procedure internal to the mechanism control task that is
 called at the termination of any mechanism movement.

 procedure TERMINATE_MOVEMENT is

 Ensure Timer A of the 31750 chip is stopped using TIMER_A_IH.STOP.

 Ensure all phase lines are set off;

 Look at which mechanism is in use.

 If it's the filter wheel

 Remember that this movement was good.

 Wait a bit to allow mechanisms to settle

 Get fine and coarse sensor values for HK

 (Set up f/w position for HK)

 If it was previously flagged as unknown position in HK,
 and we have not performed a move to an known position

 Ensure it is still flagged as unknown in HK

 Otherwise

 Make new position visible to HK

 If it's a f/w movement to a filter or a fine sensor only,

 If we should check the fine sensor but it is not seen

 flag it and determine appropriate message

 Suppress any later success messages

 Remember this movement as unsuccesful

 If it was a move to datum

 If we can't see both fine and coarse sensors

 Set f/w position as unknown in HK

 Determine appropriate message to send to ground indicating failure

 Suppress any further success messages

 and remeber this last f/w movement as unsuccessful

 If flagged as appropriate, inform DPU of requested f/w filter
 position if all OK using DPU.SET_FILTER

 Turn off coarse and fine sensors

 Determine whether we should send success message to ground
 if not suppressed earlier

 Override any message if movement was aborted by ground

 Unblock HK

 Renable DPU science data handshakes (i.e. restart
 downloading data

 If it's was a Dichroic motion

 Determine message to send to ground

 Send out appropriate NHK message determined above

 Renable heaters if any

 If NHK_MESSAGE = FW_LOST_POSITION

 Issue command to go to safe internally

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

228

 If it was successful

 Send NHK anomaly message to ground saying so

 Otherwise

 Send NHK message to ground saying an auto-safing attempt failed

 Release mechanisms code for use

 Return from termination of movement procedure

 function FW_POSITION return UINT16 is

 Return current value of f/w position counter

 function DM_POSITION return INTEGER is

 Return current value of Dichroic Position counter

 function CHANGE_PULSE_RATE(DEVICE : in DEVICE_TYPE;
 PULL_IN_RATE : in UINT16;
 CRUISE_RATE : in UINT16;
 ACCELERATION : in UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16
) return BOOLEAN is

 Store the new rate provided it's sensible

 Otherwise signal an error

 always return success

 function CHANGE_FW_STEP_RATE(PULL_IN_RATE : UINT16;
 CRUISE_RATE : UINT16;
 ACCELERATION : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Attempt to change f/w step rates using CHANGE_PULSE_RATE

 function SET_DICHROIC_DIRECTION(DIRECTION : INTEGER;
 METHOD : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 If we are not in engineering mode

 Inform ground of failure

 Return with an error condition

 Note which method of movement (step by step or to max excursion)
 and which direction

 Return success condition.

 function CHANGE_DICHROIC_STEP_RATE(NEW_RATE : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Attempt to change dichroic pulse rate

 function STOP_FILTER_WHEEL(SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

 Attempt to stop the f/w moving

 Return TRUE if successful

 Or timout if the code is busy

 Send Ground a 'busy' message

 Return FALSE

 procedure SEND_NHK_PACKET(NHK_SID : PACKET.SID_TYPE; CODE : UINT16) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

229

 Load up condition code into an NHK packet

 Determine whether it's an event or major anomaly on the
 basis of the SID

 Provided originally this was not an autosafing internally
 generated command.

 Place an NHK packet in the telemetry queue

 function LAST_FW_MOVEMENT_OK return INTEGER is

 Return whether last f/w movement was successful

 function AT_COARSE_SENSOR return BOOLEAN is

 Return whether the coarse sensor was seen when last checked

 function AT_FINE_SENSOR return BOOLEAN is

 Return whether the fine sensor was seen when last checked

 procedure INIT is

 Ensure coarse and fine sensors are on

 Wait a bit to let them settle

 Determine sensor status for HK

 Ensure coarse and fine sensors are off

 procedure AWAIT_DPU_HEARTBEAT is

 Await a heartbeat from the DPU

 function PERFORM_FW_SAFING(SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

 Set the coarse sensor current to 4

 Return FALSE if it fails

 Set the fine sensor current to 9

 Return FALSE if it fails

 If the current filter wheel is already safed

 Send message to ground signifying success

 else

 if the filter wheel position is already known

 Then command filter wheel to move to the blocked position (filter 0)
 Will not move the filter wheel if already at blocked

 else request the filter wheel to find the coarse position
 if not already at blocked

 Activate the filter wheel movement.

 Wait for the movement to complete

 If movement was good

 Request the filter wheel to move 1258 steps from the coarse position.
 This should make it move to the blocked position.

 Activate the filter wheel movement.

 Record safing outcome

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

230

6.4.2.33 mem_manager.ads

Extracted from file "mem_manager.ads"

 Function
 ========

 This file contains the specification for package mem_manager.
 That package calls icu_mem_manager or dpu_mem_manager to load/dump/check memory.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/SP/0061
 Dependencies
 ============

with TYPES; use TYPES;
with PACKET;

 --
 function REQUEST(MEM_MANAGER_PACKET: PACKET.TC_TYPE) return BOOLEAN;
 --

 Where MEM_MANAGER_PACKET is a memory management packet
 Returns BOOLEAN true success or false on failure
 This merely forwards packets onto the ICU_MEM_MANAGER package or the
 DPU_MEM_MANAGER package

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

231

6.4.2.34 mem_manager.adb

Extracted from file "mem_manager.adb"

 Function
 ========

 This file contains the body for package mem_manager.
 It calls icu_mem_manager or dpu_mem_manager to load/dump/check memory.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/SP/0061

 Dependencies
 ============

with UNCHECKED_CONVERSION;

with PACKET;
with ICU_MEM_MANAGER;
with DPU_MEM_MANAGER;
with TMQ;
with TC_VERIFY;
with DEBUG;
with MODEMAN;
with NHK;

package body MEM_MANAGER is

 function REQUEST(MEM_MANAGER_PACKET: PACKET.TC_TYPE) return BOOLEAN is

 Find length of CRC (is it there or not)

 Calculate length of data in packet

 Convert length from bytes to words

 Check memory management packet subtype - load/dump/crc

 If it is a load command (subtype 1)

 Check the MID

 When the MID is for the DPU

 Call LOAD_MEMORY in DPU_MEM_MANAGER

 Otherwise send an unsuccessful acceptance packet

 Return FALSE if something went wrong

 When it's a dump memory command (subtype 2)

 If length is out of range, send an error packet

 Check the MID

 When the MID is for the ICU (0, 1)

 Call DUMP_MEMORY in ICU_MEM_MANAGER

 if we had trouble, send an unsuccessful execution packet

 When the MID is for the DPU (10h-15h, 20h-27h)

 Call DUMP_MEMORY in DPU_MEM_MANAGER

 Otherwise send an unsuccessful acceptance packet

 When it's a memory crc (subtype 3)
 Check the length

 Check the MID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

232

 If the MID is for the ICU (0, 1)

 Call CALCULATE_MEMORY_CHECKSUM in ICU_MEM_MANAGER

 Otherwise send an unsuccessful acceptance packet

 Otherwise we have a wrong subtype for MEM_MANAGEMENT
 So send an unsuccessful acceptance

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

233

6.4.2.35 memdpu.ads

Extracted from file "memdpu.ads"

 Function
 ========

 This file contains the specification for the package MEMDPU. That package
 constructs Memory Dump packets from DPU RAM dump blocks (i.e. blocks
 of the type DR_xxx) and places them in the telemetry queue. The format of
 the DR_xxx blocks are defined in section 6 of the 'XMM-OM ICU-DPU Protocol
 Definitions', XMM-OM/MSSL/ML/11.

package MEMDPU is

 procedure PUT(DPU_DATA : UINT16_ARRAY) ;

 This procedure constructs Memory Dump packets from the supplied
 DPU DR_xxx block contained in DPU_DATA. Packets deemed complete (i.e.
 when they are the maximum length that can be accomodated for that
 particular type of data) are then sent to the telemetry queue..

 NOTE: the index of this array must start at 0.

 procedure FLUSH;

 This procedure causes any memory dump packets not occupying the maximum
 length to be flagged as complete and sent on to the telemetry queue.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

234

6.4.2.36 memdpu.adb

Extracted from file "memdpu.adb"

 Function
 ========

 This file contains the body for the package MEMDPU. That package
 constructs Memory Dump packets from DPU RAM dump blocks (i.e. blocks
 of the type DR_xxx) and places them in the telemetry queue. The format of
 the DR_xxx blocks are defined in section 6 of the 'XMM-OM ICU-DPU Protocol
 Definitions', XMM-OM/MSSL/ML/11.

package body MEMDPU is

 Declare an Instance of the Packet Record

 The following specification is for a procedure internal to the package.

 procedure OUTPUT_DPUMEM;

 Adds header to memory dump packet and sends it to the telemtry queue.

 procedure PUT(DPU_DATA : UINT16_ARRAY) is

 Assume, by default, the data should be 'packed' into
 the packet (see below).

 Set up default location of where to copy data from in the DPU block.

 Get the DPU DR_xxx block type.

 Extract starting address of DPU RAM data from the DPU block.

 Calc default number of words to copy from DPU block into packet(s).

 If it's a DR_LRM block (a dump from local ram)

 For this particular type of DR_xxx data
 1) Correct how many words to copy from the DPU block
 2) Correct where to copy the words from the block (the 'base')

 Because of larger internal header, decrease words to copy by 6.

 Set the MID

 Extract the DPU local memory address for the start of data.

 Derive the 'base'

 Else, if its a DR_PROG_DUMP block (Dump of program RAM)

 Derive the MID as a function of the start address
 contained in the block.

 Else, if it's a Global Ram Dump (DR_RAM_DUMP or DR_RAM_DUMP_N_ZERO)

 If the start address is in small word memory.

 Specify the MID accordingly

 And flag that the data should not by 'packed'

 Otherwise

 Specify the MID accordingly.

 Loop over data to be copied from the DPU block,
 starting at 'base' derived above.

 If we are at the start of a packet

 Store, in the packet, the DPU memory address corresponding
 to the DPU words also about to be copied into the packet.

 Copy data into work area one word at a time

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

235

 (as data may span DPU blocks we need to keep a copy so we can
 join the next block to this one)

 Increment how many words we have copied into work area

 If we are to 'pack' the words into the packet

 If we have accumulated 4 words since the last packing operation, pack again

 The DPU words are 24 bit words padded to 32 bits
 Therefore we compress 4 16 bit words = 2 padded dpu words
 down to 3 by 16 bit words = 2 packed 24 bit words i.e.-

 | 0 | 1 | 2 DPU PADDED Words ...

 | 0 | 1 | 2 | 3 | occupy 4 16 BIT words ...

 |0|1|2|3|4|5|6|7| or 8 bytes

 |1|2|3|5|6|7| which occupy 6 bytes after stripping ...

 | 0 | 1 | 2 | i.e. 3 16-words

 | 0 | 1 | resulting in 2 packed DPU words

 Copy resulting 2 packed DPU words into the packet (= 3*16 words)
 and modify words copied counter accordingly.

 Reset the words accumulated counter

 increment the DPU address counter of the data that has been copied

 If we have accumulated only 2 words

 increment the DPU address counter of the data that has been copied

 Otherwise, if the data is not to be packed (i.e. 16 bit words)

 If we have accumulated 2 by 16 bit words since the last copy
 into the packet operation.

 16 bit data is still padded to 32 bits
 so we extract least significant 16 bit word of the 32 bits
 and copy it into the packet.

 and modify words copied counter accordingly.

 Increment the DPU address corresponding to the DPU data
 about to be copied

 Reset the words accumulated counter

 If the packet is now full (note that the maximum number of words
 that will be copied must be a multiple of 3 because of the nature
 of the 'packing' operation).

 Output it via routine OUTPUT_DPUMEM.

 Inc pointer within DPU block

 procedure OUTPUT_DPUMEM is

 If there are only 2 words in the accumulation buffer
 we are midway thru a packing operation

 So pack what we have

 Copy resulting 1 packed DPU words into the packet (= 1.5 *16 words padded to 2)
 and modify words copied counter accordingly.

 Reset the words accumulated counter

 Calculate and load the packet length.

 Load Memory Identifier (MID) into Packet Header

 If packet is not empty of RAM data, send it to the telemetry queue.

 Reset words copied counter.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

236

 procedure FLUSH is

 Call OUTPUT_DPUMEM to force output of packet to telemetry queue.

 Reset words copied counter.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

237

6.4.2.37 memloc.ads

Extracted from file "memloc.ads"

 Function
 ========

 This file contains the specification only package MEMLOC.
 This package defines any fixed memory locations.

package MEMLOC is

 Define the location of the ADASCOPE version ID we are running

 Define the size of the telecommand and telemetry queues

 Define RBI Communication Area

 Define the location TC_LOC of the telecommand queue area

 Define the location TM_LOC of the telemetry queue area

 Define other tc/tm special addresses (e.g.. queue pointers)

 Define the location of the filter wheel parameters table

 define BCP4 processing addresses (these are fixed to assist assembler
 and ADA routines to communicate with each other).

 define RBI special addresses

 Define Time Control Flag locations.

 Define the Bootstrap Parameter Area

 define SSI processing addresses.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

238

6.4.2.38 modeman.ads

Extracted from file "modeman.ads"

 Function
 ========

 This file contains the specification for the mode manager package.
 This implements mode changes and supplies HK status information.

 Reference
 =========

 Dependencies
 ============

with TYPES; use TYPES;

package MODEMAN is

 function TO_MODE(MODE : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 This function implements the mode change mechanism from the
 current mode to the new MODE.

 where :

 MODE is the new mode requested, in the range 0 .. 5
 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if the command was successfully accepted

 function MODE return UINT16;

 This function returns the current mode of the ICU.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

239

6.4.2.39 modeman.adb

Extracted from file "modeman.adb"

 ALLOWED TRANSITIONS

 To | SAFE | IDLE | SCI | ENG | INT SAFE |
 --------| | | | | |
 From | | | | | |
 --
 SAFE | yes | yes | no | no | no |
 IDLE | yes | yes | yes | yes | yes |
 SCIENCE | yes | yes | yes | no | no |
 ENG | yes | yes | no | yes | no |
 INT SAFE| yes | yes | no | no | yes |
 --

 The following is the specification of a task internal to this package.

 task SAFING_TASK is

 pragma priority(IMPORTANCE.SAFING);

 entry START(MODE : UINT16; LEVEL : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16);

 end SAFING_TASK;

 where START starts the sequence of commands necesary switch to mode MODE at safe level LEVEL
 and SRC_AND_SEQUENCE_COUNT is the source and sequence count of the requesting telecommand.
 LEVEL can take values DETECTOR.FULL or DETECTOR.HALF_SAFE.

 N.B. The parameters MODE and LEVEL are separate even though MODE implies LEVEL, because
 in earlier releases of the telecommand specification, LEVEL was a sub parameter of
 MODE.

 task body SAFING_TASK is

 Commence infinite loop

 Await a call to the entry point START

 Upon such a call

 Take a copy of the parameters for local use.

 If we are going to full safe

 Disable all SSI output except H/B

 Abort current DPU exposure

 Request HV safing using DETECTOR.PERFORM_HV_SAFING.

