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I. Overview

This document summarizes the current status of the algorithm design for
the tracking and compression to be performed by the Digital Processing Unit of
the Optical Monitor (OM) onboard the X-ray Multimirror Mission (XMM). This
is intended to be a comprehensive summary which, standing on its own, covers
the up-to-date development and thinking on various subjects. It should be keep in
mind, however, that previous documentations and e-mails could contain discussions
on various considerations at greater depth. It is assumed that the reader has at
least a basic understanding how the Optical Monitor works, the role of the Digital
Processing Unit and the operations and objectives of various observing modes.
Baseline discussions are described in the January 89 proposal.

Following this overview, there are seven sections with supporting figures
and tables. Section II discusses the analysis of stellar images and how we extract
useful informations from the images. These informations are used as diagnostics for
choosing good guide stars. Section III deals with the tracking algorithm based on a
given number of guide stars. The calculated drifts are then fed to the compensation
processing which corrects the drift and produces recovered images; the shifting-and-
adding procedure is the subject of Section IV. Section V considers the compression
of the image data via the Variable-Block-Tiered-Word-Length compression scheme.
Section VI summarizes the general performance issues of the algorithm, such as the
memory requirement and CPU cycle accounting. Section VII discusses the processing
for the threshold mode and fast mode on the blue instrument. Section VIII gives a
summary of “new” vocabularies used in this project.

Currently, the algorithm is developed and tested based on simulated data; we
have not subject the algorithm to real data yet. The code was originally implemented
in FORTRAN. However, the most current version is entirely coded in C. In the
following, we describe the step-by-step operations in the simulation procedure. The
steps marked with a (DPU) are those whose functions are expected to be performed
in real-time by the DPU, i.e. these are the main products of this project. The others
are for simulation only; in the real application, they will either be supplied by the
detector or involves interface with external hardware components. When appropriate,
I will indicate in which section detailed technical discussions can be found.

The following is an outline of the completed algorithm design and testing
procedure in two major areas: 1) tracking and image accumulation and 2)
compression of image data.

La. Data Generation and Tracking

(1) Generate a random field of stars, i.e. a catalog of stars is created using the
star density distribution in Allen (p. 244). No spectral information is included.

(2) Generate a simulated image of 1024 by 1024 pixels with a given point
spread function. The normalization of the image is such that a 15th mag star will
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generate 600 counts per second in white light. The blue filter is implemented by
multiplying the count rate by a factor of 0.133. This is the simulated reference frame.

(3) (DPU) Scan through the reference frame and pick out the bright stars
above a certain threshold. Current implementation will pick out those star images
which contain at least one pixel with more than n;x;4 counts where nqpi4 is a fixed
value for the whole frame. This would typically pick out stars brighter than about
18th magnitude. The star image is “built” based on a summation around a local
maximum. This yields a pair of numbers which is the star’s coordinate, the counts
of the star and the “size” of the image and other useful information which will help
us select good guide stars. In the current implementation, only integer arithmetics is
used. <K Section II’>

(4) (DPU) Scan through all the bright stars and pick out good guide stars.
&K Section II>

(5) Begin subsequent frame simulation by first simulating the drift. The z
and y translation from frame to frame is simulated by a random walk in random
direction with a fixed step size: 0.3 arcsec=0.6 pixels. The roll from frame to frame
is simulated as a linear (clockwise) rotation at 3.6 arcsec/frame; we simulate a linear
roll to maximize the possible deterioration of the final image due to the roll. Within
each frame, the roll angle is held fixed and the z and y translations are assumed

to be linear. The pattern of drift and roll can be easily modified to simulate other
situations.

(6) Modify the entire star catalog according to the drift. Use the new star
catalog to simulate a frame. This is the working frame.

(7) (DPU) Analyze individual guide stars in the working frame. The algorithm
is an abridged version of that for the construction of bright stars discussed in Step 3.
The z and y location and the total count of the guide stars are obtained.

(8) (DPU) Calculate the drift and roll based on the locations of the guide stars
in the current frame and those in-the reference frame. The calculated drifts and roll
will be downlinked in real time. <« Section III’>

(9) (DPU) Apply the calculated z and y drifts and performs a shift-and-add of
the working frame to the 512 by 512 final image. < Section IV>»

(10) Go to Step 5 and repeat 100 times.

(11) Write the 512 by 512 by 4-byte array into a binary file which is then
processed and visualized using either IRAF or MONGO.

Lb. Data Compression

For the image data produced above, we have developed a reversible data
compression scheme (the Variable-Block-Tired-Word-Length scheme). The
compression algorithm is implemented and test in the following sequence.
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(1) Read in the binary image file generated by Step 11 in the previous
simulation.

(2) (DPU) Construct a raw data stream based on a 16 by 16 block in the
image. The blocks in the entire image field are sequenced in a spiral fashion starting
from the center of the image. < Section V>

(3) (DPU) Compress the raw data stream using the Variable-Block-Tiered-
Word-Length scheme. < Section V>

(4) Write out the compressed data stream into a binary file.

To test the validity of the compression scheme, a decompress procedure is
also developed to reverse the above process. The eventual mature descendant of the

decompression routines is expected to be the front-end of the data reduction package
on the ground.
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II. Analyzing the Stellar Images

II.a. General Requirement

In order to perform the tracking, we need to know the locations of certain
guide stars to some reasonable accuracy. A precision of a pixel (0.5 arcsec) is not
sufficient. With a reasonable amount of on-board processing, we can easily do better
than that. Furthermore, we need to be able to make judgement on the quality of the
guide stars and select only the good ones. For example, single stars are good and
binary images are bad. Images with overly extended wings or saturated pixels are
bad. Stars too close to the boundary of the FOV are bad. To help make selection
of good guide stars, we need further information which must be supplied by the on-
board stellar analysis algorithm. Finally, we need to calculate the guide star locations
for each frame and provide them to the frame-by-frame tracking algorithm.

IL.b. Locating the Stars

We know where the stellar images are; they are made up of a number of pixels
with counts above the background. The stellar image is spread out over a number of
pixels due to the optics and the detector response. Given the blobs of bright pixels,
we want to find out where the stars are. With a good knowledge of the point spread
function and an infinite amount of processing power, the stellar location can be
determined to very good accuracy. However, we do not have unlimited processing
power on-board; we can only afford a simple and straightforward algorithm which
does not involve fancy functions and square roots, etc.