 If HK safing proceded OK

 Request F/W Safing using MECHANISM.PERFORM_FW_SAFING

 If we are going to full safe

 Re-enable SSI

 Init DPU

 If all still OK

 Set ICU mode to requested mode by storing it in CURRENT_MODE

 function TO_MODE(MODE : UINT16; SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 If mode parameter illegal or not in allowed table then

 If mode out of range then

 Construct illegal mode error packet

 Else if illegal transition then

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

240

 Construct illegal parameter values error packet

 Send unsuccessful acceptance packet and return false

 If next mode is a safe mode then

 Determine whether it is intermmediate or safe

 Initiate the safing sequence using SAFING_TASK.START

 But if the task is already in use

 Send unsuccessful execution packet indicating 'busy' to ground

 Return FALSE

 Otherwise

 If we are switching to Idle but the f/w is not at blocked

 Send 'F/W not at blocked' execution failure message

 and return with FALSE

 Record mode in CURRENT_MODE and return true

 function MODE return UINT16 is

 Return the CURRENT_MODE value

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

241

6.4.2.40 mutex.ads

Extracted from file "mutex.ads"

 Function
 ========

 This file contains the specification for the MUTEX package. This provides
 a mutual exclusion semaphore emulation;

package MUTEX is

 task type SEMAPHORE is

 entry SEIZE;

 This entry point acquires the resource

 entry RELEASE;

 This entry point releases the resource

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

242

6.4.2.41 mutex.adb

Extracted from file "mutex.adb"

 Function
 ========

 This file contains the body for the MUTEX package. This provides a
 mutual exclusion semaphore emulation;

package body MUTEX is

 task body SEMAPHORE is

 Assume, by default, the resource is not in use.

 Begin infinite loop.

 Await a call to seize or release a resource.

 If resource is flagged as not 'in use'

 Allow acceptance of a seize resource request

 accept SEIZE do

 and set flag as 'in use'

 If resource is flagged as 'in use'

 Allow acceptance of a release resource request

 accept RELEASE do

 and set flag as not 'in use'

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

243

6.4.2.42 nhk.ads

Extracted from file "nhk.ads"

 Function
 ========

 This file contains the specification for package NHK.

 The function of this package is to provide routine(s) to construct and
 place Non-Periodic Housekeeping (NHK) packets into the telemetry queue
 prior to their being transmitted to the ground.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package NHK is

 procedure PUT(SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
 SID_EX : PACKET.SID_TYPE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER);

 The procedure PUT constructs and places an NHK packet in the telemetry
 queue. The interface is as follows:

 where:

 SUB_TYPE specifies the sub-type of NHK packet to be placed in the queue.
 It will take one of the the following values:

 PACKET.EVENT_REPORT := 1;
 PACKET.EXCEPTION_REPORT := 2;
 PACKET.MAJOR_ANOMALY_REPORT := 3;

 SID_EX specifies the Structure Identifier (SID) to be loaded into the
 packet

 PARAMS specifies an array of parameters to be loaded into the packet.
 NOTE - the index range of the parameter array should start at 0.

 SIZE specifies the number of parameters to be loaded from PARAMS.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

244

6.4.2.43 nhk.adb

Extracted from file "nhk.adb"

 Function
 ========

 This package body implements the body for package NHK.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package body NHK is

 procedure PUT(SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
 SID_EX : PACKET.SID_TYPE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER) is

 Create an instance of the Packet Data Structure.

 If this packet's SID is enabled (use TM_MAN.SID_STATUS)

 Place current time (obtained from TIME_MAN.TIME_STAMP) in data field header

 Flag presence or absence of CRC in data field header

 Calculate and load packet length

 Load in the Structure Identifier (SID)

 Load Number of Parameters

 Load parameters into packet

 Put packet record into queue using TMQ.PUT

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

245

6.4.2.44 packet.ads

Extracted from file "packet.ads"

 Function
 ========

 This file contains the specification only package PACKET. This
 defines the format of the telecommand and telemetry packets used by the OM
 instrument and are derived from the description in the 'Telecommand
 and Telemetry Specification', XMM-OM/MSSL/ML/0010.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

246

6.4.2.45 peek_poke.ads

Extracted from file "peek_poke.ads"

 Function
 ========

 This file contains the specification for the XMM-OM low-level memory read/write.
 The program is written in assembler and linked as foreign.

package PEEK_POKE is

 function PEEK(addr: UINT16; addr_state: UINT16) return UINT16;

 This function returns the word stored at address addr in
 address state addr_state

 function POKE(poke_val: UINT16; addr: UINT16; addr_state: UINT16) return UINT16;

 This function puts into memory the word poke_val at the location addr in
 address state addr_state. It returns the word that was poked.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

247

6.4.2.46 peek_poke.asm

File is peek_poke.asm

 Name
 peek

 Description
 Picks up an address to be peeked and the Address State from the stack,
 switches to that Address State, peeks the address, selects the
 original Address State and exits with the value peeked in r2.

 Calling sequence
 var := peek(address,address_state);

 (All parameters & return type are UINT16)

 Input
 r0 Link register
 r2 Uplevel register (not needed ?)
 r14 Frame pointer (not needed ?)
 r15 Stack pointer

 Output
 r2 Holds contents of address peeked

 Altered
 r1, r2, r3, r4

 Register map
 r0 Link register
 r1 Holds entry Address State
 r2 Return value
 r3 Holds address to peek
 r4 Holds Address State to switch to

 Notes
 Assembled for use as a foreign code segment in Ada.
 Registers r0-r4 can be trashed.
 All other registers must be preserved.

 Assumptions

 No error checking is performed.

peekaddr

 Save the current address state and change address state
 Read the memory location
 Restore old address state
 Return

 Name
 poke

 Description
 Picks up an address to be poked, the Address State and the value
 to be poked into memory from the stack, switches to that Address
 State, pokes the address, selects the original Address State and
 exits with the value poked in r2.

 Calling sequence
 var := poke(value,address,address_state);

 (All parameters & return type are UINT16)

 Input
 r0 Link register
 r2 Uplevel register (not needed ?)
 r14 Frame pointer (not needed ?)
 r15 Stack pointer

 Output
 r2 Holds value poked into memory

 Altered
 r1, r2, r3, r4

 Register map
 r0 Link register
 r1 Holds entry Address State
 r2 Holds value to poke and return value

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

248

 r3 Holds address to poke
 r4 Holds Address State to switch to

 Notes
 Assembled for use as a foreign code segment in Ada.
 Registers r0-r4 can be trashed.
 All other registers must be preserved.
 Is a function because procedure definition in Ada appears
 not to link properly (doesn't see assembler label).

 Assumptions

No error checking is performed.

pokeaddr

 Save current address state

 Write address with value

 Change back to original address state

 Return

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

249

6.4.2.47 rbi.ads

Extracted from file "rbi.ads"

 Function
 ========

 This file contains the specification for the RBI package. This, in turn,
 contains RBI service routines. The package RBI and RBI_INT together
 control and monitor the RBI (Remote Bus Interface).

 The code in this package is based on the description of the RBI chip
 given in "Standard RBI Chip For OBDH Interface
 (MC1031 Technical Informations 2.8-01/06/95 and from the
 "OBDH Bus Protocol Requirements Specification", XM-IF-DOR-0002.

package RBI is

 procedure INIT;

 Performs RBI package initialisation.

 function UNCORRECTED_OBT return OBT_TYPE;

 Returns the uncorrected OBT (On-board Time) from the RBI.

 function CORRECT_OBT(UNCORRECTED_OBT_VALUE : in OBT_TYPE) return OBT_TYPE;

 Applies the required correction to the OBT documented in the
 ADV technical note 2.8-01/06/95

 function CORRECTED_OBT return OBT_TYPE;

 Combines the functions of UNCORRECTED_OBT and CORRECT_OBT;

 procedure SET_OBT(OBT_VALUE : in OBT_TYPE);

 Sets the RBI OBT value. This is usually extracted from an Add Time Code
 packet TM(10,3).

 function "+"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE;

 Adds OBTs together N.B. only accurate to 2**-8 secs!!!!
 Now redundant as never used.

 function "-"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE;

 Subtract OBTs N.B. only accurate to 2**-8 secs!!!!
 Now redundant as never used.

 procedure SET_SYNC_READY(SYNC_ENABLE : BOOLEAN);

 Set/Unset Synchronisation Enable Bit in RBI Configuration Register

 task WATCHDOG is
 pragma priority(IMPORTANCE.CPU_RESET);

 entry PARAMS(TIMOUT : UINT16 ;
 RESET_INTERVAL : UINT16 ;
 OK : in out BOOLEAN);
 entry ENABLE;
 entry DISABLE;

 end WATCHDOG;

 This task controls the RBI watchdog.

 ENABLE starts the task.
 DISABLE stops the task.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

250

 PARAMS resets the time intervals used to control the watchdog.
 TIMOUT specifies what value should be loaded into the
 watchdog timer counter.
 RESET_INTERVAL specifies how often the software should
 reload the time counter with TIMOUT.

 function TM_READY return BOOLEAN;

 Returns whether TM_READY (telelemetry ready to transmit) bit is set
 in the RBI status register

 procedure SET_TM_READY(SET_TO_ON : BOOLEAN);

 Set/Unset TM_READY (telelemetry ready to transmit) bit in the
 RBI status register

 procedure TOGGLE_TM_READY;

 Toggles TM_READY (telelemetry ready to transmit) bit in the
 RBI status register

 function TC_READY return BOOLEAN;

 Returns whether TC_READY (ready to receive telecommand) bit is set
 in the RBI status register

 procedure SET_TC_READY(SET_TO_ON : BOOLEAN);

 Set/Unset TC_READY (ready to receive telecommand) bit in status register

 procedure SET_COMM_AREA_TM_INFO(START_ADDRESS : UINT16;
 PACKET_LENGTH : UINT16);

 Store start address and length of a telemetry packet in
 the communications area (CCA).

 procedure SET_COMM_AREA_TC_INFO(START_ADDRESS : UINT16);

 Store start address of where the telecommmand should be stored
 in the communication area (CCA).

 function STATUS_REGISTER return UINT16;

 Returns the RBI Status Register

 function CONFIG_REGISTER return UINT16;

 Returns the RBI Configuration register

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

251

6.4.2.48 rbi.adb

Extracted from file "rbi.adb"

 Function
 ========

 This file contains the body for the RBI package. This, in turn,
 contains RBI service routines. The package RBI and RBI_INT together
 control and monitor the RBI (Remote Bus Interface).

 The code in this package is based on the description of the RBI chip
 given in "Standard RBI Chip For OBDH Interface
 (MC1031 Technical Informations 2.8-01/06/95 and from the
 "OBDH Bus Protocol Requirements Specification", XM-IF-DOR-0002.

package body RBI is

 Contents of RBI OBT (On-Board Time) as follows:

 | OBT 0 | OBT 1 | OBT 2 | OBT location

 | C | D | E | Register

 |0 15|16 31|32-42|xxx| Bits in Counter

 | SECS | FRAC | Secs/Fractions of sec

 |23 0|-1 -19|xxx| 2**? secs

 Note the layout of the SCET (Spacecraft Elapsed Time)
 in a packet for comparison (and its offset).

 23 0 -1 -16

 | Coarse Time | Fine |

 Create a semaphore to control access to the freeze register by creating an instance
 of the SEMAPHORE task in package MUTEX called FREEZE_REGISTER.

 function TO_OBT_TYPE(INPUT : in LONG_INTEGER) return OBT_TYPE;
 function TO_LONG_INT(INPUT : in OBT_TYPE) return LONG_INTEGER;

 The above internal routines are used to convert an OBT to or from LONG_INTEGER

 function UNCORRECTED_OBT return OBT_TYPE is

 Ensure exclusive use of RBI configuration register
 while we peform a Freeze operation using the SEIZE entry in MUTEX.

 "Freeze" the current time by writing appropriate instruction
 to the RBI configuration register.

 Release the register for use by other code by using RELEASE entry in MUTEX.

 Read and store bits 0-15 of the result.

 Read and store bits 16-31 of the result

 Read and store remaining bits 32-42 (result in high order bits)

 Return the stored result (i.e. the OBT as defined above).

 function CORRECT_OBT(UNCORRECTED_OBT_VALUE : in OBT_TYPE) return OBT_TYPE is

 If bits 32 to 42 of the uncorrected OBT is greater than 3ff hex

 subtract 1 from bits 0 to 31

 return the result (a corrected OBT).

 function CORRECTED_OBT return OBT_TYPE is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

252

 Get the OBT and correct it using CORRECT_OBT.

 procedure SET_OBT(OBT_VALUE : in OBT_TYPE) is

 Prevent use of Freeze register by other code
 while we do this using FREEZE_REGISTER.SEIZE

 Write the most significant 16 bits of the provided OBT
 into the 1st RBI OBT update register

 Write the next 16 bits of the provided OBT
 into the 2nd RBI OBT update register

 Release Freeze register using FREEZE_REGISTER.RELEASE.

 function "+"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE is

 Prevent Overflows on additions.

 Add the two supplied OBT's after conversion using TO_LONG_INT
 and return the result as an OBT using TO_OBT_TYPE .

 function "-"(A : OBT_TYPE; B : OBT_TYPE) return OBT_TYPE is

 Prevent Overflows on subtractions.

 Subtract the two supplied OBT's after conversion using TO_LONG_INT
 and return the result as an OBT using TO_OBT_TYPE .

 function TO_OBT_TYPE(INPUT : in LONG_INTEGER) return OBT_TYPE is

 This routine is used internal to the package to convert
 a supplied 48 bit integer (stored in a signed 64 bit integer)
 into an OBT format (3*16 bit words).
 The value is only accurate to 2**-8 seconds.

 Split up the 64 bit word into 3 * 16 words using appropriate bit shifing and masking

 The MSW contains the 16 high order bits of the least significant 32 bits
 The next word contains the least significant 16 bits
 The last word is set to zero as it represents value < 2**-8 seconds

 function TO_LONG_INT(INPUT : in OBT_TYPE) return LONG_INTEGER is

 This routine is used internally to the package to convert
 a supplied OBT (3*16 bit words) into a 64 bit integer.

 Ignore the least signifcant word as it represents values < 2**-8 seconds.
 Concatenate the Most Signifcant word and the next to form a 32 bit value.
 Return the result as a 64 bits signed integer.

 procedure SET_SYNC_READY(SYNC_ENABLE : BOOLEAN) is

 Get the RBI configuration register value

 If its Synchronisation Enable bit is not as requested by SYNC_ENABLE

 toggle it

 task body WATCHDOG is

 Begin infinite loop

 Await a call to one of the rendevous points

 If a call to the set params entry point PARAMS is made

 If the parameters are inconsistent or invalid

 Flag as invalid and don't store.

 Otherwise

 Store the specified timout period (units = 1/256 secs)

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

253

 and reset interval (units = secs) supplied.

 Flag as valid.

 Or

 If a call to enable the watchdog is made via entry ENABLE

 Determine if watchdog is already enabled
 from the RBI configuration register

 Write the stored timout period to appropriate register

 If the watchdog is not already enabled, enable the watchog

 by toggling the appropriate bit in the confuration register.

 Or

 If a call to disable the watchdog is made via entry DISABLE

 Determine if watchdog is enabled by examining the RBI configuration register

 If it's no aleady disabled, disable it

 by toggling the appropriate bit in the confuration register.

 Or

 Provided the watchdog is enabled

 and if no call to a rendevous is made for the stored reset period

 Reset counter in watchdog (thus as long as the ICU code
 is running, the timout counter is never allowed to get
 to zero) by writing to the appropriate RBI register.

 procedure INIT is

 Set up the communication area by writing its address shifted to the right by 7
 to the RBI Base Address Register.

 Ensure TC and TM ready flags are disabled for now
 using SET_TC_READT and SET_TM_READY.

 function TM_READY return BOOLEAN is

 Get the RBI Status register value

 Extract and return the status of the TM_READY bit

 procedure SET_TM_READY(SET_TO_ON : BOOLEAN) is

 Use TM_READY to see if
 the telemetry ready for transmission bit is not
 already in the status requested by SET_TO_ON.

 If it isn't
 oggle it so it is using TOGGLE_TM_READY.

 procedure TOGGLE_TM_READY is

 Toggle the current RBI TM_READY (telemetry ready for transmission)
 flag state by writing the appropriate bit to the RBI configuration register.

 function TC_READY return BOOLEAN is

 Get RBI status register value

 Extract and return the TC_READY
 (ready to receive a telecommand) bit status.

 procedure SET_TC_READY(SET_TO_ON : BOOLEAN) is

 Get current status RBI register.

 If its bit 11 (the TC_READY- ready to receive a telecommand) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

254

 already in the status requested by SET_TO_ON

 Do nothing

 Otherwise if it needs to be on

 Set it on within the RBI status word read back earlier

 else

 Clear it within RBI status read back earlier.

 Finally, write back the resulting RBI status word to the
 register (NOTE: only bits 11-15 are written to)

 procedure SET_COMM_AREA_TM_INFO(START_ADDRESS : UINT16;
 PACKET_LENGTH : UINT16) is

 Store the start address START_ADDRESS of the TM packet in bytes,
 relative to the start adddress of the CCA, in the CCA,

 Store the packet length PACKET_LENGTH in the CCA in words but
 with 1 subtracted and the MSB set, as per specification.

 procedure SET_COMM_AREA_TC_INFO(START_ADDRESS : UINT16) is

 Store the TC packet start address START_ADDRESS in bytes relative to the start
 of the CCA, in the CCA.

 function CONFIG_REGISTER return UINT16 is

 Get the RBI configuration register value.

 function STATUS_REGISTER return UINT16 is

 Get the RBI status register value.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

255

6.4.2.49 rbi_ih.ads

Extracted from file "rbi_ih.ads"

 Function
 ========

 This file contains the specification for the XMM-OM rbi interrupt handler.
 The interrupt handler is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

256

6.4.2.50 rbi_ih.asm

File is rbi_ih.asm

 This follows closely the document:
 OBDH Bus Protocol Requirement Specification
 XM-IF-DOR-0002
 Fetch the interrupt counter
 Check for impending overflow
 If it's OK, increment it
 otherwise avoid overflow
 read config_reg
 get the bits we're interested in
 is it lossn (0)?
 is it instruction to user (1)?
 is it instruction to rbi (2)?
 is it other_it (3)?

 otherwise serious error so safe

 Read value from appropriate register
 (which also clears the interrupt)
 read instruction to user reg
 If the register is 0, jump to tcq_add
 when it's an Instruction to RBI interrupt

 read instruction to rbi reg
 This could be caused by warm reset and we
 call back into the bootstrap (TBI)

 If it's any other sort of interrupt
 This is an error (so we safe or discard with exception, TBD)
 and finish off

 tcq_add **

 set tc_ready to false
 if full
 Tell s/c we can't accept packets (This ought never happen as we take packets away in
time?)
 read input_pointer from memory
 add one
 mod it with no_tc_slots
 keep for future
 store it again
 Now set up new address for next packet
 start_address = 16#404# + r0*248
 if not tc_q.is_full
 i.e.
 if (input_pointer+1)&3 != output_pointer
 (increment input_pointer)
 the required mask is 0
 else required mask = set_tc_ready_mask (16#0010#)
 Read status
 'and' this status with set_tc_ready_mask (16#0010#);
 Compare this with the required mask
 If they're the same, finish off
 if REQUIRED_MASK = SET_TC_READY_MASK (16#0010#)
 'or' the status that was read with set_tc_ready_mask (16#0010#)
 else 'and' the status that was read with clear_tc_ready_mask (16#ffef#)
 xio this to the rbi_status reg
 finish off
 Read status
 If the tm_ready bit is set
 write a reset output transfer request to the rbi config reg
 Increment the output_pointer
 Read the input_pointer and compare output_pointer with input_pointer
 If they're equal
 finish off
 Otherwise calculate the address and write it to cca_tm_start
 Calculate the length and write it to cca_tm_length
 Read the RBI status
 'and' it with the tm_ready_mask (16#0080#)
 finish off
 if zero, write a reset_output_transfer_request to the RBI config reg
 finish off
 Tidy up after finishing
 FINISH OFF:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

257

 Recover registers
 Turn on interrupts
 Back from whence we came

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

258

6.4.2.51 reset.ads

Extracted from file "reset.ads"

 Function
 ========

 This file contains the specifications for the XMM-OM reset package.
 reset itself is written in assembler and linked as a foreign code function.

 Reference
 =========

 Dependencies
 ============

with TYPES; use TYPES;

package RESET is

 function reset(addr : UINT16) return UINT16;

 This function jumps to the address given on its argument list

 where :

 addr is the address of a routine to jump to

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

259

6.4.2.52 reset.asm

File is reset.asm

 Name
 reset

 Description
 When called, enables the start up ROM and jumps to
 location zero.

 Calling sequence
 var : UINT16
 addr : UINT16;

 var := reset(addr);

 Input
 r0 Link register
 r2 Uplevel register (not needed ?)
 r14 Frame pointer (not needed ?)
 r15 Stack pointer

 Output
 Does not return

 Altered
 Everything

 Register map
 r0, r1, r2 Working register
 r3 Holds parameter to routine

 Notes
 Assembled for use as a foreign code segment in Ada.
 If addr = 0 then the start up rom is enabled and a jump
 to 0 is performed.
 Any other value for addr and the start up rom is left as it is
 and the jump to the address specified is made. 6 words (the
 floating pt overflow, fixed pt overflow and timer b interrupt
 vectors are copied from a buffer starting at 16#03FA# to their
 proper locations (16#0026#,16#0028# and 16#0032# respectively)
 before the jump.
 Interrupts are disabled during this routine and page 0 is
 mapped in.

 Assumptions

 No error checking is performed.

resetentry

 Disable all interrupts
 Stop timer B
 Make sure we are in address state 0
 Get parameter from stack
 If parameter is equal to zero ...
 ... then branch to RESTART
 Copy new interrupt vectors to data space
 Copy new interrupt vectors to page 3
 Reselect page 0
 Clear all interrupts and machine errors
 Now start op code

RESTART

 Jump to warm reset code

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

260

6.4.2.53 science_fm.ads

Extracted from file "science_fm.ads"

 Function
 ========

 This file contains the specification for the SCIENCE_FM package.

 The function of this package is to provide routine(s) to construct and
 place Science packets into the telemetry queue prior to their being
 transmitted to the ground.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010, Section 3.9.

package SCIENCE_FM is

 procedure PRIORITY_DATA(SID_EX : PACKET.SID_TYPE;
 DPU_DATA : UINT16_ARRAY);

 This routines constructs and places science packets in the telemetry
 queue derived from the supplied DPU Priority Data.

 where:

 SID_EX specifies the Structure Identifier (SID) to be loaded into the
 packet

 DPU_DATA contains the DPU Priority Data record for loading into the packet.
 Note 1) the index range of DPU_DATA should start at 0.
 2) the length of data to be loaded in the packet is implied
 by the contents of DPU_DATA(1). This states the number
 of following words that are to be included i.e. it
 conforms to the usual DPU data record conventions.

 procedure AUXILIARY_DATA(SID_EX : PACKET.SID_TYPE;
 DPU_DATA : UINT16_ARRAY);

 This routines constructs and places science packets in the telemetry
 queue derived from the supplied DPU Auxiliary Data.

 where:

 SID_EX specifies the Structure Identifier (SID) to be loaded into the
 packet

 DPU_DATA contains the DPU Auxiliary Data for loading into the packet.
 Note 1) the index range of DPU_DATA should start at 0.
 2) the length of data to be loaded in the packet is implied
 by the contents of DPU_DATA(1). This states the number
 of following words that are to be included i.e. it
 conforms to the usual DPU data record conventions.

 procedure REGULAR_DATA(SID_EX : PACKET.SID_TYPE;
 DPU_DATA : UINT16_ARRAY);

 This routines constructs and places science packets in the telemetry
 queue derived from the supplied DPU Regular Data.

 where:

 SID_EX specifies the Structure Identifier (SID) to be loaded into the
 packet

 DPU_DATA contains the DPU Regular Data record to be loaded into the packet.
 Note 1) the index range of DPU_DATA should start at 0.
 2) the length of data to be loaded in the packet is implied
 by the contents of DPU_DATA(1). This states the number
 of following words that are to be included i.e. it
 conforms to the usual DPU data record conventions.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

261

 procedure FLUSH(SID_EX : PACKET.SID_TYPE);

 Flushes Regular Science Data Output Buffer upon receipt of the
 'end of data' alert from the DPU. This is required because Regular
 Science Data is spread across many DPU blocks (i.e. it is not
 confined to one DPU block).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

262

6.4.2.54 science_fm.adb

Extracted from file "science_fm.adb"

 Function
 ========

 This package body implements the specification given in SCIENCE_FM.ADS

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010, Section 3.9.

package body SCIENCE_FM is

 Create Instances of Priority, Auxiliary and Regular Science
 Packet Records to be used as working storage.

 Specify internal routines used by package.

 procedure OUTPUT_SCIENCE(TERMINATE_GROUP : BOOLEAN;
 SCIENCE_PACKET : in out PACKET.TM_TYPE;
 PACKET_NUMBER : in out UINT16;
 DPU_BLOCK : in out UINT16;
 WORDS_COPIED : in out INTEGER;
 SID_EX : PACKET.SID_TYPE);

 This procedure constructs the packet header and sends the resulting packet
 to the telemetry queue via TMQ.PUT.

 TERMINATE_GROUP if true indicates it will be the last packet of a group
 SCIENCE_PACKET is the packet to be sent.
 PACKET_NUMBER is the number of the packet within a group.
 DPU_BLOCK is the number of DPU blocks within a group.
 WORDS_COPIED is the number of DPU data words copied into the current packet.
 SID_EX is the Structure Identifier to be placed in the Packet.

 procedure PRI_REG_DATA(PRI_REG_PACKET : in out PACKET.TM_TYPE;
 PACKET_NUMBER : in out UINT16;
 DPU_BLOCK : in out UINT16;
 WORDS_COPIED : in out INTEGER;
 SID_EX : PACKET.SID_TYPE;
 DPU_DATA : UINT16_ARRAY);

 This procedure constructs science data packets from the DPU data blocks
 sends the resulting packets to OUTPUT_SCIENCE.

 PRI_REG_PACKET is the packet being constructed.
 PACKET_NUMBER is the number of the packet within a group.
 DPU_BLOCK is the number of DPU blocks within a group.
 WORDS_COPIED is the number of DPU data words copied into the current packet.
 SID_EX is the Structure Identifier to be placed in the Packet.
 DPU_DATA is the input DPU block.

 procedure REGULAR_DATA(SID_EX : PACKET.SID_TYPE;
 DPU_DATA : UINT16_ARRAY) is

 Simply pass the DPU block to the PRI_REG_DATA routine.

 procedure PRIORITY_DATA(SID_EX : PACKET.SID_TYPE;
 DPU_DATA : UINT16_ARRAY) is

 Simply pass the DPU block to the PRI_REG_DATA routine.

 procedure PRI_REG_DATA(PRI_REG_PACKET : in out PACKET.TM_TYPE;
 PACKET_NUMBER : in out UINT16;
 DPU_BLOCK : in out UINT16;
 WORDS_COPIED : in out INTEGER;
 SID_EX : PACKET.SID_TYPE;
 DPU_DATA : UINT16_ARRAY) is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

263

 Determine whether this is regular or priority data.

 DPU priority data blocks are split up and output
 across several packets. The resulting collection of packets is
 a complete 'group' of packets.

 DPU regular data blocks are split up and output
 across several packets. The resulting collection of packets is
 only part of a 'group' of packets. The FLUSH command terminates
 the group.

 Calc number of words to copy from DPU block into current packet

 If this is the second DPU block to be copied into
 the current group of packets

 Set up the offset within the science sub-header accordingly.

 Count how may DPU blocks we have processed for this group so far.

 Loop over data to be copied

 Copy a word into the current packet

 If the current packet is now full

 Flag that we should terminate the group if this is priority
 science data and all data has been copied into the packet.

 Give the packet to the science output routine with the
 terminate group flag appropriately set by calling OUTPUT_SCIENCE.

 If it is priority science data

 Give the packet to the OUTPUT_SCIENCE routine with
 the 'terminate group' flag set.

 If it's regular data

 Give the packet to the OUTPUT_SCIENCE routine with
 the 'terminate group' flag *NOT* set.

 procedure AUXILIARY_DATA(SID_EX : PACKET.SID_TYPE;
 DPU_DATA : UINT16_ARRAY) is

 DPU auxiliary data blocks are buffered up into 1 packet.
 The result is a standalone packet.

 Calc number of words to copy from DPU block into the packet.

 If this block will exceed the current packet capacity

 Give the packet to the OUTPUT_SCIENCE routine with
 the 'terminate group' flag set to true

 If this is the 1st block to be copied into the packet

 Set up a dummy offset in science sub-header (offset = FF (hex))

 Count the number of auxiliary blocks processed so far.

 Loop over data to be copied

 Copy (and count) a word into the current packet

 procedure OUTPUT_SCIENCE(TERMINATE_GROUP : BOOLEAN;
 SCIENCE_PACKET : in out PACKET.TM_TYPE;
 PACKET_NUMBER : in out UINT16;
 DPU_BLOCK : in out UINT16;
 WORDS_COPIED : in out INTEGER;
 SID_EX : PACKET.SID_TYPE) is

 Build the header

 Calculate and load the packet length.

 If 'terminate the group' flag is set

 and it's the first packet so far for the group

 flag it as standalone

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

264

 otherwise set segmentation flag to indicate it is the last
 packet of a group.

 and also ensure science sub header offset is all 1's

 otherwise, if we are not terminating the group

 and is the first packet

 Set segmentation flag to indicate first packet of group

 otherwise

 Set segmentation flag to indicate continuation packet of group

 Load Structure Identifier (SID) into Packet Header

 Load group count with the packet number count within the group.

 In the special case of regular data

 Change the sub-type as per SID

 Send out packet to the telemetry queue using TMQ.PUT

 Modify counters etc according to whether we are
 terminating the group

 procedure FLUSH(SID_EX : PACKET.SID_TYPE) is

 Call OUTPUT_SCIENCE routine with 'terminate group' set to true

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

265

6.4.2.55 ssi_driver.ads

Extracted from file "ssi_driver.ads"

 procedure SSI_INTERRUPT;

 SSI_INTERRUPT is the SSI interrupt handler (written in Ada but
 connected via the assembly code ssi_ih.asm)

 procedure GET(DATUM : out UINT16; RET : out INT16);

 This gets one word of data from the SSI (from the DPU)
 DATUM is the word
 RET is a signed 16-bit word which is
 0 if there are no words to read
 1 if there is a word to read
 <0 if there was an error

 procedure RESET;

 This procedure resets the SSI link
 (software only---there is no hardware reset)

 function PUT(BUFFER_DATA : in UINT16_ARRAY) return INT16;

 This puts an array of words on the SSI (to the DPU)
 BUFFER_DATA is an array of unsigned 16-bit words of data
 returns a signed 16-bit integer which is
 0 if successful
 <0 if there was an error

 SSI_INT_COUNT : UINT16 := 0;

 This variable is a counter for the number of SSI interrupts received
 It wraps back to 0 after 0xffff

 ERROR_COUNT : INT16 := 0;

 This variable is a counter for the number of SSI errors that have occured
 When it reaches 255 it stays at 255

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

266

6.4.2.56 ssi_driver.adb

Extracted from file "ssi_driver.adb"

 Function
 ========

 This file contains the body for package ssi_driver.
 It writes to and reads from the SSI interface.