The immediately intuitive approach is to take simple moments. The stellar

locations are given by the centroids of the images which are obtained by calculating
the first moments:

M, =) ix N, (II.1a)
ij
My =>"jx Nij, (I1.1b)
i
where ¢ and j run along the z and y axis of the image field and N;; is the number of
photons in the (z,7) pixel. The location of the star is simply

z=M,/C (I1.2q)
y=M,/C (I1.2b)
where
C = Z N;; (I1.3)
ij

is the total number of the photons in the region over which the summation is taken
in equation (1). The questions are: What determines the region of the summation?
What is the manner of summation?
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Size of the field of summation The size of the field of summation cannot be
too small. If it is smaller than, say, the FWHM of the PSF, then we are not sampling
the images sufficiently. If the wings of the PSF, which carry great weight in helping
us determine the stellar location, are not included, we will have great error in the
calculated stellar location. On the other hand, the size of the field of summation
cannot be too large. A large field of summation will encompass too many pixels
whose photon counts are dominated by some finite background. Randomly fluctuating
background will simply wash out any image feature we wish to study. Furthermore, a
large field of summation could also include other stellar images which are practically
independent of the one we wish to analyze. We are then not measuring the location
of the star rather the center-of-mass of different stars. The optimal size of the field
of summation is probably several times of the FWHM and the expected contribution
from the wing of the PSF and the background are comparable to each other. Before
we discuss in more details the size of the field of summation, let’s consider the manner
of summation over a given ixed region.

Manner of summation Suppose we have already determined the size of

the field of summation for a single stellar image to be, say, 12 pixels. No doubt the
summation region will be centered around the brightest pixel, the one with the largest
number of counts. So, we can do a 12 by 12 summation in a double DO-loop (in a
FORTRAN:istic way of saying things). At least two pitfalls occur in this approach.
First, it is quite likely that the PSF will have some degree of axial symmetry. It is
better that we sample the field in a similar fashion. A field of summation of 12 by

12 means that we are putting extra weight on the four corners which could mean an
additional source of error. Second, restricting ourselves to a fixed region means that
we cannot treat complex images. Even though we don’t want to use complex images
as guide stars, we still want to have a reasonable idea of the behavior of those images.

These two consideration implies that we want the size of the field of summation
to be floating, which needs an algorithm which is adaptive, which means that we need
to use IF statement (COMPARE-and-BRANCH) in the algorithm. To use these
IF statements, we need to design criterions at which the summation terminates.

The obvious starting point is the brightest pixel. Then we can integrate outward.

To mimic the axial symmetry, we want to do the summation outward in the radial
direction. Unfortunately, there is no detectors like that. The closest thing to a
summation in the radial direction is probably a summation scheme following the four

quadrants (Figure II.1). We describe the implementation of the summation scheme
below.

In Figure II.1, the summation is done along the direction of the arrows
and in the order marked with each arrow, starting from the brightest pixel in the
neighborhood which is found before the actual summation begins. Figure II.1 shows
the summation sequence from the first to the fourth quadrants. The particular
order of the summation from quadrant to quadrant is not important. But following
consecutive quadrants does save a little bit in overhead. The flowchart of the
summation scheme is shown in Figure II1.2. The range of integration is controlled by
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the two numbers k and B. The first number k controls the termination level based on
the already accumulated information on the stellar image. The number we use at this
point 1s

k = 500. (I1.4)

This is approximately equivalent to a termination at the 3o level for a Gaussian PSF.
The second number B controls the termination level at which the contribution from
the stellar image is of the same order as the background. In principle, we can try

to do a local evaluation of the background level. However, this probably requires a
great deal of additional processing and the potential benefit is not all that obvious.
Keeping B constant throughout the frame should be sufficient. We have set

B=3b (IL.5)

where b is the background counts per pixel in each frame. In the current
implementation, the fixed background level is determined by taking the average of
the pixels in a sample of three columns in the reference frame which are one-quarter,
one-half and three-quarters of a frame from the frame boundaries (columns 265,

512 and 768 in the current definition of a frame). We note’'that B should always be
nonzero, even in the case of narrow-band filter and very low background level. With
the termination criterion, the summation routine keeps track of the bounds of the

summation z;, z2, y; and y2. These numbers will be used in the diagnostics discussed
below.

The output number from the stellar-image routine is the total count C, the
first moments M, and M, in the z and y directions, the bounds of the stellar image
integration z;, =9, y; and y2. In addition, we calculate the second moments of the
image (not shown explicitly in the flowchart in Figure I1.2), i.e.

M., = i® x Nij — z*C, (II.6a)
ij

My, =) j% x Nij — y2C, (I1.6b)
ij

Myy =) ixjxNij—zyC. (I1.6c)

ij
The numbers z,, z2,y1,y2, Mzz, Myy, and M., will be used to diagnose the goodness

of the stellar image. Before we discuss the diagnosing of the goodness of the stars,
let’s consider the precision of the centroiding routine.

IL.c. Precision of the Stellar Locations

We now consider the precision from the centroiding routine. For simplicity, we
shall consider a simple one-dimensional problem. Generalization to a two-dimensional
image is straightforward. Suppose the 1-D PSF follows a accumulative probability
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distribution function F' characterized by a standard deviation of o pixels in the
digitized scheme. For definiteness, we shall adopt a Gaussian PSF unless otherwise
noted. For a star located at zq, the centroiding algorithm yields a calculated position
whose average is

=Y ix [F (@) —F(@)] (IL7)

i

The error of the calculated position is obtained by summing up the variance within
each pixel

53 = 1/ Z U(z — 3)? [F (————i tod 0'5) _F (—i b 0'5)] ' G- 5)2b/c|} ,

(I1.8)
where C is the total number of counts in the stellar image and b is the background
per pixel.

Several factors determine the accuracy of the centroiding procedure. The first
factor is the sampling which is equivalent to 1/0. If the image is under-sampled (large
o), then we will suffered systematic error when the center of the star is not located
near the the point of any symmetry, i.e., far from the edge or the center of a pixel.
This occurs when ¢ < 1. For example, for the case of ¢ = 0.5, Z deviates from z4 by
Z — zo = 0.0023 pixels even under the most ideal situation of b = 0 and summation
all the way out to 100. This systematic error in principle can be calibrated out once
we have a very good knowledge of the PSF. However, this is practically impossible for
on-board processing. In general, as long as ¢ > 1, this systematic error is less than
0.001 pixel which is quite tolerable. The second factor is the size of the background b.
The third factor is the range of summation, which in practice cannot be infinite. All
these factors affect the systematic and random errors, Dz = T — z¢ and 6Z.