 Reference
 =========

 The SSI interface is described in http://mssls7.mssl.ucl.ac.uk/sw/ssi.html
 and here ...

 The complete description:

 SSI

 Serial Synchronous Interface

Overview

The SSI is a bi-directional communications interface between the DPU and ICU
which is carried on the DEM backplane.

The definition of the SSI is in XMM-OM/MSSL/SP/0007 "Electrical Interfaces
Specification".

Hardware

Both the ICU and the DPU can send and receive data on this interface but the
ICU is the master.

The interface consists of:

 * SSI_CLK: a continuous clock signal generated by the ICU
 * SSI_ENV_TX: active high when data present
 * SSI_DATA_TX: 16-bit data
 * SSI_ENV_RX: active high when data present
 * SSI_DATA_RX: 16-bit data
 * Signal return

Commands are sent from the ICU to the DPU. Science data is passed from the
DPU to the ICU when demanded by the ICU. Alerts are sent (unrequested) by
the DPU to the ICU. There is no direct feedback as part of the protocol and
there is no error correction nor checksums. The interface can be thought of
as the same irrespective of direction.

The SSI clock frequency is 125 kHz producing a period of 8 us (1
bit-period). The SSI 16-bit data words are separated by at least one
bit-period and at most the SSI block gap (defined in software). The SSI data
blocks are separated by at least the SSI block gap (defined in software).

Transmitting data

The words that constitute the block are sent not more than the SSI block gap
apart and, when finished, the software must wait for at least the SSI block
gap before sending more data. The receiving software must wait for a little
longer than the transmitting software's block gap to be sure to see the gap.
A factor of two is sufficient.

Receiving data

The data being received must be read suitably fast and if the time between
any two words is greater than the SSI block gap, the gap will be considered
a block gap. All blocks contain a length as their second word so errors
caused by an accidentally lengthened word gap may be identified (see data
format).

SSI block gaps

Because the SSI block gaps are defined and used only in software they can be
set to different values in different versions of the code and they can be
different depending on the direction of the data (ICU->DPU or DPU->ICU).

 SSI block gaps as defined by the ICU
 software

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

267

 EPROM code Uploadable code
 ICU -> DPU >4 ms >4 ms
 DPU -> ICU 6 ms 4 ms

 SSI block gaps as defined by the DPU
 software

 EPROM code Uploadable code
 ICU -> DPU 2 +/- 1 ms 2 +/- 1 ms
 DPU -> ICU15 +/- 1 ms 15 +/- 1 ms

The ICU's SSI hardware will give an interrupt (used by the ICU's software)
at the end of the first word of each block. The ICU software must then read
this first word before the end of the second word. The time for this is 16
bit-periods for the word and a minimum of 1 bit-period for the word gap. So
the software must be able to respond to the interrupt and read the word in
136 us.

An overflow (OVF) bit in the hardware SSI status word is made active (low)
if a data word is not read before the arrival of another.
 --

SSI errors

If the DPU resets whilst transmitting the first part of a word, that word
will be truncated and the envelope will be truncated resulting in an earlier
than expected "data receive" flag which will not be able to be processed in
time and cause an overflow on the ICU.

If the DPU resets whilst transmitting the last part of a word, that word and
the envelope will be truncated but not so much that the ICU's software
cannot keep up as in the previous case. This will result in a corrupt last
word and, except in the case of a reset during the last word, a truncated
SSI block. This will be detected and handled properly by the ICU's software.
 --

Data format

The data format is described in XMM-OM ICU-DPU Protocol Definitions Each SSI
data block consists of

 1. 16-bit type - the block type
 2. 16-bit length - the number of 16-bit words following this word (i.e.
 total length - 2)
 3. the rest of the data

The data types are grouped into categories as follows:

Regular DPU to ICU data blocks
 Regular science data.
DPU priority data
 These contain science data that is sent out as soon as it is available
 rather than at the end of an exposure.
DPU RAM dumps
 RAM dumps.
DPU to ICU alerts
 Alerts from the DPU to signify something is has happened, is ready or
 an error has occured.
ICU to DPU commands
 Commands to the DPU.

 --

 Further detail on the ICU software

The first, fast part of the SSI interrupt handler is written in assembler
(the first word of the SSI block is read) and the rest in written in Ada
(the reading of the rest of the words in the block and the timeout.)
 SSI status
 register

 D_TX 2**4
 DATA_FULL2**3
 OVF 2**2
 D_RX 2**1
 INT 2**0

Sequence of actions

 * SSI INTERRUPT happens
 * Read first word (from i/o address f241h) into input software fifo in
 less than 136 us after the interrupt

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

268

 * Remember location where next word will be stored for a later check
 * Start stopwatch
 * Set interrupt mask to only allow RBI interrupts
 * Enable interrupts but don't get interrupted for too long!
 * loop
 o read SSI status (i/o address f240h)
 o if the DATA_FULL bit (2**3) is set and there is data to output
 + write a data word to output i/o address (7241h)
 o if input software fifo is full
 + error
 o if D_RX bit is reset
 + read input word (i/o address f241h) into input software fifo
 + re-start stopwatch because there is still data on input
 o else
 + if stopwatch is after 4 ms
 + break out of loop
 o read ssi status word (i/o address f240h)
 o if OVF bit (2**2) is 0
 + clear overflow (write fffb (hex) to status register i/o
 address 7240h)
 + read a word (from i/o address f241h) and dispose of it
 * end loop
 *
 * read the second word (length) of this SSI block from the software input
 buffer
 * if it is greater then 1027
 o error
 * if no of words read doesn't equal the value of the second word (see
 above) minus 2
 o error
 * read ssi status word (i/o address f240h)
 * if OVF bit (2**2) is 0
 o clear overflow (write fffb (hex) to status register i/o address
 7240h)
 o read a word (from i/o address f241h) and dispose of it
 * clear SSI interrupt by writing fffe (hex) to the SSI status i/o address
 7240h

To Reset

 * reset software input and output fifos and error value
 * write OVR_WR fffb (hex) to status address 7240 (hex)
 * write INT_WR fffe (hex) to status address 7240 (hex)

SSI error codes

error = C
 The SSI input circular buffer has filled so fast or not been emptied
 fast enough and incoming data is about to overwrite outgoing data.
error = 2
 The word count is too large while receiving data in the block. The
 number of words has exceeded that indicated by the second "block
 length" word or has exceeded the maximum allowed (1029).
error = 8
 An overflow (OVF) has been indicated by the ICU's SSI hardware.
error = 7
 An overflow occured at the end of the block.
error = 11
 The second word of the block indicated a length which exceeds the
 maximum allowed (1029).
error = 1
 The length indicated by the second word is inconsistent with the real
 length of the block.
error = 89
 An overflow was found during SSI_DRIVER.PUT
error = 9
 The length found in SSI_DRIVER.PUT exceeded the maximum allowed (1029).
error = b
 The output block length in SSI_DRIVER.PUT exceeded the maximum allowed
 (1029).

 --

 Further detail on the DPU software

The DSP converts a serial SSI word to parallel word. Each received word
generates an interrupt. The SSI ISR pushes the word into a circular buffer.
The 1ms ISR checks the COLLECTING_A_COMMAND bit. If it is zero (cleared), it
decrementes the delay count (stopwatch), else the delaycount (stopwatch) is
reset. When the delaycount reaches 0, it is assumed a valid comand has been
received (a full block has been received), and the command interpreter is
called. The command interpreter checks for integrity of command: it checks
the block has:

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

269

 * a valid command ID
 * a legal length for command ID

It does not count the number of words received and compare this with the
length stored as the second word. The command interpreter is written in C
and the rest of the SSI code in assembler.

On a hardware error the code will:

 * Reset fill pointer.
 * Send out bad block.

 --

 Dependencies
 ============

with SYSTEM;
with UNCHECKED_CONVERSION;
with INTRINSICS;
with ARTCLIENT;

with DEBUG;
with MEMLOC;
with NHK;
with PACKET;

 Suppress all checks to speed up

package body SSI_DRIVER is

 The first word of an SSI block read back by the ssi_ih interrupt handler
 is stored at MEMLOC.SSI_FIRST_WORD_LOCATION for speed.

 procedure SSI_INTERRUPT is

 This (Ada code) is called from ssi_ih.asm (assembler code)

 interrupts are already disabled by the 31750's microcode

 - Read Data -

 Read first word of SSI block from the special address that
 the assembler code (ssi_ih) wrote to

 increment the input buffer pointer

 and wrap it round if necessary

 set the word count for this block to 1

 remember the pointer position for checking the dpu block length later

 remember the initial timer B value

 Turn on RBI interrupts

 loop

 get the SSI status

 if the status shows !data_full and there's some data to send - send it

 and increment the output buffer pointer

 Check to see if the input buffer pointer has wrapped right round
 to the point at which the same buffer should be read from

 If they're too close, store an error "-C" ready for the next time
 something is called

 If there's more data to read - read it

 and increment and wrap round the input buffer pointer

 if the count of words in this block gets far too large, store an error "-2"

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

270

 otherwise increment the READ count

 reset the old stored value of timer B because we haven't
 stopped receiving data yet

 but if there's nothing to read this time round
 check the timer

 if timer B has wrapped round, add on 64K

 exit the loop when we've been waiting to read something for
 26 timer-B ticks (4 ms) i.e. 40 to-spec ticks

 read the SSI status

 if there's been an overflow

 clear the overflow

 do a dummy read to clear

 store an error "-8"

 end loop

 read the SSI status

 if there's been an overflow

 clear the overflow

 do a dummy read to clear

 store an error "-7"

 get the second word of the SSI block from the output buffer
 this contains the number of words minus two that should be in the block

 if the number read is just too large

 remember an error "-11"

 if the length doesn't match the number of words read back
 remember an error "-1"

 clear SSI interrupt by writing to the SSI interface

 as long as the DPU isn't spewing too-long blocks

 procedure GET(DATUM : out UINT16; RET : out INT16) is

 returns length

 If there's been an error in the driver part,

 increment the error counter

 and return the error

 Otherwise, read the SSI status

 If there's nothing to read, return 0

 If there's something to read, read it

 incremet the pointer

 and wrap it round

 return the length (1)

 function PUT(BUFFER_DATA : in UINT16_ARRAY) return INT16 is

 If there's been an error

 increment the error count

 Read the SSI status

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

271

6.4.2.57 ssi_ih.ads

Extracted from file "ssi_ih.ads"

 Function
 ========

 This file contains the specification for the XMM-OM ssi interrupt handler.
 The interrupt handler is written in assembler and linked as foreign.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

272

6.4.2.58 ssi_ih.asm

File is ssi_ih.asm

 Sort out the stack
 Read first word of SSI block from DPU to ICU and store for Ada
 Jump to Ada SSI interrupt handler
 Tidy up
 Return from interrupt

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

273

6.4.2.59 ssi_in.ads

Extracted from file "ssi_in.ads"

 Function
 ========

 This file contains the specification for package SSI_IN

 The package is used to allow access to the ssi driver code
 in order to receive blocks sent from the DPU.

package SSI_IN is

 procedure GET(DATA : out UINT16_ARRAY; SUCCESS : out INT16);

 where:

 DATA contains a DPU block sent from the DPU via the SSI interface

 SUCCESS returns the completion code
 <0 indicates an error.
 >0 indicates success.

 procedure RESET;

 resets the SSI interface.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

274

6.4.2.60 ssi_in.adb

Extracted from file "ssi_in.adb"

 Function
 ========

 This file contains the package body for the SSI_IN package

package body SSI_IN is

 procedure GET(DATA : out UINT16_ARRAY ; SUCCESS : out INT16) is

 In order to follow the logic of this code, you must be aware that
 the data block received from the DPU via the SSI interface has the
 following format.

 ++
 + Word 0 + Word 1 + Word 2 -> Word N+2 +
 ++
 + Block + Word + +
 + ID + Count + DPU Data Block +
 + + N + +
 ++

 Initialise the word count to 2.

 Initialize the state of the code to be 'at Block ID'

 Commence infinite loop

 Exit from loop when word count is zero (initialised to 2)
 as this indicates we are at end of block.

 Get a datum from the SSI interface, noting
 completion code, using SSI_DRIVER.GET.

 If the completion code indicates a good datum was found
 (i.e. it is greater than zero).

 Now perform action depending on the 'state' of the routine
 (initially at Block ID)

 When the routine is in state 'At Block ID'

 We ought to be at the start of a valid DPU data block
 so check the datum received is a valid DPU header code

 If it is valid, store the datum in the
 1st location of the output array

 and change state of routine to 'at block size'

 Otherwise

 Prepare and send and SSI exception report.

 Force end of block condition by setting word count to zero

 and reset the interface using RESET

 When the routine is in state 'at block size'

 Reset the word count to be the value of the datum.

 Store the datum in the 2nd location in the output array

 Change the routine state to 'in block data'

 When the routine is in state 'in block data'

 Store the datum in successive locations in the output array

 Decrement the word count by one.

 Else, if no data was found in the SSI driver queue
 (i.e. the completion code was zero).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

275

 Wait a bit

 Else

 exit from the loop as we have an error

 end of infinite loop

 If the completion code indicates an error
 (i.e. is less than zero).

 Store the completion code in SUCCESS.

 Prepare and send appropriate SSI Exception Report NHK packet

 Reset the interface using RESET

 Otherwise

 Set SUCCESS to 1 to indicate all OK.

 Return from routine

 procedure RESET is

 Simply perform a direct call to the low level ssi driver
 reset RESET

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

276

6.4.2.61 ssi_out.ads

Extracted from file "ssi_out.ads"

 Function
 ========

 The file contains the specification for package SSI_OUT. This package
 controls access to the SSI driver for output, allowing only one
 external object to access the driver code, and therefore in turn the SSI
 interface, at any given moment.

 This package will be merged with the SSI_IN package
 in the next generation of software

 Dependencies
 ============

with TYPES; use TYPES;
with IMPORTANCE;
with SSI_DRIVER;

package SSI_OUT is

 procedure PUT(COMMAND : UINT16_ARRAY; SUCCESS : out BOOLEAN);

 where:

 COMMAND is the DPU command to be sent via the SSI interface.
 LEVEL determines at what priority.

 procedure RESET renames SSI_DRIVER.RESET;

 performs a reset of the SSI interface and is identical to a call
 to the RESET procedure in package SSI_DRIVER

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

277

6.4.2.62 ssi_out.adb

Extracted from file "ssi_out.adb"

 Function
 ========

 This file contains the body of package SSI_OUT.
 It provides routines to send data to the DPU via the SSI.

package body SSI_OUT is

 The following is a routine internal to the package

 function PUT_AND_CHECK(COMMAND : UINT16_ARRAY) return BOOLEAN;

 where COMMAND contains the DPU command to be transmitted to the DPU.
 Any error will cause this routine to issue a message and reset the software.

 Create an instance (SSI_PORT) of a mutex semaphore using package MUTEX.

 SSI_PORT : MUTEX.SEMAPHORE;

 procedure PUT(COMMAND : UINT16_ARRAY; SUCCESS : out BOOLEAN) is

 seize the SSI for writing using SSI_PORT.SEIZE

 send the supplied command to the ssi_driver code using PUT_AND_CHECK.

 release the SSI for writing by using SSI_PORT.RELEASE.

 --
 function PUT_AND_CHECK(COMMAND : UINT16_ARRAY) return BOOLEAN is
 --

 write the SSI block to the DPU using SSI_DRIVER.PUT

 check the returned error code

 if the error code is OK (i.e. 0) then return true

 else if there was an error (error code < 0)

 send an exception report packet with the error ...

 ... and reset the SSI (software reset---no hardware reset) using RESET

 then return false indicating an error

 Otherwise

 Return FALSE indicating and error

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

278

6.4.2.63 task_report.ads

Extracted from file "task_report.ads"

 Function
 ========

 This file contains the specification for package TASK_REPORT.