Without going into great details of the theoretical prediction of sampling and
centroiding, we use the result for a well-sampled, zero-background and well-summed
results of an image as a benchmark to judge the performance of the algorithm which
we have implemented. Under the ideal situation of ¢ > 1, b = 0 and summation from
—o0 to 400,

T = To (IIQ)

and the random error is characterized by a standard deviation of
bz = o/C*/2, (I1.10)

Figure I1.3 plots the deviation of the calculated star locations to the true stellar
location as a function of the brightness of the stars. Figure I1.4 plots the histogram
of the normalized errors Az = DzC'/2 /o for the single stars. The stars plotted in
figures I1.3 and II.4 are selected from the good guide stars criterions discussed in the
next section; i.e. we can be reasonably sure that we are studying images of single
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stars. Also plotted in Figure II.4 is the expected distribution of a Gaussian noise
with a standard deviation of unity. Keeping in mind the fact that the image field
is simulated with a finite level of background and that the implemented algorithm
carries the summation effectively out to the 3o level, we conclude from Figure II.3
that the performance of the algorithm is satisfactory.

II.d. Integer Arithmetics with Ezpanded Precision

The discussions above show that the implemented algorithm does not generate
outrageous error and we are relative close to an optimal algorithm. However, one
additional issue in fact dictates the accuracy of the star locations in most cases. It
has been emphasized by the hardware fabricators that floating-point arithmetics
should be avoided whenever possible, even when it may mean a loss of accuracy in
some calculations. The stellar location routine was specifically mentioned as a place
where alternative to the floating-point arithmetics should be implemented. Current
implementation calls for an all-integer arithmetics with an expanded precision by
a factor of 8. When we calculate the moments, all numbers related to the position
information are multiply by this expansion factor. (In the real implementation, they
are actually left-shifted by three bits.) The calculated = and y locations include
this expansion factor which is carried over into the tracking calculation discussed in
Section III. The expansion factor is removed (by right-shifting) from the calculated
drifts to give results in the right units before the drifts are applied to the shift-
and-add routines. The drifts with the expanded precision will be supplied to the
Instrument Control Unit to control the tertiary mirror. In this scheme, the location
of any star is know to an accuracy of £0.5/8 = +0.0625 pixels.

In contrast, the guide stars in a simulated 10-s frame in white-light typically
contain more than 2000 photons; the precision by the centroiding process alone is
about ¢/(2000)}/2 ~ 0.0220. If we take 41 microns (convolving 36 microns of
detector response with 20 microns from the optical system) to be the FWHM of
the stellar image and 18 microns to be the size of a pixel and assuming the PSF is
Gaussian, the standard deviation of the PSF is about ¢ ~ 1 pixel. We see that the
uncertainty caused by the usage of integer arithmetics actually outweighs that arises
from photon statistics. Furthermore, the errorbar for different guide stars are now
uniform, irrespective of the brightness of individual guide stars, as long as the guide
star has more than about 300 counts (brighter than 18th magnitude). This uniformity

of uncertainty helps us estimate the accuracy of the calculated drift. See the following
section for more details.

In principle, we can further increase the expansion factor in the precision of
the integers. However, in the implementation, it is found that going to an expansion
factor of 16 or greater dramatically increases the complexity of the algorithm,
especially in the calculation of the second moments which could cause overflow in a
4-byte integer representation. It does not appear that improvement in the accuracy
warrants the additional effort and increased complexity in the algorithm.

II.e. Diagnostics for Good Guide Stars
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The most important quantities from the stellar analysis routine are the
locations of the stars. In addition, we get useful information which can help us make
a judgement on the “qualities” of the bright stars for the purpose of tracking. What
we want are single bright stars with well-defined image and little or no possibility
of contamination and confusion. Even if the brightness of the star varies, we still
can get an accurate position for the stars. From the star construction routine, we
obtain the following numbers: (z,y) gives the centroid of the image; C gives the
total count of photons in the image; (z1, z2) and (y1, y2) give the bounds of the
summation of the stellar image; M;., My, and M, are the second moments of the
image in the zz, yy and zy orientation. The following criterions have been developed
to diagnose bad qualities of a stellar image. For an image satisfying each criterion,

a value of “goodness” (it should probably be termed as badness) is assigned. Based
on the the goodness of each bright star, the algorithm then choose the suitable stars
for tracking. The goodness information will also be transmitted to the ground in
real time. Decision can be made on the ground to override the default guide stars
selection. In the following, we discuss the various goodness criterions.

a) To avoid a slanted image, we compare the location of the star and the
algebraic center of the image. For example, if |z — (z2 + z1 + 1)/2| is large, then the
image probably contains some asymmetry. We want to avoid this. Any star satisfying
this criterion will be assigned a goodness of 1.

b) To pick out an elliptical image, we check the “eccentricity” of the image.
Eccentricity is defined as the ratio of the sum of the image sizes in the z and y
direction to the difference. If the eccentricity is greater than a given threshold, the
star image gets a goodness of 2.

¢) To guard against an extended image, any stellar image that is greater than
a threshold in each direction will be given a goodness of 4. This threshold can be
roughly guessed based on our knowledge of the instrument and how the stellar images
are built. For example, currently we are simulating the PSF as a Gaussian with a
FWHM of about 2 pixel and the standard deviation is about 1 pixel. When summing
the stellar image, we are typically terminating the summation at a level at or below
3o. Thus the stellar size criterion should be somewhat greater than 6 pixels. Current
implementation uses 10 pixels.

d) To further guard against an extended image, we test the size of M,, and
M,,. Stars with M, or M, above a threshold will be assigned a goodness of 8.

e) To further guard against an oblate image, we test the second eccentricity
defined by the ratio of M, + My, and |M;; — My,|. Stars with large second
eccentricity will have a goodness of 16.

f) To guard against an image extended in the diagonal direction, we check the
value of |M;,|. Stars with |M;,| above a threshold will be assigned a goodness of 32.
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g) To guard against the possibility that the guide star might drift out of view
in the 1000-s integration, any star which lies within a certain distance from the border
will be given a goodness value of 64.

k) To avoid the case of clustering of guide stars in a small region, we check
the relative locations between good guide stars. Each selected good guide star will
be assigned a zone of exclusion. Any subsequent candidate guide stars falling in
the previously established exclusion zones will be given a goodness of 128. Current
implementation of the exclusion zone is 40 pixels in either the z or y direction.

i) To ensure high accuracy, we avoid using bright stars which may contain
saturated pixels. Stars with a C greater than a threshold will be given a goodness
value of 256.

The score of goodness is binary coded. The locations, total counts and the
goodness scores of 15 good guide stars and 10 bad (goodness not equal to zero) guide
stars will be downlinked. Operationally, a bad star is defined as one which has a
non-zero value of a “binary AND” between its goodness score with 511. If we want
to override the default selection, the downlinked goodness score can be used on the
ground to help make selections of the guide stars. The diagnostic criterions and the
current value of the diagnostic threshold are summarized in Table II.1.