 The function of this package is to provide routine(s) to construct and
 place Task Parameter Report packets into the telemetry queue
 prior to their being transmitted to the ground.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package TASK_REPORT is

 procedure PUT(TID : UBYTE;
 FID : UBYTE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER);

 The procedure PUT constructs and places a Task Parameter Report packet
 associated with TID and FID
 in the telemetry queue. The interface is as follows:

 where:

 PARAMS specifies an array of parameters to be loaded into the packet.
 Note - the index range of the parameter array should start at 0.

 SIZE specifies the number of parameters to be loaded from PARAMS.

 procedure LOAD(TID : UBYTE;
 FID : UBYTE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER);

 The procedure LOAD stores the parameters associated with
 TID and FID in a standard area. This location is checked if a request
 is made to dump those parameters at a later time.

 The interface is as follows:

 where:

 PARAMS specifies an array of parameters to be loaded associated with
 TID and FID.
 Note - the index range of the parameter array should start at 0.

 SIZE specifies the number of parameters to be loaded from PARAMS.

 NOTE: Alternative 'flavours' of this command now follow:

 procedure LOAD(TID : UBYTE;
 FID : UBYTE;
 PARAM1 : UINT16);

 procedure LOAD(TID : UBYTE;
 FID : UBYTE;
 PARAM1 : UINT16;
 PARAM2 : UINT16);

 procedure LOAD(TID : UBYTE;
 FID : UBYTE;
 PARAM1 : UINT16;
 PARAM2 : UINT16;
 PARAM3 : UINT16);

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

279

 These LOAD procedures store 1,2 or 3 parameters respectivley
 associated with TID and FID in a standard area.
 This location is checked if a request
 is made to dump those parameters at a later time.

 The interface is as follows:

 where:

 PARAMS specifies an array of parameters to be loaded associated with
 TID and FID.
 Note - the index range of the parameter array should start at 0.

 SIZE specifies the number of parameters to be loaded from PARAMS.

 function SEND(TID : UBYTE;
 FID : UBYTE;
 SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN ;

 The FUNCTION SEND constructs and places a Task Param Report containing
 the parameters associated with TID and FID saved in the
 standard area by the various 'flavours' of LOAD.

 Returns TRUE if parameters found and send

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

280

6.4.2.64 task_report.adb

Extracted from file "task_report.adb"

 Function
 ========

 This file contains the body for package TASK_REPORT.

 The function of this package is to provide routine(s) to construct and
 place Task Parameter Report packets into the telemetry queue
 prior to their being transmitted to the ground.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package body TASK_REPORT is

 Create a table of valid TID/FID combinations, how many expected prameters
 and default the location they will be stored to zero.

 Set up an area to store the parameters in.

 procedure PUT(TID : UBYTE;
 FID : UBYTE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER) is

 Flag presence or absence of CRC in data field header

 Calculate and load packet length

 Load TID, FID and supplied parameters into packet

 Attempt to put packet record into queue using TMQ.PUT.

 procedure LOAD(TID : UBYTE;
 FID : UBYTE;
 PARAMS : UINT16_ARRAY;
 SIZE : INTEGER) is

 Loop over the table of valid TID/FID combinations.

 If it knows about this TID/FID and the size
 (i.e. the number of parameters) is correct

 If this is the first time these params have been stored

 Set up the location to store them

 Copy parameters into table at specified location

 procedure LOAD(TID : UBYTE;
 FID : UBYTE;
 PARAM1 : UINT16) is

 Perform a call to the general purpose LOAD routine
 with 1 parameter

 procedure LOAD(TID : UBYTE;
 FID : UBYTE;
 PARAM1 : UINT16;
 PARAM2 : UINT16) is

 Perform a call to the general purpose LOAD routine
 with 2 parameters.

 procedure LOAD(TID : UBYTE;
 FID : UBYTE;
 PARAM1 : UINT16;
 PARAM2 : UINT16;

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

281

 PARAM3 : UINT16) is

 Perform a call to the general purpose LOAD routine
 with 3 parameters.

 function SEND(TID : UBYTE;
 FID : UBYTE;
 SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN is

 Loop over the table of TID/FID combinations loaded
 so far.

 If this is a valid TID/FID combination
 and data has been stored

 Copy params into a packet and send it using PUT.

 Return a success condition.

 If no match was found with a previously supplied TID/FID
 combination, send an illegal parameters report packet.

 Return a failure condition.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

282

6.4.2.65 taskman.ads

Extracted from file "taskman.ads"

 Function
 ========

 This package contains the specification for the TASKMAN package.
 The function of this package is to interpret the Task
 Management Telecommands and forward them to the appropriate code.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package TASKMAN is

 function REQUEST(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN;

 The function REQUEST provides the means of passing the telecommand
 to the package for action.

 where:

 TC_PACKET contains the packet to be interpreted and executed.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

283

6.4.2.66 taskman.adb

Extracted from file "taskman.adb"

 Function
 ========

 This package contains the body for the TASKMAN package.
 The function of this package is to interpret the Task
 Management Telecommands and forward them to the appropriate code.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package body TASKMAN is

 function REQUEST(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

 Set up default error condition of command not being accepted.

 Select action on the basis of packet subtype.

 When the packet subtype is Start Task...

 Set up default error of Illegal TID

 Select Action on the basis of the Task Identifier (TID)

 when TID is Blue Load Centroid Table

 Start the loading of the Blue Centroid Table

 when TID is Blue Load Window Table

 Start the loading of the Blue Window Table

 when TID is Blue Load DPU Deduced Window

 Do nothing is this is now always running.

 when TID is Blue Integration

 Start the Blue Detector Integration

 When TID is start the HV Ramp

 Start the HV ramp task

 when TID is Blue Camera Head Reset

 Reset the Blue Camera Head

 When the TID is a Move Filter Wheel Instruction

 Start moving the filter wheel

 When the TID is a Move Dichroic Instruction

 Start moving the dichroic

 When the TID is a contingency heater control

 Provided normal automatic heater control is disabled

 Enable contingency heater control

 otherwise

 Flag as an error with an unsuccessful acceptance packet.

 Flag command as not accepted.

 When the TID is an automatic heater control

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

284

 Provided contingency heater control is disabled

 Enable automatic heater control

 Otherwise

 Flag as an error with an unsuccessful acceptance packet.

 Flag command as not accepted.

 When TID indicates a secondary voltage command

 Enable the secondary voltage.

 When the TID indicates DPU Science

 Start automatic 'handshake' of Science Data with DPU.

 When the TID indicates the DPU Heartbeat Watchdog.

 Ensure DPU Heartbeat watchdog monitor is started.

 Enable the Bent Pipe Diagnostic.

 When the TID indicates the DEMPSU

 Reset/Turn-on the DPU

 When the TID indicates an RBI Watchdog.

 Ensure the RBI Watchdog is started.

 When the TID indicates HK

 Ensure HK monitoring is enabled.

 When the TID indicates autonomous safing

 Ensure Autonomous Task is enabled

 When TID indicates ICB Direct Control

 Enable the ability to talk to the ICB directly.

 when TID is any other value

 flag as an invalid task command

 End of Selection.

 When the packet subtype is Stop Task...

 Prepare Default Error of illegal TID

 Select Action on the basis of the Task Identifier (TID)

 when TID is Blue Load Centroid Table

 Stop the loading of the Blue Centroid Table

 when TID is Blue Load Window Table

 Stop the loading of the Blue Window Table

 when TID is Blue Load DPU Deduced Window Table

 Flag as an invalid task command as no longer valid

 when TID is Blue Integration

 Stop the blue integration

 When TID indicates HV Ramp

 Stop the HV ramp task

 When TID indicates the Filter Wheel

 Stop moving the filter wheel

 When TID indicates Dichroic

 Stop moving the dichroic

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

285

 When TID indicates the contingency heater control

 Stop the contingency heater control

 When TID indicates the normal automatic heater control

 Stop the normal automatic heater control.

 When TID indicates the Secondary Voltages

 Disable the secondary voltages

 When TID indicate DPU science

 Disable the 'handshake' between the ICU and DPU of the
 science data.

 When TID indicates the DPU Heartbeat Watchdog

 Disable the DPU Heartbeat Watchdog.

 When TID indicate the DEMPSU

 Power down the DPU.

 When the TID indicates the RBI watchdog

 Disable the RBI watchdog.

 When TID indicates Housekeeping

 Disable the HK.

 When the TID indicates autonomous safing

 Disable the Autonomous Safing Task

 When the TID indicates the ICB DIRECT

 Disable the ability to write to the MACSbus ICB directly.

 when TID is any other value --------------------------------

 Flag is as an illegal task command.

 End of Selection

 When the packet subtype is Load Task...

 Set up a default Illegal FID error.

 Select Action on the basis of the Task Identifier (TID)

 when TID is Blue Load Centroid Table

 Load the centroid boundaries in the Blue system

 when TID is Blue Load Window Table

 Load the Window descriptions into the Blue system

 when TID is Blue Integration.

 Select action on the basis of the Function Identifier (FID)

 when FID is Blue Acquisition Mode

 Set Blue System Acquisition Mode

 when FID is Blue Double Threshold

 Set the Blue System Double Event Threshold

 when FID is Flood LED current

 Set the Flood LED current.

 when the FID is Enable Frame Tag

 If the frame tag value is zero

 Disable frame tags

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

286

 Otherwise

 Enable them.

 If FID ios Camera Running

 Set the Camera Running bit as per request

 when FID is any other value

 Flag as an illegal task command

 End of Selection

 when TID is HV ramping

 Provided its the correct FID

 Load HV ramp parameters

 Otherwise

 Flag as an invalid task command.

 When TID is Move Filter Wheel

 Select action on basis of FID

 If FID indicates a filter wheel movement parameter

 Load up the parameter

 When FID indicates the coarse sensor current

 Load up the coarse sensor current

 When FID indicates the fine sensor current

 Load up the fine sensor current

 When FID indicates the f/w step rate

 Load up the f/w step rate

 Any other FID value

 Flag as an invalid task command.

 If the TID indicates a Move Dichroic

 Select action on the basic of the FID value

 When the FID indicate Dichroic direction/method

 Load Dichroic direction/method

 When the FID indicate Dichroic step rate

 Load Dichroic step rate.

 Any other value of FID

 Flag as an invalid task command.

 If the TID indicate contingency heater control

 Provided its enabled

 Accept the command containg the heater configuration.

 otherwise

 Send an unsuccesful acceptance packet

 Flag as an error

 When TID indicates normal automatic heater control

 Provided its enabled

 And its a valid FID

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

287

 Load up the parameters

 Otherwise

 Flag as invalid task command.

 otherwise

 Send an unsuccesful acceptance packet.

 Flag as an error.

 When TID indicates Direct ICB command

 Select action on value of FID

 when FID indicates a direct write to an ICB port

 and the option is enabled

 O/P datum to specified address and subaddress

 otherwise

 Flag as an error

 For any other value of FID

 Flag as an invalid task command.

 When TID indicates an RBI watchdog

 IF the FID is valid

 Load up the watchdog parameters

 If those parameters are not accepted.

 Send the appropriate unsuccesful acceptance packet

 All other FID's

 Flag as invalid task command

 when TID is DPU Direct

 Send parameters in the packet as a direct command to the DPU

 when TID is any other value

 Flag as an invalid task command

 End of Selection

 When the packet subtype is Report Task...

 If it's a valid read ICB port type

 and its enabled

 Request the task report and flag as accepted

 otherwise

 Flag as an error

 All other FIDs

 Send a normal task report packet using TASK_REPORT.SEND.

 When the packet subtype is Mode Transition...

 Send parameters to the MODEMAN.TO_MODE

 End of Selection

 If command was flagged as an invalid task management command,
 inform the ground

 Return success only if we had both a valid task command and
 the command was not rejected by the functions called.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

288

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

289

6.4.2.67 tc_q.ads

Extracted from file "tc_q.ads"

 Function
 ========

 This file contains the specification for the package TC_Q. It
 supplies the routines that manipulate the telecommand queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010
 The OBDH protocol is defined in XM-IF-DOR-0002

package TC_Q is

 Define number of slots NO_SLOTS in Telecommand Queue

 Define telecommand queue data structure as follows

 Description Size (Words)
 =========== ============

 * Packet Slot 0 * 124

 * ... and so on until... * 124

 * Packet Slot n-1 * 124

 Two pointers are used to indicate the 'occupation' of the queue.

 The Input Pointer indicates the packet slot into which the
 the next packet will be written.

 The Output Pointer indicates the packet slot from which the
 the next packet should be taken.

 In addition, there is a communication area (CCA) which the spacecraft examines
 to determine the location of a TM packet to be collected or into which
 a TC packet should be loaded.

 * RBI Status Word *

 * Start Address of TM Source Packet *

 * Length of TM Source Packet *

 * Start Address of TC Source Packet *

 Create instance of Q data structure, and fix at location in memory (determined from MEMLOC).

 Define the input and output pointers at a fixed location in memory and zero them.

 procedure RESET;

 This procedure resets (i.e. clears) the TC queue

 procedure REMOVE(PCKT : in out PACKET.TC_TYPE);

 This procedure removes a packet from the TC queue

 where:

 PCKT is the packet removed from the TC queue.

 procedure ADD;

 This procedure informs the ICU that the s/c had DMAd a TC packet

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

290

 NOTE: This routine is now obsolete and should be removed. Its function
 is now handled by a low level assembler routine in package RBI_IH.

 function IS_EMPTY return BOOLEAN;

 This function determines whether the TC queue is empty
 It returns TRUE if the queue is empty

 function IS_FULL return BOOLEAN;

 This function determines whether the TC queue is full.
 It returns TRUE if the queue is full

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

291

6.4.2.68 tc_q.adb

Extracted from file "tc_q.adb"

 Function
 ========

 This file contains the body for the package TC_Q. It
 supplies the routines that manipulate the telecommand queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010.
 The OBDH protocol is defined in XM-IF-DOR-0002

package body TC_Q is

 Define telecommand queue data structure as follows (this information repeated for
 convenience from the specification).

 Description Size (Words)
 =========== ============

 * Packet Slot 0 * 124

 * ... and so on until... * 124

 * Packet Slot n-1 * 124

 Two pointers are used to indicicate the 'occupation' of the queue.

 The Input Pointer indicates the packet slot into which the
 the next packet will be written.

 The Output Pointer indicates the packet slot from which the
 the next packet should be taken.

 In addition, there is a communication area which the spacecraft examines
 to determine the location of a TM packet to be collected or into which
 a TC packet should be loaded.

 * RBI Status Word *

 * Start Address of TM Source Packet *

 * Length of TM Source Packet *

 * Start Address of TC Source Packet *

 procedure RESET is

 Set the start and end pointers to the location of 1st packet.

 Store the Start address of the 1st packet in the comm area
 using RBI.SET_COMM_AREA_TC_INFO.

 Inform s/c we are ready to receive a packet by setting the
 appropriate RBI status word bit using RBI.SET_TC_READY.

 procedure REMOVE(PCKT : in out PACKET.TC_TYPE) is

 Copy packet from current slot specified by the output pointer into PCKT.

 calc next output pointer value, watching for 'wraparound'

 Inform s/c we are ready to receive a packet again by setting the
 appropriate RBI status word bit (provided the queue is not full)
 using RBI.SET_TC_READY.

 procedure ADD is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

292

 NOTE: This routine is now obsolete and should be removed.
 Its function is now handled by a low level assembler routine in
 package RBI_IH.

 Tell s/c we can't receive TC packets using RBI.SET_TC_READY.