The tests developed here are designed to give great versatility. Each of the
disgnostics is controlled by a threshold; the criterions can be individually turned off
by setting the diagnostic threshold to some extreme value. Alternatively, we can turn
off a criterion by setting the particular bit which represents the result of the binary
coding. For example, if we defined a bad guide star as one which has a non-zero
value of binary AND between its goodness score and 510, then the first criterion is
effectively turned off.

ILf. Guide Star Scanning Scheme

We summarize below in operational steps how the guide stars in the reference
frame are obtained.

1. We scan through every pixels in the frame. A pixel with a count higher than
nsnid will trigger the bright star image construction.

2. The bright star image construction follows the procedure described in IIL.b.

After the whole frame is processed, we get a bright star catalog which contains n,
entries of information.

3. We sort the ny, bright stars by their brightness C.

4. We apply the disgnostics to the brightest stars. This application we stop
after we obtain say 15 good guide stars or exhaust all bright stars.

5. The 15 good guide stars plus 10 brightest bad guide stars will be
downlinked. In real-time operation, the ground operator will be given a fixed amount
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of time, say five seconds, to override the default of using the 10 brightest good guide
stars.

6. Once the reference frame information is established, the DPU signals the
ICU for the initiation of observation.

Il.g. Locating the Guide Stars for Tracking

Based the information obtained from the analysis of the reference frame, 10 (or
some number of)) guide stars are selected, either by the on-board software as a default
or by ground control override. These 10 guide stars will be used throughout the 100-
frame accumulation. Only under very dramatic situations will we change the number
of guide stars. These situations include the disappearance of a guide star, a big jump
in the brightness (we may even want to keep these) or the guide star drifting out of
view (if this happens, we may need to modify disgnostic g). In these catastrophes,
we will simply reduce the number of guide stars and reset the tracking numbers
(see egs. [II1.9]); no new guide stars will be added. Under normal circumstances, we
only need to calculate the locations of the guide stars in each frame and monitor the
count in the guide stars. Information on the image quality will not be needed nor
calculated. In the current implementation, an abridged version of the stellar image
analysis routines is used which yields only (z,y) and C.

Figure Captions for Section II

Figure II.1 — Summation scheme of image analysis procedure. After the brightest
pixel is located, the summation is carried out in the specified sequence. See Figure
I1.2 for the flowchart. Note that arrays are stored in a column-major fashion (y
coordinate runs outside) in FORTRAN and in a row-major fashion (z coordinate
runs outside) in C. The algorithm will be most efficient if it follows the array storage

scheme. In Figure II.1, the summation is optimized for FORTRAN. A transposition
of the summation sequence is required for C.

Figure II.2 —  Flowchart of the stellar image analysis procedure. The numbers &
and B are determined prior to the analysis and set as a constant for the entire frame.

Figure II.3 — Deviation of the calculated location of “good” guide stars from their
real location as a function of their magnitude. The solid squares give the z deviation
and the open triangles give the y deviation. The star field is simulated to be one in
the galactic plane direction in white light and each star is assumed to make an image
given by a radial Gaussian distribution with FWHM=1.17 arcsec.

Figure II.4 — The distribution of normalized deviation of the stellar image
centroid, i.e. Az = Dz/C/?g. The thick solid line gives the distribution deviation
in z location and the thick dashed line gives the deviations in the y location. For
comparison, a normalized Gaussian is plotted as the hashed histogram. Factors
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contributing to the widening of the distribution from a perfect gaussian include the
finite background, the limited range of image summation, the drifting of the image
within a frame. Note that in making this plot, we use floating point arithmetics for
the location of each star. Effect of the integer arithmetics does not enter for these
results.
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Table I1.1
IMAGE DIAGNOSTIC

Input numbers: C, z, y, z1, 22, yl, y2, Mzz, Myy, M.y.

Diagnostic Goodness

Off-Center Test, z. = (z2 + 21+ 1)/2,y. = (y2 + y1 + 1)/2
|ze —z| + |ye —y| > da 1

Oblateness Test, D; = 22 — z1,D, = y2 — yl
D; 4+ Dy <d; x |D; — Dy 2

Size Test
D; >ds or Dy > ds 4

Second Moment Test 1

Second Moment Test 2
Mzz + Myy < ds X lsz - yyl 16

Second Moment Test 3

Border Test
|z —512| > 512 —d7 or |y — 512| > 512 — d7 64

Saturation Test
C > Caat 128

Adjustable diagnostic parameters:
d1(6[E)), d2(8), d3(10[P]), d4(83[E]), ds(7), ds(8[E]), d7(450%[P]), C,a:(20000).
[P]: in units of pixels.

[E]: in units of integer representation of expanded precision ([E] = [P]/8).
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III. Tracking

IIl.a. Basic Formalism

Suppose we have located and chosen N good guide stars within the field of
view in the reference frame at (u;,v;) where ¢ runs from 1 to N. At a later moment,
we take an integration of a frame and determine the new locations of the guide stars
at (zi,y:i). Our task is to determine the change in the aspect of the current frame
with respect to the reference frame, i.e. to calculate the drift in the z and y direction
as well as the roll with respect to a particular roll center taken to be the origin. The
selection of the roll center is arbiirary. However, see discussions below on a natural
default choice of the roll center where the errors of the calculated drifts are formally
minimized.

Applying a drift and roll (Az, Ay, ©) to the guide stars, their new locations are
given by

Z; = u;C —v;S 4+ Az (I1I.1a)
Ui = u;iS + v;C + Ay, (IT1.1b)
where C = cos© and S = sin®. (Without causing any confusion, we use C here

for the cosine of the roll angle, while in the rest of this document, C refers to the
total count in a stellar image. In IIL.b., we shall see that the cosine equals to unity
for all practical purposes.) With the observed (z;,y;), the drifts are calculated by
minimizing

D* =) [(zi — £:)% + (v — 9:)?] - (II1.2)

t

Differentiating D? with respect to Az, Ay and O yields

Az =(X —UC+VS)/N (II1.3a)
Ay=(Y —=VC-US)/N (II1.3b)
SP+CQ=0, (III.3¢)

where

U= u, (III.4a)

V=> m, (II1.4b)
X=) (II1.4c)

i

Y=y, (I11.4c)

H
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P = Z(xiui + yfv;)1 — (XU +YV)/N =(2N)! z [(ziiuij + yijvij], (II11.4d)

ij

Q= | (zvi —yiws)| — (XV =YU)/N = 2N)"" Y [(zijvij — yijuij], (IIL4e)
L ¢ B ij

and

Tij =Ti —ZTj, Yij =Yi—Yj, Uij =Ui— U5, Vij =V —Vj.

For our application, the roll angle is always small and P is always greater than zero,
thus the roll angle is given by

O = sin~! [—Q/(P2 + Q2)1/2] . (II1.5)

The tracking formalism can be generalized to incorporate the statistical weight
of different guide stars by modifying equation (2) to

D? = E [(zi — £:)* + (vi — 5:)%] /o?. (I11.6)

where o; = (C;)!/? is the standard deviation in the location and C; the total count
of the guide star :. However, this generalization introduces great complexities into
the algorithm. Usage of equation (2) in place of (6) is justified for two reasons and
demanded by a third reason. First, the algorithm will always use the brightest N
good stars within the field of view for tracking. Thus, they would probably have
similar brightness and statistical significance. In the simulation of an average star
distribution in white-light, the brightest guide star is typically 5 times brighter
than the least bright guide star, i.e. there is a factor of 5 difference in the statistical
. significance among guide stars. Keeping in mind that the precision of the tracking is
only as good as the worst guide star, we will always obtain conservative estimate of
the precision of the drift tracking. Second, the star locations will have an additional
source of uncertainty. To calculate the guide star locations efficiently, we use integer
arithmetics with the precision enhanced by a factor of 8, in place of floating-point
arithmetics. (See II.d. for more detailed discussions.) This means that the calculated
(zi,y:i) will have a minimum errorbar of + 0.0625 pixel= +0.0325 arcsec. This
errorbar is generally greater than that from the photon statistics alone. As a result,
the guide star locations will have a roughly uniform errorbar of +0.0325 arcsec.
Hence, the usage of equation (IIL.2) is justified. Third, from a practical standpoint,
the additional processing needed to utilize equation (III.6) will be prohibitively
inefficient as far as on-board processing is concerned. In fact, we will implement
additional simplifications in the small roll angle limit for the on-board processing as
discussed below.

IILb. Small Roll Angle Approzimation
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As long as © is small, we can make the following approximation in calculating
the roll angle,
C=1, and S =0=-Q/R, (II1.7)

where

A= [Z(u? + v?)] —(Ur+VY)/N =N Y [uf+0f] =Nr2j2 (II18)

ij

and r is the average distance between the guide stars. (In the limit of large N
randomly distributed guide stars, r — d/+/3 where d is the linear dimension

of the square FOV.) In the implementation, R as well as U and V need only be
calculated once for the reference frame at the beginning of the tracking. Furthermore,
calculating © via equation (III.7) does not need the square root operation as in
equation (II.5). This approximation will introduce error which is of order ©2. Since
the roll angle is expected to be on the order of 0.002 radians from the beginning

to the end of a 1000-s integration, using equation (III.8) will not introduce any
significant error (see below for estimate in the error of ©). Note that the values of

P, @, R, r and O are independent of the location of the roll center.

In summary, the drift and the roll of the satellite are calculated through the
following equations.

Universal Quantities

U=> u, (II1.9q)

V=> v, ; (II1.9b)

R = [Z(u? + v?)] - (U? +V?)/N. (III.9¢)

13

Frame-Dependent Tracking Quantities

X=3 s, (III.10a)

Y =)y, (II1.10b)

Q= I:Z(xivi — yiui)] —(XV -YU)/N. (II1I.10c¢)

Drift and Roll
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S=0=-Q/R, (III.11q)
Az =(X — U+ VS)/N, (III.11b)
Ay=(Y -V —US)/N. (III.11c)

IIl.c. Precision of the Tracking

Since the observed location of the guide stars (z;,y;) as well as the reference
locations (u;,v;) will no doubt have uncertainties, we expect the calculated drifts
and roll to have some uncertainty. We now estimate the errorbar of the tracking
quantities and the calculated drift and roll. For simplicity, we shall assume that the
error bar for the stellar location is the same in the z and y direction and each stellar
location is determined with the same standard deviation §z. The standard deviations
for X,Y,U, and V are straightforward:

6X = 8Y = 6U = 6V = VNéz. (II1.12)

Even though the values of § X (6Y) and 6U(6V') are the same, we need to make a
distinction between them. The quantities U and V are universal for the frame-by-
frame tracking; errors associated with a linear dependence of them can be easily
removed as a systematic error by an after-the-fact calibration to align the star
positions with some absolute reference frame; the linear contributions of U and V in
equations (II1.11b) and (III.11c¢) does not affect the precision of the tracking.

The error of Q is
6Q = VRéz, (I11.13)
and the error of © is
s =99 _ ¢
R VR

The standard deviations for the d1_-ifts are

(II1.14)

- 5 3172
§(Az) = j—% 14 Nl}i , (IT1.15a)

and o

éz | U?]
As long as the roll center is chosen to lie within the field of view, both V2/NR and
U?/NR will be less than unity.

Mathematically, applying a rotation and translation parameterized by the
calculated drift and roll (Az £ 6(Az), Ay + §(Ay),© + 6§0O) to any particular point
(z,y) point will yield the same result (z' + éz',y' £ '), independent to the choice of
the origin (roll center). However, for efficiency reason, we will only perform on-board

I11.4



compensation to the translation (shift-and-add) to the satellite drift; no compensation
will be applied for the roll. The shift-and-add procedure leads to the smallest errorbar
at the roll center and the error is greater for points at greater distances from the

roll center. Figure III.1 shows the deviation of the calculated drift from the real
(simulated) drift. Figure III.2 shows deviation of the calculated roll from the real
(simulated) roll. The spread of the deviations is consistent with the estimates given
in equations (III.14) and (III.15).

We now discuss a special case where the errorbars of Az and Ay are formally
minimized. This is achieved by minimizing U? and V2, i.e., choosing the center-of-
mass of the guide stars as the roll center and setting U = 0 and V = 0. This simplifies
equations (115) and (11c) to Az = X/N and Ay = Y/N. The center-of-mass is
the natural default roll center. However, with a moderate increase in arithmetics, we
shall implementing the tracking algorithm as equation (11) which does leave open the
possibility of choosing the roll center at any location.