 Packet has already been stored by s/c
 So calculate next slot index indicated by the value of the input pointer
 and watching for 'wraparound'

 Now set up new address for next packet using RBI.SET_COMM_AREA_TC_INFO

 Now tell s/c we can accept TC packets again if q not full using RBI.SET_TC_READY.

 function IS_EMPTY return BOOLEAN is

 Return TRUE if Input Pointer equals the Output Pointer

 Otherwise return FALSE

 function IS_FULL return BOOLEAN is

 Calc value of input pointer of next (after current) packet slot to be written.

 Return TRUE if it is the same as the output pointer.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

293

6.4.2.69 tc_verify.ads

Extracted from file "tc_verify.ads"

 Function
 ========

 This file contains the specification for the TC_VERIFY package.

 That package supplies the routines that construct and send the
 telecommand verification packets.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package TC_VERIFY is

 procedure SUCCESSFUL_ACCEPTANCE
 (TC_SEQ_COUNT_AND_SRC: UINT16);

 This procedure constructs and sends a successful telecommand acceptance
 packet to the telemetry queue.

 where:

 TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
 telecommand being verified.

 procedure UNSUCCESSFUL_ACCEPTANCE
 (TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY);

 This procedure constructs and sends an unsuccessful telecommand
 acceptance packet to the telemetry queue.

 where:

 TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
 telecommand being verified.

 ERROR_CODE specifies the reason for failure

 PARAMS specify any parameters associated with the
 error code (NOTE - unlike other routines in the
 ICU code, the first index of this array must be 1)

 procedure UNSUCCESSFUL_EXECUTION
 (TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY);

 This procedure constructs and sends an unsuccessful telecommand
 execution packet to the telemetry queue.

 where:

 TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
 telecommand being verified.

 ERROR_CODE specifies the reason for failure

 PARAMS specify any parameters associated with the
 error code (NOTE - unlike other routine in the
 ICU code, the first index of this array must be 1)

 procedure REPORT_ERROR(ERROR : PACKET.COMMAND_ERROR_TYPE;
 TC_SEQ_COUNT_AND_SRC: UINT16);

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

294

 This is a simplified version of UNSUCCESSFUL_ACCEPTANCE,
 for use when there are no parameters.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

295

6.4.2.70 tc_verify.adb

Extracted from file "tc_verify.adb"

 Function
 ========

 This file contains the body for the TC_VERIFY package.

 That package supplies the routines that construct and send the
 telecommand verification packets.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

package body TC_VERIFY is

 The specification for this package's internal routine follows:
 ==

 procedure UNSUCCESSFUL(
 SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
 TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY);

 where:

 SUB_TYPE is the packet sub-type being output
 (unsuccessful acceptance or execution).

 TC_SEQ_COUNT_AND_SRC is the sequence count and source flag of the
 telecommand being verified.

 ERROR_CODE specifies the reason for failure

 NO_PARAMS specifies how many params are supplied

 PARAMS specify any parameters associated with the
 error code

 The body for this package's internal routine follows:
 ===

 procedure UNSUCCESSFUL(
 SUB_TYPE : PACKET.TELEMETRY_SUBTYPE;
 TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY) is

 Create instance of verification packet of requested sub-type

 Return as successful with no further action if an internal command is causing the error
 (as this will have no source and sequence count parameter - the 'impossible' value
 of FFFF (hex) is used to indicate this).

 Get the time and place it in packet using TIME_MAN.TIME_STAMP.

 Flag CRC as present

 Store the number of parameters supplied

 Calculate and load packet length

 Copy originating sequence count and source flag into packet

 Copy error code into packet

 and then copy in the associated parameters

 Place packet in queue using TMQ.PUT.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

296

 The bodies for this package's externally visible follow:
 ==

 procedure UNSUCCESSFUL_EXECUTION
 (TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY) is

 Call UNSUCCESSFUL with sub-type specifying Unsuccessful Execution

 procedure UNSUCCESSFUL_ACCEPTANCE
 (TC_SEQ_COUNT_AND_SRC: UINT16;
 ERROR_CODE : PACKET.COMMAND_ERROR_TYPE;
 NO_PARAMS : UINT16;
 PARAMS : UINT16_ARRAY) is

 Call UNSUCCESSFUL with SUB_TYPE specifying Unsuccessful Acceptance

 procedure SUCCESSFUL_ACCEPTANCE
 (TC_SEQ_COUNT_AND_SRC: UINT16) is

 Create verification packet of sub-type Succesful Acceptance

 Return as successful with no further action
 if an ICU internal command (i.e. if source and sequence count is set
 to the immpossible value of FFFF hex) caused the error

 Get the time and place it in packet using TIME_MAN.TIME_STAMP.

 Flag CRC as present

 Calculate and load packet length

 Copy originating sequence count and source flag into packet

 Place packet in queue using TMQ.PUT.

 procedure REPORT_ERROR(ERROR : PACKET.COMMAND_ERROR_TYPE;
 TC_SEQ_COUNT_AND_SRC: UINT16) is

 If the error code is in the unsuccessful execution range

 Call UNSUCCESSFUL_EXECUTION with ERROR supplied and
 number of parameters set to zero.

 Otherwise

 Call UNSUCCESSFUL_ACCEPTANCE with ERROR supplied and
 number of parameters set to zero.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

297

6.4.2.71 tcq.ads

Extracted from file "tcq.ads"

 Function
 ========

 This file contains the specification for the package TCQ.
 That package supplies the low level routines that manipulate the
 telecommand queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010.
 The OBDH protocol is defined in XM-IF-DOR-0002.

package TCQ is

 procedure RESET;

 This procedure resets (i.e. clears) the telecommand queue

 procedure GET(PCK : in out PACKET.TC_TYPE;
 GOOD_PACKET : out BOOLEAN);

 This procedure returns the next valid telecomand packet received
 to the caller.

 where:

 PCK is the returned packet.

 GOOD_PACKET - always returns TRUE.

 procedure ADD renames TC_Q.ADD;

 The procedure is called when an EOTC Instruction to User
 interrupt is received (i.e. that a TC packet has been added to the
 TC queue).
 NOTE: This routine is now obsolete and should be removed. Its function is
 now handled by a low level assembler routine in package RBI_IH.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

298

6.4.2.72 tcq.adb

Extracted from file "tcq.adb"

 This package body implements the specification given in TCQ.ADS

 Dependencies
 ============

with TC_Q;
with TMQ;
with TC_VERIFY;
with TYPES; use TYPES;
with CRC;
with HK;
with SYSTEM;
with MEMLOC;

package body TCQ is

 Data Global to this package
 ===========================

 As this package only returns valid packets, it requires a table
 of valid types and subtype, and the associated error conditions,
 as follows:

 Subtype 0 1 2 3 4 5 * Comments
 Type
 1 ? ? ? ? ? ? ?
 2 I o o I I I I Device Commanding
 3 ? ? ? ? ? ? ?
 4 ? ? ? ? ? ? ?
 5 I o o o o o I Task Management
 6 I o o o I I I Memory Maintenance
 7 ? ? ? ? ? ? ?
 8 ? ? ? ? ? ? ?
 9 I o I o o o I Telemetry Maintenance
 10 I I o o I o I Time Management
 11 ? ? ? ? ? ? ?
 12 ? ? ? ? ? ? ?
 13 I o I I I I I Test Commands
 14 ? ? ? ? ? ? ?
 15 ? ? ? ? ? ? ?

 where:

 o = valid type/subtype, i = invalid subtype, ? = invalid type

 The specification and body for the internal routine follow:

 where:

 TC_PACKET is the packet to be checked for validity.

 function VALID_PACKET(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

 Assume by default we have a good packet.

 If a good packet

 Perform Valid APID check

 If not, note and flag it as a bad packet as invalid APID.

 If still a good packet

 Perform Packet Length Check (i.e. is it in a valid range)

 If not, note and flag it as a bad packet with invalid length.

 If still a good packet

 and a CRC is flagged as being present

 Perform CRC check

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

299

 If the CRC check fails

 Note and flag it as a bad packet with incorrect checksum.

 If still thought to be OK

 Look up error condition, if any, as a function of packet type
 and subtype, from the table described above.

 Select next action on the basis of the value returned.

 If packet OK

 Flag it is a good packet.

 If an invalid packet is present

 Determine whether because it is a bad type or bad sub-type.

 Load up the packet type and subtype into the parameter
 array for the error packet to be sent.

 Finally flag as bad packet.

 If it's not a good packet so far

 Construct and place Unsuccessful Acceptance
 Telemetry Packet in the telemetry queue with the appropriate error code.

 Increment bad packet count HK.TC_BAD for HK purposes.

 Return whether it was a good (TRUE) or bad (FALSE) packet.

 procedure RESET is

 Perform queue reset by calling TC_Q.RESET

 procedure GET(PCK : in out PACKET.TC_TYPE;
 GOOD_PACKET : out BOOLEAN) is

 Commence infinite loop

 If the telecommand queue is empty

 then wait a while

 otherwise

 Remove a packet from the queue using TC_Q.REMOVE.

 If function VALID_PACKET returns a value of TRUE
 (i.e. we have a valid packet).

 then exit from this loop (and therefore procedure), indicating success.

 End Loop

 Package TCQ Code
 ================

 Perform a failsafe Reset Queue on Package Elaboration using RESET.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

300

6.4.2.73 time_man.ads

Extracted from file "time_man.ads"

 Function
 ========

 The file contains the specification for the Time Manager Package TIME_MAN.
 This package, together with the package BCP4_IH, supplies routines to
 support On-Board Time Management.

package TIME_MAN is

 function REQUEST(TC_PACKET : PACKET.TC_TYPE)
 return BOOLEAN;

 This routine implements the On-Board Time Management Packets TC(10,x)
 contained in TC_PACKET. The format of these packets is defined in
 the Packet Structure Definition document PX-RS-0032. Of those, only
 the following are required to be supported.

 TC(10,2) - Enable Time Synchronization.
 TC(10,3) - Add Time Code.
 TC(10,5) - Enable Time Verification.

 In this release, the function always returns TRUE.

 function VERIFICATION_ACTIVE
 return BOOLEAN;

 This function returns TRUE if the process of verifying the time
 is in progress.

 function SYNCHRONISATION_ACTIVE
 return BOOLEAN;

 This function returns TRUE if the process of synchronizing the time
 is in progress.

 function TIME_STAMP
 return PACKET.TIME_TYPE;

 This function returns the current on-board time in a format suitable
 for direct insertion into a packet.
 (see the RBI package for details of the format).

 function OBT_AT_NEXT_BCP4
 return RBI.OBT_TYPE;

 This function
 1) waits until the next BCP4 pulse from the spacecraft
 2) returns the On-board time at that pulse in the format as
 provided by the RBI
 (see the RBI package for details of the format).

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

301

6.4.2.74 time_man.adb

Extracted from file "time_man.adb"

 Function
 ========

 The file contains the body for the Time Manager Package TIME_MAN.
 This package, together with the package BCP4_IH, supplies routines to
 support On-Board Time Management.

package body TIME_MAN is

 The following is the specification for a task internal to this package.
 It constructs and sends and enable time verification package after the
 initial processing of the BCP4 interrupt by package bcp4_ih.

 task BCP4 is
 entry START;
 end BCP4;

 function REQUEST(TC_PACKET : PACKET.TC_TYPE) return BOOLEAN is

 Determine action on the basis of the packet sub-type.

 If we have received a Time Synchronisation Packet

 Inform world that we are synchronising by setting
 the appropriate flag for use in HK.

 Enable time synchronisation by commanding the
 RBI configuration register appropriately using RBI.SET_SYNC_READY

 If we have received an Add Time Code Packet

 Remember the most significant byte from the time information
 supplied by the packet.

 Copy remaining significant 4 bytes into work array

 Convert them to RBI OBT (On-Board Time) format and
 load into RBI registers using RBI.SET_OBT

 Now disable Time synchronisation by commanding the RBI
 configuration register accordingly using RBI.SET_SYNC_READY.

 Now update DPU time to agree with the new time value using the special
 version of the IC_SYNCH_CLK with the length set to zero.

 Finally, tell world we are no longer synchronising by resetting
 the appropriate flag in HK.

 If we have received an Enable Time Verification Packet

 Inform world we are verifying the time by setting the
 appropriate flag for HK

 Start BCP4 processing task by calling BCP4.START.

 and leave it to do the work

 For any other packet sub-types.

 Do nothing.

 In this release, always return success.

 task body BCP4 is

 Begin infinite loop

 Wait until a call to start the task occurs i.e. BCP4.START

 Wait for the next BCP4 and get the corrected RBI format OBT
 using the OBT_AT_NEXT_BCP4 function.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

302

 Create instance of a Time Management Report packet.

 Now build Time Verification Packet

 Flag CRC as present

 Calculate and load packet length.

 Construct Most Sig Byte of time stamp from value
 extracted from Add Time Code packet and held in memory.

 Construct remaining bytes from corrected OBT.

 And send it to to TM queue using TMQ.PUT.

 and disable BCP4 processing

 and inform world via HK we have finished verifying the time.

 function SYNCHRONISATION_ACTIVE return BOOLEAN is

 Return the value of the synchronising flag

 function VERIFICATION_ACTIVE return BOOLEAN is

 Return the value of the verification flag

 function TIME_STAMP return PACKET.TIME_TYPE is

 Construct Most Sig Byte of time stamp from value extracted
 earlier from the Add Time Code packet and held in memory

 Get current corrected On-Board Time from the RBI using RBI.CORRECTED_OBT.

 Construct remaining bytes of time stamp from it;

 Return the time stamp.

 function OBT_AT_NEXT_BCP4 return RBI.OBT_TYPE is

 Enable BCP4 processing at interrupt level by setting a flag the assembler
 code in bcp4_ih will poll at the next BCP4 interrupt.

 then wait for bcp4 int to be processed by code in
 package bcp4_ih (i.e. load up the OBT).

 Correct and return the On Board Time from the RBI using RBI.CORRECT_OBT.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

303

6.4.2.75 timer_a_ih.ads

Extracted from file "timer_a_ih.ads"

 A block of variables are declared in MECHANISMS as part of the
 specification of that package
 so that they are 'visible' to this package which actually
 performs the movement. It is compiled separately as it is run
 at interrupt level and therefore a different set of compilation flags
 must be used.

 Enables the phase coils for the stepper motor driving DEVICE
 (FILTER_WHEEL or DICHROIC) as specified by the bit pattern contained
 in PHASE (1 = enabled) as follows:

 L.S.B.

 | Phase 1 | Phase 2 | Phase 3 | Phase 4 |

 function FW_PHASE return UINT16;

 Returns a bit pattern specified by earlier calls to SET_PHASE
 commanding the filter wheel stepper motor for which the bit pattern
 PHASE was non zero. As before, the bits are defined as follows
 (1 = enabled)

 L.S.B.

 | Phase 1 | Phase 2 | Phase 3 | Phase 4 |

 function DM_PHASE return UINT16;

 Returns a bit pattern specified by earlier calls to SET_PHASE
 commanding the dichroic stepper motor for which the bit pattern
 PHASE was non zero. As before, the bits are defined as follows
 (1 = enabled)

 L.S.B.

 | Phase 1 | Phase 2 | Phase 3 | Phase 4 |

 function COARSE_POSITION_SENSED return BOOLEAN;

 Returns TRUE if the filter wheel coarse sensor is currently detected.

 function FINE_POSITION_SENSED return BOOLEAN;

 Returns TRUE when the filter wheel fine position sensor is detected

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

304

6.4.2.76 timer_a_ih.adb

Extracted from file "timer_a_ih.adb"

 procedure START(INIT_PULSE_RATE : UINT16) is

 Flag that the next pulse will be the first

 Init pulse counter

 Zero fine pulse sensor counter

 Set up first Timer A Interrupt

 procedure STOP is

 Cancel current interrupt

 procedure WHEN_ALARM_HAPPENS is

 If the ICB is still busy at non-interrupt level

 Set up another timer A interrupt in a little while
 using ALARMCLOCK.SETALARM

 and return from interrupt

 Re-enable SSI and RBI interrupts so they can still be processed
 (as otherwise they are 'locked out' due to being lower priority

 Inform ICB Driver that it will be running at interrupt level

 Provided mechanisms are flagged as in use

 1st reset timer A ready for next pulse
 (rate dependent on requested movement speed
 set up in calls to the MECHANISMS package)

 If this is not the first pulse

 As the mechanisms will now have settled, we check for
 exit conditions resulting from prior pulse.