III.d. Final Image Quality

After the drifts in z and y are obtained, the algorithm will apply the
compensation to the current frame by shifting-and-adding to the final 512 by 512
image. The operations of shift-and-add are mundane yet numerous. This has been
recognized as a major task for the DPU onboard processing. The shift-and-add
algorithm will be discussed in the next section. Here we discuss the quality of the
final image as a result of the drifting and compensation. Figure III.3 shows three
images of a 16-th magnitude star in white light after a 1000-s integration. Judging
from the figures on the left and right, the stellar image quality is well retained by the
process. This provide confidence to both the drift calculation and the shift-and-add
procedure. Figure II1.4 shows the accuracy of the stellar locations (with respect to
the real position) by using a simple centroiding algorithm similar to that discussed
in Section II. Other than the constant offset which can be calibrated out, we obtain
better accuracy for the stellar location as a result of the better photon statistics. It
is quite likely that we will be able to obtain astrometric accuracy better than 0.01
arcsec for stars brighter than 15-th magnitude.

Figure Captions for Section III

Figure III.1 —a-  Deviation of the calculated drift from the real (simulated) drift

in an average star field in white light. The solid line gives the result for the = drift
and the dashed line for the y drift. Both are consistent with having an errobar of
+0.01 arcsec ~ +0.03125/ V10 arcsec. The drift calculation utilizes the expanded
precision arithmetics. Note the finite offset of the drifts from zero. This is the result
of the finite error in the universal quantities calculated from the reference frame. This
finite offset will be calibrated out in the image post-processing.
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Figure II1.2 —  Deviation of the calculated roll from the real (simulated) roll.
Other than the constant offset, we estimate the deviation to be within the range

of £6 x 107° radians. In the simulated field, this is consistent with the estimate
obtained from Equation (II1.14). (In the limit of a large number of guide stars, we
estimate the error in © by taking r ~ 448/+/3 ~ 259 arcsec. Here the size of the
FOV includes the finite width of the border which we impose on the good guide star
criterion. Combining equations [II1.8] and [III.14] and adopting §z=0.03125 arcsec,
we get 60 ~ 5.4 x 107 radians.)

Figure II1.3 — Performance of the tracking and shift-and-add procedure. The

left figure shows the result of the star imaged by a perfectly stable satellite. The
contour levels are 316, 1000, 3160, 10000, and 31600 from outside in. The center
figure shows the stellar image after a simulated random-walk drift of the satellite.

No compensation is applied to the frame summation. The trajectory of the satellite
drift is shown as the solid boxes. The right figure shows the image taken by a
drifting satellite (following the drift trajectory in the center figure) and compensated
according to the result of the tracking calculation. Without going into detailed image
analysis, the tracking and shift-and-add appears to retain most of the image quality.

Figure III.4 — Deviations of calculated stellar locations from their real locations

as a function of star brightness. The solid squares give the z deviaiton and open
triangles gives the y deviations. The stellar locations are calculated with a centroiding
algorithm similar to that used in Section II. The sample of stars are those picked out
by the good guide star diagnostics of Section II. Closer examination shows that some
of the outlier stars are contaminated by some neighboring faint stars. Astrometric
performance can in fact exceed that shown in the figure, once a more thorough
analysis method is applied.
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IV. Shift-and-Add

IV.a. Problem

Every 10 seconds, a frame of 1024 by 1024 pixels is generated. DPU using the
microprocessor will perform the necessary guide star image construction and calculate
the relative aspect of the frame with respect to the reference frame. The current
baseline calls for the accumulation of the information into a final image containing
512 by 512 twizels; four pixels add into one twixel. The problem is straightforward at
first glance: we simply execute the following statement for all pixels

Imn = mn+Nij, (IV].)

with m = (1 — Az)/2 and n = (j — Ay)/2 where Az and Ay are the calculated drifts
in the z and y direction. However, there are more than 1,000,000 pizels in each frame
and we have at most 10 seconds to process them. Doing the shift-and-add to each
pixels by a general-purpose microprocessor requires at least fetching numbers from
two memory locations, adding two integers and writing the result to one memory
location. (In addition, the threshold mode processing will also go through the same
procedure of scanning through all one million pixels.)

It has be recognized that a system with the baseline microprocessor 80C86
running at 4 MHz simply does not have the horsepower to accomplish this task in
10 seconds. The problem is further complicated by the segmented memory addressing
scheme of the 8086 processor.

There are the following directions we can go to attack this problem.

e Use a more powerful processor. Advantage: Versatility. Disadvantage: May
not find a processor powerful enough.

e Use a dedicated processor to handle the shift-and-add task only. Advantage:
Versatility. Disadvantage: Power consumption (?). Somewhat complex circuitry.

e Use a specially designed hardware coprocessor. Advantage: Room for
optimization. Disadvantage: Lack of versatility. Complex circuitry design. Cost (?).

The third possibility is viable since the job of shifting-and-adding each pixel is
quite simple and mundane; we are limited by quantity, not by complexity. We shall
discuss various considerations for the third option in the next section.

IV.b. Shift-and-Add with Hardware Processing

Following conversations with Sandia people, it appears that a shift-and-add
hardware co-processor (SAAHC hereafter) external to the microprocessor can be
designed and fabricated within a reasonable bound of resources to handle the raw
chore of shift-and-add. Techniques such as pipelining can be applied to reduce the
effective cycles per pixels. For example, it has been estimated by the Sandia team
that the shift-and-add can be accomplished in about 2 seconds: 2 us per pixel or
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8 cycles per pixel on a 4 MHz system. Even if we double the estimated processing
time to 4 seconds to be overly conservative, we still have 6 seconds left to carry

out the important task of analyzing the guide stars, calculating the drift and roll,
performing the threshold mode processing, doing data compression and servicing the
red instrument. The problem is this: how do we formulate the shift-and-add algorithm
in a fashion suitable for hardware design and implementation?

In designing the shift-and-add algorithm, we are faced with three
considerations.

e First consideration: The satellites drifts and rolls during the 100-frame
integration and the FOV changes in the process. If we want to include all photons
accumulated by all frames, then we need to reserve a space greater than 512 by
512 (612 by 612, say). However, the benefit in additional science is marginal.
Furthermore, memory addressing will be more complicated for an array whose size
cannot be expressed as a power of two. Thus it has been decided that the final image
which is the sum of all 100 frames will have a size of 512 by 512. And since we will
have no prior knowledge of which direction the drift is going to be in, we will use the
FOV of the reference frame as the FOV of the final image.

e Second consideration: As the aspect changes, some of the frame pixels map
to a region which is outside the FOV of the reference frame. We do not want to
include these informations. Correspondingly, some areas in the final image which map
outside the FOV of the current frame should not receive any information from the
current frame. We need to take care this.

Third consideration: The memory in a computer is always stored and
addressed in a linear fashion. For the two dimensional image we need to do two
levels of shifting-and-adding. This is complicated by the fact that we are shifting-
and-adding 2 by 2 pixels in a frame into a single twixel in the final image. In the
following, we shall assume that the memory is stored in a row-major fashion, i.e., the
indices of the column or the y component runs fastest. This is the manner in which
arrays in C are stored.

The design and the function of the SAAHC depends on how much complexity
and intelligence we are willing to build into it and how much preparation by the
microprocessor we are willing to provide. There are (at least) three approaches.

1. The drifts are supplied to the SAAHC. No preparation is performed on the
data in the frame. The SAAHC must have the intelligence to figure out the beginning
and the end of the adding along each column and add only the pixels in the current
FOV that overlaps with the reference FOV. This approach requires a lot of SAAHC
intelligence. A schematic of this approach is shown in Figure IV.1.

2. The frame data are doctored by the microprocessor in that any pixels in the
frame which sit outside the FOV of the final image will be set to zero. In addition,
two 1024-pixels columns of padding, one on each end of the frame, will be appended
to the frame. After the appropriate preparation, the beginning of the frame pixel and
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the image twixel to be added as well as the length of the addition for the whole frame
will be supplied to the SAAHC which then carries out the adding in a linear fashion
in one pass. A schematic of this approach is shown in Figure IV.2.

3. The microprocessor keeps track of the beginning and the end of each column
to be added. The SAAHC is only responsible for handling one column of frame data
at a time. The microprocessor will supply the beginning frame pixel and image twixel
to be added and the length of the addition for the column to the SAAHC. Given
these numbers, the SAAHC will process the data in the column. After processing
each column, the SAAHC sends an interrupt to the microprocessor and request
information on the next column. A schematic of this approach is shown in Figure

IV.3.
A reasonable design philosophy is this:
e We have to have the SAAHC to do the job.

e The SAAHC should be as simple as possible. Anything that can be done
within the time constraint (10 s) by the microprocessor should be done by the

microprocessor. Among the plausible schemes, the simplest SAAHC will be the most
desirable.

Based on this philosophy, the first approach appears to demand too much
intelligence in the SAAHC. We will not discuss it further. The second and the third

approach appear comparable in the microprocessor requirement and the complexity of
the SAAHC.

"Advantages of Approach 2:

e The communication between the microprocessor and the SAAHC
appears minimal. Once the necessary information is supplied to the SAAHC, the
microprocessor will be freed to carry out other tasks. There will be occasional

interrupts sent by the SAAHC to the microprocessor to call for threshold mode
processing.

Disadvantages of Approach 2:

e The SAAHC is slightly more complicated (then that for Approach 3) since it
needs the intelligence to do the double incrementing both column-wise and row-wise
in order to achieve the 2 by 2 into the 1 by 1 mapping.

¢ Doctoring the frame memory and zeroing out the out-of-bound (the bounds
of the FOV) pixels is a non-trivial job.

¢ Additional memory of 1024 by 2 by 4 bytes is needed. However, this
additional amount of memory is negligible in the overall memory budget.

Advantages of Approach 3:
e The SAAHC is probably simpler.
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e No additional memory is required.

Disadvantages of Approach 3:

e Keeping track of the beginning and the length of adding for individual
column by the microprocessor is a non-trivial task. It is a more complicated
algorithm than the simple doctoring in approach 2.

e It requires more communication between the microprocessor and the SAAHC.
The microprocessor send information to the SAAHC about 1000 times, and the
SAAHC also talks to the microprocessor about 1000 times, plus the interrupts calling
for threshold mode processing.

Overall, I feel that Approach 3 has the advantage of providing the simpler
SAAHC designing requirement. The doctoring in Approach 2 and the range
bookkeeping in Approach 3 probably take similar amounts of processing time;
one is memory-I0-intensive and the other is CPU-intensive. The communication
requirement between the microprocessor and the SAAHC may or may not be an
important issue. On the one hand, as long as the communication occurs on a us
timescale, this is probably not critical. On the other hand, the request for information
from the microprocessor by the SAAHC will have to compete with other processes.

Current implementation in the software follows Approach 3.
IV.c. Shift-and-Add with a Microprocessor

Although much of the algorithm development work discussed above has
concentrated the utilization of a SAAHC, we need to keep open the possibility of
doing the shift-and-add with the generic microprocessor. This factor is especially
true in light of the testing of the algorithm above by HRB personnel on a Transputer
running at 17 MHz. Using a scaled-down image, it was estimated that the shift-and-
add of the entire 1024 by 1024 frame to the final 512 by 512 image will take about 3
seconds. Assuming the memory addressing downsizing in the testing procedure do not
affect the actual performance, then the amount of processing is simply proportional
to the clock rate. Based on this result, a dedicated Transputer running at X 6 MHz
can comfortably take care of shift-and-add task. If dedicated RAM is attached to
this Transputer, then the minimum memory requirement is 3 MByte plus change.

It is conceivable that this Transputer could also be used to do the important but
somewhat less CPU-intensive task of data compression if we have enough CPU cycles
(say 10 MHz Transputer) and memory ( 2 4 Mbytes). The versatility of doing the
shift-and-add with a microprocessor is its greatest advantage. It should be emphasize
that even though a relatively powerful dedicated microprocessor is used, we should
invest effort into the optimization of the algorithm at the machine code level as the
payoff could be substantial.
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Figure Captions for Section IV

Figure IV.1 —  Schematic of the shift-and-add procedure using a smart hardware
co-processor (Approach 1).

Figure IV.2 —  Schematic of the shift-and-add procedure using a moderately smart
hardware co-processor (Approach 2).

Figure IV.3 — Schematic of the shift-and-add procedure using a simple hardware
co-processor (Approach 3).
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V. Compression of Image Data

V.a. Problem

After an integration of 100 frames, we get an image which is stored in an array
of 512 by 512 twixels by 4 bytes. The dynamic range of each twixel is from about 300
counts up to about 4 x 10% counts. A raw count of the information content is about
to 5.5 Mbits. On the other end, we have about 1000 sec to transmit this image. With
a telemetry rate of 2 kbits/s and a 85% duty cycle, we can only transmit about 1.7
Mbits of data. Thus we need to compress the data by a factor of greater than 3. To
devise a compression scheme best suited for our purpose, we need to take into account
several factors jointly.

e We want to maximize the compression ratio.

e We want to retain the maximum amount of information. A fully reversible
scheme should be used if possible.

e We want to maximize the tolerance of the compression-transmission-
decompress scheme to telemetry errors.

7/
e The job must be done within the constraint of memory allocation and
processing power.

At this point, the processing power constraint is probably not critical since we

will have about 1000 sec to carry out the compression task even though the effective
duty cycle might be low.