 If exit condition is when we reach the specified steps

 If we have reached the max steps requested,
 flag as finished

 If we are within braking distance

 then start decelerating if cruising or accelerating

 If the exit is on seeing the coarse sensor

 Flag as finished when coarse sensor set

 Set error flag if we have gone beyond
 max requested steps

 If the exit is on seeing the next fine sensor

 If fine sensor seen

 Increment count of fine sensor pulses

 Flag as finished when pulse count at requested max pulses

 Set error flag if we have gone beyond
 max requested pulses

 If the exit is on seeing the coarse sensor and
 fine sensor pulse (i.e. we are at datum)

 Can we can see the coarse sensor?

 Set finished flag if we also see the fine sensor

 If finished, reset filter wheel position

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

305

 If we can we see the coarse sensor

 Adjust speed to be fixed but very slow

 but if we can't see the coarse sensor

 Keep the speed fixed but at standard pull-in rate

 Set error flag if we have gone beyond max requested steps

 If exit is at dichroic positive excursion

 If we are moving to maximum excursion

 Flag as finished when steps >= 31 and phase is 1

 If we are moving n steps

 Flag as finished when we reach them

 If exit is at dichroic negative excursion

 If we are moving to max dichroic excursion

 Flag as finished when steps >= 31 and phase is 2

 but if we are moving n steps

 Flag as finished when we reach them

 Otherwise, if this is not the first pulse

 Flag as unfinished

 and reset first_pulse flag as false

 If the finished or error flag is set

 Terminate movement

 Otherwise, we have not finished so

 Determine next phase

 Send phase line commands to appropriate device via SET_PHASE

 Examine which mechanism we are moving

 If it's the f/w

 Flag it as moving

 Increment its position couter

 If it's the dichroic

 Adjust position counter according to movement direction

 Remember the last phase set for HK use

 Increment the pulse count;

 Now determine time interval for next pulse
 based on whether we are accelerating/deceleration etc

 If we are accelerating

 Increase pulse rate

 If now at max speed, switch to cruising

 If we are decelerating

 Calculate pulse rate downwards

 If now back to pull-in speed, switch to fixed speed

 if we are cruising

 Leave speed alone

 If the speed is fixed

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

306

 Do nothing

 Clear flag that we are at interrupt level

 function SET_PHASE(DEVICE : in MECHANISM.DEVICE_TYPE;
 PHASE : in UINT16
) return BOOLEAN is

 It should be noted that the same TMSPU MACSbus sub address
 is used to command the stepper motor phases for both the
 filter wheel and dichroic as follows

 MSB

 | F1 | F2 | F3 | F4 | D1 | D2 | D3 | D4 |

 where D1->D4 are the dichroic motor phases.
 F1->F4 are the filter wheel motor phases.

 Determine which device is being commanded.

 If the filter wheel is being commanded

 Insert the requested phase bit pattern into the
 the appropriate part of the command word to be
 to be sent to the mechanisms.

 If it's a non zero phase, remember for recall
 as last active phase for the filter wheel.

 If it's the dichroic that's being commanded

 Insert the requested phase bit pattern into the
 the appropriate part of the command word to be
 to be sent to the mechanisms.

 If it's a non zero phase, remember for recall
 as last active phase for the dichroic.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus).

 Always return OK as the ICB routines inform the ground if there
 was an error.

 function FW_PHASE return UINT16 is

 Return the last non zero phase pattern sent to the filter wheel.

 function DM_PHASE return UINT16 is

 Return the last non zero phase pattern sent to the dichroic.

 function COARSE_POSITION_SENSED return BOOLEAN is

 Get datum containing the value from the appropriate address
 on the MACSbus.

 The format of the datum now received is as follows:

 |C0|C1|C2|C3|C4|C5|C6|C7|XX|XX|XX|XX|XX|XX|XX|CS|

 where C0->C7 is the 'raw' current of the requested secondary circuit.
 XX is "don't care".
 CS is coarse sensor status, 1 = 'seen'.

 Extract sensor status from the CS field within the datum
 and return it.

 function FINE_POSITION_SENSED return BOOLEAN is

 Get Data from the appropriate MUX port on the ICB MACSbus.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

307

 Extract and return the bit corresonding to the Fine Sensor status.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

308

6.4.2.77 tm_man.ads

Extracted from file "tm_man.ads"

 Function
 ========

 This file contains the specification for the telemetry manager package, TM_MAN.

 Reference
 =========

 XMM-OM/MSSL/ML/0010.1

package TM_MAN is

function REQUEST(TM_MAN_PACKET : PACKET.TC_TYPE) return BOOLEAN;

 This function provides the means of passing the telecommand
 to the package for further action.

 where :

 TM_MAN_PACKET contains the tc packet to be interpreted and executed.

function SID_STATUS(SID : PACKET.SID_TYPE) return BOOLEAN;

 This function reports on the TM packet generation status of a
 packet with the corresponding packet type specified by SID.

 where :

 SID is the tm packet sid to be reported

 If the generation of a TM packet with this SID is enabled then
 the function will return TRUE, FALSE otherwise.

function REPORT_STATUS(SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

 This procedure is responsible for generation of TM(9,1) packet in
 response to a TC(9,1) packet.

 where :

 SRC_AND_SEQUENCE_COUNT is the contents of the sequence count field
 of the associated telecommand.

 Returns TRUE if the command was successfully accepted

procedure VETO(TM_MAN_IGNORED: BOOLEAN);

 Ensures , if true, that STATUS always returns TRUE

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

309

6.4.2.78 tm_man.adb

Extracted from file "tm_man.adb"

 Function
 ========

 This file implements the body of the telemetry manager package, TM_MAN, for
 Operational mode.

 Reference
 =========

 XMM-OM/MSSL/ML/0010.1

package body TM_MAN is

 Define some package internal procedures

 function CHANGE_ALL(ENABLE_DISABLE : BOOLEAN;
 SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN;

 This internal procedure changes the generation status of all applicable
 TM packets to that specified by ENABLE_DISABLE. The
 SEQUENCE_COUNT_AND_SRC parameter is needed in case of unsuccessful
 command execution

 function CHANGE_SPECIFIC(ENABLE_DISABLE : BOOLEAN;
 SID : PACKET.SID_RECORD_ARRAY;
 SEQUENCE_COUNT_AND_SRC : UINT16;
 PKT_LENGTH : UINT16) return BOOLEAN;

 This internal procedure changes the generation status of the TM packets
 specified by the SID parameter to that specified by ENABLE_DISABLE.
 SEQUENCE_COUNT_AND_SRC parameter is needed in case of unsuccessful
 command execution

 Create the enabled array which contains true if a particular
 sid is to be enabled (ie a tm packet with that sid can be
 generated)

 Create the valid array which contains true if a particular
 sid is defined

 function REQUEST(TM_MAN_PACKET : PACKET.TC_TYPE) return BOOLEAN is

 Check whether CRC is present in tc packet

 Now determine packet subtype and act accordingly

 If 1 for a Report TM Packet Generation Status

 report the status using REPORT_STATUS

 If 2 for an enable Generation of all TM Packets

 Ignore as not supported by OM!

 If 3 for a Disable Generation of all TM Packets

 Disable all SIDs using CHANGE_ALL.

 4 for an Enable Generation of Specific Packets

 Enable a specific SID using CHANGE_SPECIFIC.

 5 for a Disable Generation of Specific Packets

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

310

 Disable a specific SID using CHANGE_SPECIFIC.

 Any other value, return false

 function SID_STATUS(SID : PACKET.SID_TYPE) return BOOLEAN is

 Return the SID value in the valid sid array
 or'ed with the value in the enabled array

 function REPORT_STATUS(SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN is

 Loop over the valid sid array, getting all SID enabled status
 and put them in an array

 Now create rest of the tm packet

 Put packet into tm queue using TMQ.PUT

 function CHANGE_ALL(ENABLE_DISABLE : BOOLEAN;
 SEQUENCE_COUNT_AND_SRC : UINT16) return BOOLEAN is

 Loop over the enabled sid array

 Record enabled status in array

 Return success.

 function CHANGE_SPECIFIC(ENABLE_DISABLE : BOOLEAN;
 SID : PACKET.SID_RECORD_ARRAY;
 SEQUENCE_COUNT_AND_SRC : UINT16;
 PKT_LENGTH : UINT16) return BOOLEAN is

 Calculate number of sids to change

 If valid number of sids

 Set up error parameters just in case

 Test whether SID to change is a valid one

 If this is a valid SID

 Determine SID type is

 When fast HK

 If enabling this SID

 If slow HK or science is enabled

 then cannot enable fast HK

 When slow hk

 If enabling this SID

 If fast HK is already enabled

 then cannot enable slow HK

 When any science SID

 Determine whether this SID is already enabled

 If enabling this SID

 If fast HK is already enabled

 then cannot enable this science SID

 Else

 If SID already enabled

 Do nothing

 else

 increment enabled science SIDs counter

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

311

 Else if disabling this SID

 If SID already enabled

 Then decrement science SID enabled counter

 Else set up error parameters

 If the SID status can be changed

 Record changed SID status

 Else

 Send unsuccessful acceptance packet using TC_VERIFY.UNSUCCESSFUL_ACCEPTANCE.

 Return FALSE

 Return TRUE.

 procedure VETO(TM_MAN_IGNORED: BOOLEAN) is

 Set the override flag to supplied value.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

312

6.4.2.79 tm_q.ads

Extracted from file "tm_q.ads"

 Function
 ========

 This file contains the specification for package TM_Q.

 That package supplies the low level routines that manipulate the
 telemetry queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010
 The OBDH protocol is defined in XM-IF-DOR-0002

package TM_Q is

 Two pointers are used to indicate the 'occupation' of the queue.

 The Input Pointer indicates the packet slot into which the
 the next packet will be written.

 The Output Pointer indicates the packet slot from which the
 the next packet should be taken.

 Define the input and output pointers at a fixed location in memory.

 procedure RESET;

 This procedure resets (i.e. clears) the TM queue

 procedure ADD(PCKT : in PACKET.TM_TYPE);

 This procedure adds a packet to the TM queue

 where:

 PCKT is the packet to be added to the TM queue.

 function IS_FULL return BOOLEAN;

 This function determines whether the TM queue is full

 where IS_FULL returns TRUE if the queue is full

 procedure REMOVE;

 This procedure remove a packet from the telemetry queue after
 the s/c indicates it has taken a copy with an EOTM Instruction to User.

 NOTE: This routine should be removed as its function is now
 performed by a low-level assembler routine in package RBI_IH.

 function PACKET_COUNT return UINT16;

 Returns the current packet sequence count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

313

6.4.2.80 tm_q.adb

Extracted from file "tm_q.adb"

 Function
 ========

 This file contains the body for package TM_Q.

 That package supplies the low level routines that manipulate the
 telemetry queue directly.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010.

 The OBDH protocol is defined in XM-IF-DOR-0002

package body TM_Q is

 The telemetry queue is a area of memory defined as follows:

 Description Size (Words)
 =========== ============

 * Packet Slot 0 * 259

 * ... and so on until... * 259

 * Packet Slot n-1 * 259

 Two pointers are used to indicate the 'occupation' of the queue.

 The Input Pointer indicates the packet slot into which the
 the next packet will be written.

 The Output Pointer indicates the packet slot from which the
 the next packet should be taken.

 In addition, there is a communication area which the spacecraft examines
 to determine the location of a TM packet to be collected or into which
 a TC packet should be loaded.

 * RBI Status Word *

 * Start Address of TM Source Packet *

 * Length of TM Source Packet *

 * Start Address of TC Source Packet *

 Create instance of Q data structure, and fix at location in memory

 Specify routines internal to this package
 ===

 function IS_EMPTY return BOOLEAN;

 returns TRUE if the telemetry Q is empty.

 Specify bodies for routines internal to this package
 ==

 function IS_EMPTY return BOOLEAN is

 Return TRUE if Input Pointer equals Output Pointer.

 otherwise return FALSE.

 Specify bodies for routines visible externally

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

314

 ==

 procedure RESET is

 Set the start and end pointers to the 1st packet

 Ensure the s/c knows the queue is empty by using RBI.SET_TM_READY

 Reset the packet sequence counter to zero

 procedure ADD(PCKT : in PACKET.TM_TYPE) is

 If the queue is full (use IS_FULL fucntion)

 Raise a TM Q Overflow exception (This should never happen
 as TMQ package should guard against this?)

 Otherwise

 Store packet at next free slot

 Store sequence count in packet

 Prepare sequence count for next packet, performing 'wraparound'
 if necessary.

 If CRC required

 Convert packet to an array of 16 bit word

 Calc CRC location in words from
 packet length in bytes already in supplied packet

 Calculate CRC value using CRC.CALC_TM

 and place it at CRC location

 As we now manipulate items that may be manipulated/examined
 by an interrupt handler as well

 Grab them for exclusive use by blocking task pre-emption
 and interrupts by entering a critical section.

 Check here whether queue is now shown as empty (use IS EMPTY Function).
 If it is then the
 queue was empty prior to packet insertion.
 (Note: this is so because we haven't updated the pointers yet
 and so still reflect pre-insertion status.)

 If so, we need to inform s/c of the new packet address
 (derived from the Output Pointer) which is now available.
 Also tell the spacecraft its length.
 Note that the INPUT_POINTER = OUTPUT_POINTER at this stage.
 Use RBI.SET_COMM_AREA_TM_INFO to do this.

 Finally, ensure TM_READY bit is up using RBI.SET_TM_READY,
 to let spacecraft know that there are packets to take.

 Otherwise

 Do nothing, because there are still packets to be
 removed and therefore the spacecraft has the information
 it needs from a previous pass.

 Finally, calculate next slot index by incrementing the
 input pointer (and 'wrapping around' if necessary).

 Finally, allow manipulation by other code by leaving the critical section

 procedure REMOVE is

 NOTE: This routine should be removed as its function is now
 performed by a low-level assembler routine in package RBI_IH.

 Ensure TM_READY bit is down while we process this

 Calculate new output index following packet removal

 If the queue is now empty

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

315

 Leave TM_READY bit low to inform s/c of the fact

 Otherwise

 set up packet information which enables the
 the spacecraft to fetch the next packet.

 Ensure TM_READY bit is up, to let s/c more packets to come

 function IS_FULL return BOOLEAN is

 Calc Input Pointer of next (after current) packet slot to be written.

 Return TRUE if it is the same as the output pointer.

 function PACKET_COUNT return UINT16 is

 Return the current sequence count.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

316

6.4.2.81 tmpsu.ads

Extracted from file "tmpsu.ads"

 Function
 ========

 This file contains the specification for the TMPSU package. The package
 contains the software to control and monitor the Telescope Module Power
 Supply. It is based on document XMM-OM/IALS/SP/0002 -
 "TMPSU Electrical Specification".

package TMPSU is

 procedure SEND(
 SUBADR : in SUB_ADDRESS_TYPE;
 DATUM : in UINT16;
 OK : out BOOLEAN);

 Sends the data value DATUM to the MACS subaddress SUBADR of the
 TMSPU. OK is set to TRUE if no errors occur.

 procedure ACQUIRE(SUBADR : in SUB_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN);

 Reads the data value DATUM from the MACS subaddress SUBADR of the
 TMSPU. OK is set to TRUE if no errors occur.

 function SET_SECONDARY_VOLTAGES(ON_OFF : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Enables or disables (ON_OFF = TRUE or FALSE respectively) the secondary
 voltages that power the blue electronics.
 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function SECONDARY_VOLTAGES_ENABLED return BOOLEAN;

 Returns the status of the Secondary Voltages (TRUE = ON) for display
 in Housekeeping.

 function SET_COARSE_POSITION_SENSOR_CURRENT(CURRENT : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN;

 Sets the current for the coarse sensor illuminating LED in 'raw' units
 to be used when moving the filter wheel. The value is not used until
 a call to COARSE_SENSOR is made.
 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function COARSE_SENSOR_CURRENT return UINT16;

 Returns the current for the coarse sensor illuminating LED in 'raw' units
 that is used when moving the filter wheel.

 procedure COARSE_SENSOR(ON_OFF : BOOLEAN);

 Turns on/off (ON_OFF = TRUE/FALSE) the illuminating LED used
 by the filter wheel coarse sensor. It uses the current specified in an
 earlier call to SET_COARSE_POSITION_SENSOR_CURRENT.

 function SET_HEATER_CONFIG(CONFIG : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16) return BOOLEAN;

 The bit pattern in CONFIG specifies which heater should be on or off
 (1 = on) as follows:
 L.S.B.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

317

 | Temperature Control | Focussing |

 | Main | Forward | Metering | Secondary |
 | | | Rods | Mirror |
 | (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4) |

 SRC_AND_SEQUENCE_COUNT contains the sequence count field of the
 associated telecommand.

 function HEATER_CONFIG return UINT16;

 Returns a bit pattern specifying the current heater configuration
 as follows:
 L.S.B.

 | Temperature Control | Focussing |

 | Main | Forward | Metering | Secondary |
 | | | Rods | Mirror |
 | (HTR 1) | (HTR 2) | (HTR 3) | (HTR 4) |

 function CURRENT(SECONDARY_VOLTAGE : UINT16) return UINT16;

 Returns the current (in 'raw' units) for the secondary supply circuit
 specified by SECONDARY_VOLTAGE as follows:

 +25 V : 0
 +15 V : 1
 +11 V : 2
 +5.3 V : 3
 -5.3 V : 4
 -15 V : 5
 +28 V : 6
 + 5 V : 7

 The values returned are used in the Housekeeping.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

318

6.4.2.82 tmpsu.adb

Extracted from file "tmpsu.adb"

 Function
 ========

 This file contains the body for the TMPSU package. The package
 contains the software and data structures to control and monitor
 the Telescope Module Power
 Supply. It is based on document XMM-OM/IALS/SP/0002 -
 "TMPSU Electrical Specification".

package body TMPSU is

 procedure SEND(
 SUBADR : in SUB_ADDRESS_TYPE;
 DATUM : in UINT16;
 OK : out BOOLEAN) is

 Send the DATUM to MACS sub-address SUBADR at the MACS address
 corresponding to the TMPSU on the Instrument Control Bus
 using ICB.PUT.

 Set OK to TRUE if no error occurs.

 procedure ACQUIRE(SUBADR : in SUB_ADDRESS_TYPE;
 DATUM : out UINT16;
 OK : out BOOLEAN) is

 Gets the DATUM at MACS sub-address SUBADR at the MACS address
 corresponding to the TMPSU on the Instrument Control Bus
 using ICB.GET.

 Set OK to TRUE if no error occurs.

 function SET_SECONDARY_VOLTAGES(ON_OFF : BOOLEAN;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Remember the last commanded secondary status.

 As the bit defining the status of the secondaries is
 combined with other bits, construct the bit pattern from the
 requested status of the secondaries and the last known values
 of the other bits.

 The layout is as follows:
 MSB

 |CS0|CS1|CS2|SC0|SC1|SC2|SE |

 where CS0->CS2 specify which secondary circuit is being monitored.
 SC0->SC1 specify the coarse sensor illuminating current.
 SE specifies whether the secondaries are enabled.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus) using ICB.PUT.

 Allow electronics to settle.

 If we had a macsbus error

 Restore record of current status to that of the last status noted earlier.

 Always return OK as the ICB routines inform the ground if there
 was an error via an error count in the HK.

 function SECONDARY_VOLTAGES_ENABLED return BOOLEAN is

 Return the stored status of the secondary supplies.

 function SET_COARSE_POSITION_SENSOR_CURRENT(CURRENT : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

319

 If the requested current is greater than the maximum (7) allowed

 Reset it to the maximum allowed and note the value.

 else

 Simply note the value.

 Always return OK.

 function COARSE_SENSOR_CURRENT return UINT16 is

 Return the stored 'raw' current to be used when powering the illuminating
 LED for the filter wheel coarse sensor.

 procedure COARSE_SENSOR(ON_OFF : BOOLEAN) is

 If the LED is to be turned on

 Determine the current value from the earlier value(given by
 SET_COARSE_POSITION_SENSOR_CURRENT or a default value).

 else

 Use a value of zero.

 As the bits defining the 'raw' current to drive the illuminating
 LED of the filter wheel coarse sensor is combined with other bits,
 construct the bit pattern from the determined value of current and
 the last known values of the other bits.

 The layout is as follows:
 MSB

 |CS0|CS1|CS2|SC0|SC1|SC2|SE |

 where CS0->CS2 specify which secondary circuit is being monitored.
 SC0->SC1 specify the coarse sensor illuminating current.
 SE specifies whether the secondaries are enabled.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus) using icb_driver.put.

 function SET_HEATER_CONFIG(CONFIG : UINT16;
 SRC_AND_SEQUENCE_COUNT : UINT16)
 return BOOLEAN is

 Loop over permitted heater configurations.

 If the request heater configuration is one of them

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus) using ICB.PUT.

 Remember the requested heater configuration for
 HK and heater control purposes.

 and exit with a success flag.

 Otherwise exit (in this release, also with a success flag).

 function HEATER_CONFIG return UINT16 is

 Return the last commanded heater configuration.

 function CURRENT(SECONDARY_VOLTAGE : UINT16) return UINT16 is

 If the requested circuit is outside the allowed range of circuits

 Return a zero.

 As the bits defining which secondary circuit is to be monitored are
 combined with other bits, construct the bit pattern from the
 requested secondary circuit and the last known values
 of the other bits.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

320

 The layout is as follows:
 MSB

 |CS0|CS1|CS2|SC0|SC1|SC2|SE |

 where CS0->CS2 specify which secondary circuit is being monitored.
 SC0->SC1 specify the coarse sensor illuminating current.
 SE specifies whether the secondaries are enabled.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus) using ICB.PUT.

 Wait for electronics to settle.

 Write the bit pattern to the appropriate address & subaddress
 on the ICB (Macsbus) to initiate an analogue to digital conversion
 using ICB.PUT.

 Wait a bit for the electonics to settle.

 Get datum containing the value from the appropriate address
 on the MACSbus using ICB.GET.

 The format of the datum now received is as follows:

 |C0|C1|C2|C3|C4|C5|C6|C7|XX|XX|XX|XX|XX|XX|XX|CS|

 where C0->C7 is the 'raw' current of the requested secondary circuit.
 XX is "don't care".
 CS is coarse sensor status, 1 = 'seen'

 Extract current value from the C0->C7 field within the datum
 and return it.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

321

6.4.2.83 tmq.ads

Extracted from file "tmq.ads"

 Function
 ========

 This file contains the specification for the TMQ package.
 The function of that package is to provide routines to control
 access to the telemetry queue

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

 The protocol it implements is defined in the OBDH Bus Protocol Requirement
 Specification XM-IF-DOR-0002

package TMQ is

 procedure RESET;

 The procedure RESET resets (i.e. clears) the telecommand queue

 procedure REMOVE;

 The procedure REMOVE is called upon receipt of an EOTM Instruction to
 User from the spacecraft. This indicates that a TM packet has been
 taken

 NOTE: This routine should be removed as its function is now
 performed by a low-level assembler routine in package RBI_IH.

 procedure PUT(PCK : in PACKET.TM_TYPE);

 The procedure PUT places a packet in the telemetry queue

 where:

 PCK is the packet to be inserted into the queue.

 function PACKET_COUNT return UINT16
 renames TM_Q.PACKET_COUNT;

 Rename (for convenience) the PACKET_COUNT function of package TM_Q.

 procedure SAFING(SAFING_VALUE : in BOOLEAN);

 Enables/disables (SAFING_VALUE = TRUE/FALSE) the automatic safing
 that takes place if TM queue becomes full.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

322

6.4.2.84 tmq.adb

Extracted from file "tmq.adb"

 Function
 ========

 This file contains the body for the TMQ package.
 The function of that package is to provide routines to control
 access to the telemetry queue. It, in turn, call lower level routine in
 package TM_Q.

 Reference
 =========

 The format of these packets is defined in the XMM-OM Telecommand and
 Telemetry Specification document XMM-OM/MSSL/ML/0010

 The protocol it implements is defined in the OBDH Bus Protocol Requirement
 Specification XM-IF-DOR-0002

package body TMQ is

 Create Semaphore TM_QUEUE using package MUTEX.

 The specifications for this package's internal routine follow:

 procedure SEND_TO_TM_Q (PCK : in PACKET.TM_TYPE);

 where:

 PCK is the packet to be inserted into the queue.

 procedure SEND_TO_TM_Q (PCK : in PACKET.TM_TYPE) is

 Commence infinite loop

 If the telemetry queue is full (use TM_Q.FULL)

 Wait a bit

 Increment a timout counter

 If we have now spent the timout period waiting for the TM queue
 to be become non-full

 If autonomous safing enabled

 If we are not already safing the instrument

 and we are not already (full or intermediate) safed.

 Initiate the intermediate safing of the instrument
 using MODEMAN.TO_MODE.

 but if we have already started the safing process

 Determine whether the safing process has finished.

 Reset the timout counter.

 Otherwise

 Reset the timout counter.

 Place packet in queue (via TM_Q.ADD).

 Exit from loop

 end infinite loop

 procedure PUT(PCK : in PACKET.TM_TYPE) is

 Ensure we have exclusive use of the telemetry queue
 by use of the TM_QUEUE.SEIZE semaphore.

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

323

 Send the packet to the telemetry queue (via SEND_TO_TM_Q)

 Release the telemetry queue for use by other routines using TM_QUEUE.RELEASE.

 procedure RESET is

 Call the reset routine in TM_Q for the telemetry queue

 procedure REMOVE is

 Call the 'remove packet' routine for the telemetry queue.

 NOTE: This routine should be removed as its function is now
 performed by a low-level assembler routine.

 procedure SAFING(SAFING_VALUE : in BOOLEAN) is

 Save requested autonomous safing status

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

324

6.4.2.85 types.ads

Extracted from file "types.ads"

 Function
 ========

 The function of this package specification is to define the basic data
 types used throughout the ICU ADA code.

 Definitions
 ===========

 Define Unsigned Byte type UBYTE

 Define Signed Byte type BYTE

 Define Unsigned 16 bit integer type UINT16

 Define Signed 16 bit integer type INT16

 Define Signed 32 bit type INT32

 Define Unsigned Byte Unconstrained Array type UBYTE_ARRAY

 Define Signed Byte Unconstrained Array type BYTE_ARRAY

 Define Unsigned 16 bit Integer Unconstrained Array type UINT16_ARRAY

 Define Signed 16 Bit Integer Unconstrained Array type INT16_ARRAY

 Define Unsigned Nibble type

 Define Unsigned Nibble Array Type

 Define single bit Integer Unconstrained Array type BIT_ARRAY

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

325

6.4.2.86 USERDEFS.asm

File is USERDEFS.asm

 IF 0 ;~TI configuration constants now defined in linker control file
 DEFINE
 PREEMPTER_MASK
 DEFINE
 CONNECT_MASK
 DEFINE ART_MASK
 DEFINE
 ARTTASK_MASK
 DEFINE
 ARTELAB_MASK
 DEFINE
 STACKTOP
 DEFINE
 MAINSTKTOP
 DEFINE
 MAINSTKSIZE
;
;
 Interrupt Masks
;
; Ada allows the connection of interrupts to task entries by use
; of "FOR task.entry USE intnumber". The mask below indicates which
; 1750 hardware interrupts the user can DIRECTLY connect to with such
; a statement. Note that ALL such interrupts, and any indirectly connected
; interrupts must also appear in PREEMPTER_MASK below.
CONNECT_MASK EQU
 001BF
;
; The interrupt mask used during the execution of normal (post-elaboration)
; code, for both the main program and tasks, is defined below.
; Floating underflow must be disabled, Floating overflow, Fixed overflow
; and Timer B must be enabled (to validate).
ARTTASK_MASK EQU
 0FDFF
;
; The mask used during the elaboration of the program, before the main
; program is started. This is by default identical to the above.
ARTELAB_MASK EQU
 0FDFF
;
; The masked used when runtime code is executing. This must have in addition
; Fixed overflow disabled.
ART_MASK EQU 0F5FF

; Next definition is a mask that also masks off any interrupts that might
; cause a task to be rescheduled
PREEMPTER_MASK EQU
 0FDFF-CONNECT_MASK-040
 ; Timer B too

;
;
 Stack Allocation
;
; Root initializes 2 stacks on startup. Data space is laid out as follows:
;
; STACKTOP
 => +---------------+
;
 |
 |
;
 | Interrupt
 |
;
 | Stack
 |
;
 |
 |
; MAINSTKTOP
 => +---------------+
;
 |
 |

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

326

;
 | Main
 |
;
 | Stack
 |
;
 |
 |
; MAINSTKTOP-MAINSTKSIZE =>
 +---------------+
;
 |
 |
;
 .
 .
;
 . Free
 .
;
 .
 .
;
 |
 |
; END_OF_DATA
 => +---------------+
;
 |
 |
;
 | Static
 |
;
 | Data
 |
;
 |
 & |
;
 | Code
 |
;
 |
 |
; Low Mem (200 HEX)
 => +---------------+
;
;
STACKTOP EQU 0FFFF
MAINSTKTOP EQU
 0FD00
 ; Main stack top
MAINSTKSIZE EQU
 01400
 ; Main stack size
 ENDIF ; ~TI

;
; Time base constants.
;
; For the most part these constants are fixed by the tick rate of timer B
; (10KHZ in MIL-STD-1750). Users who wish to adjust the shortest delay
; should be aware that values less than 2 are dangerous since the start
; of the delay is not necessarily synchronized with the clock tick.
;
; BEWARE! These constants MUST appear in the order shown!!!
;
TIMES CSECT,C
 ;~TI

 DEFINE
 ART#DURSML
ART#DURSML EQU
 $
; conversion from TICKS to DURATION'SMALL (= 1.6384) as 3 word float
; this is the original
; DATA 068DB,08B01,0AC71
; this is half the delay of the original
; DATA 068DB,08B02,0AC71
; this is double the original
; DATA 068DB,08B00,0AC71

ICU FM Software Detailed Design XMM OM/MSSL/SP/0205.3

327

; this is what we had
; DATA 053a7,01102,05161
; this is what we want
 DATA 053e2,0d602,0238e
; shortest non-zero delay time allowed (in ticks)
 DATA 0,20
; ticks in one day
 DEFINE
 ARTONEDAY
ARTONEDAY EQU $

; this is the original
; DATA 0337F,09800

; this is what we want
 DATA 0202f,0bf00
; ticks in two days
; this is the original
; DATA 066FF,03000
; this is what we want
 DATA 0405f,07e00
 END