In the following, we will describe a promising candidate for a reversible
compression scheme which can deliver a compression ratio close to (but not quite
achieving) the requirement. This is the Variable-Block-Tiered-Word-Length
(VBTWL) Scheme.

V.b. Data Compression

In general, a compression scheme contains two major parts: decorrelation and
coding. The decorrelation procedure removes redundant information content. We
want to maximize the information content taken out by the decorrelation. What’s
left is the information content which is random. Then the coding scheme seeks to
minimize the number of bits needed to represent this random information.

Prior to the decorrelation procedure, the entire dat set will be segmented into
blocks which contains packets of data; each packet corresponds to a twixel in the final
imgae from the image mode observation. The number and size of the blocks can be
adjusted so as to give us the optimal performance. The best segmentation scheme
depends on the characteristics of the data and other considerations. In principle, the
segmentation of data into blocks will allow us to search for the best decorrelation
and optimal compression scheme/parameters individually, i.e., we can look for local
optimum. On the other hand, segmentation also incurs overhead; the finer the
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segmentation, the greater the overhead. Overall performance of the compression
scheme requires a good balance between minimizing the overhead and obtaining the
best optimization of local compression within each block.

For the individual blocks, we do the decorrelation procedure by making a guess
of what the value of each data packet is; this is called the predictor. The difference
between the actual data and the predictor is the reduced data. If a good predictor is
used which removes the correlated portion of the data, then the reduced data will be
mostly random. One way to think of this is the analogy of the zeroth-order solution
(predictor) and the first-order perturbation (reduced data). In general, the zeroth-
order solution is simple and the first-order perturbation is small. Ths simplicity of
the predictor and the smallness of the magnitude of the reduced data allow us to

compress the information content into a number of bits smaller than in the original
format.

After the decorrelation, we code the reduced data into a stream of bits.
There are many possibilities of coding as described in the report of Adaptive Data
Compression System Study prepared by the Satellite International Limited (SIL)
under an ESA Contract. This report was dated July 1988 and is available within
the XMM/OM consortium. Depending on the characteristics of the random data,
different coding schemes are optimized for different applications. The coding
mechanism of the VBTWL scheme discussed here, developed independently at
Penn State, is a generalization of the Variable-Block-Word-Length (VBWL) scheme
described in the SIL report.

V.c. Characteristics of Image Data

The final image from the blue detector is stored in a two-dimensional 512 by
512 array. There will be point sources (stars) and extended sources in the image.
But most of the photons are probably coming from the background which, in white
light, contributed to about 0.3photons/s/arcsec?, or 300 photons/twixel/1000s. The
background statistics is Poisson which, in the large number limit, is approximately
Gaussian. Since the image is two-dimensional, the correlation within a block of data
is expected to be greater if the block corresponds to a square in the image (e.g. a 16
by 16 twixel area) than the case of a line ( e.g. 256 by 1 twixels column).

For a block mostly dominated by the background, it is easy to argue that
the mean count rate is a very good predictor; any deviation from that is random.
Another possibility is the minimum count rate within the block. For a block which
contains some kind of structure above the background, neighboring twixels are likely
to be correlated. Using the count of a neighbor as a predictor may provide good
decorrelation in these cases. Thus, we have three possible decorrelation mechanisms.
We decorrelate the data within the block by coding the information in terms of X;;
where

Xij = Lij — Pyj, (V.1)
and the predictor can be one of the following three:
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e P,; = I, the mean within the block,

e P;j = Inin, the minimum within the block,
or
e P;; = I;(j_1), the count in the previous neighbor.

The reduced data X are then fed into the coding scheme.
V.d. Tiered-Word-Length Coding

In the binary representation, the content of useful information of an integer
is the number of bits needed to represented the number. For example, the number
7 needs 3 bits. If we use 16 bits to represent the number 7, then we are in a way
wasting 13 bits. However, we only know we need 3 bits after we know we want to
express the number 7. The information that we have a 3-bit number must also be
conveyed somehow. An analogy is the exponent and mantissa of a floating number
which express the magnitude and the value of the relevant number. In the VBWL
scheme described in the SIL report, the coding is done by examining the maximum
number of bits required to express any packet of reduced data within the block. After
that, the reduced data is expressed uniformly in the same number of bits, irrespective
to its actual value. The Tiered-Word-Length coding differ from the VBWL scheme
in that the coding is adaptive. Current implementation of VBTWL allows for three
tiers; coding with a smaller number of tiers is a subset of the three-tier structure.
For example, the original VBWL can be encompassed in the 3-tier VBTWL, with the
constraint that all three tiers must be the same.

The three-tier coding mechanism is governed by the following rules.

e Tier 1: Any number that can be expressed in n; bits, other than the two
flags fo and f3 discussed below, will be coded in n; bits.

e Tier 2: Any number that cannot be expressed in n; bits but can be expressed
in ny bits will be coded in ny bits preceded by a unique flag f2 which is n; bits long.
Let’s suppose there are N of them.

e Tier 3: Any number that cannot be expressed in ny bits but can be expressed
in n3 bits will be coded in n3 bits preceded by a unique flag f3 which is n; bits long.
(The number n3 is in fact the maximum number of bits required to express any piece
of reduced data within the block.) Let’s suppose there are N3 of them.

e Flags: The two numbers adopted as the distinct n;-bit long flags f» and f3
are considered to be members of Tier 2 and coded accordingly.

In a block of Np packets of data, the number of bits in the data stream coded
following these rules are

M= thadcr +n1NB + n2N2 + n3N3v (V2)
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where Npeader 1s the number of bits in the header which contains the decorrelation
and coding information such as the predictor scheme, the predictor and the tier
structure. Redundancy check can also be incorporated into the header to help
ensure data integrity. Aided by the information provided by the fixed-length header,
the compressed data stream can be uniquely decompressed to retrieve the full
information content of the block. This is a fully reversible scheme. In general, there
can be any number of tiers. The optimum is determined by the balance between

the increased efficiency in expressing numbers, growing size of the header, and the
greater complexity, as the number of tiers grows bigger. At this moment, the two-tier
or three-tier structures appear to provide a good balance between compression ratio,
header size and complexity.

Figure V.1 shows the conversion of a real data stream of final image to a
compressed data stream. The processing flowchart is shown in Figure V.2. An
alternative to the flagging of higher-tier data packets is to construct a “road map”
of the higher-tier number outside the main data stream and eliminate the use of the
flags. This road map will be a part of the header. Whether such a scheme yields a
better performance in compression ratio remains to be investigated.

V.e. VBTWL - Current Implementfation

Block-Wise Compression

Given a block of reduced data processed by the decorrelation predictor P,
we can apply a TWL coding mechanism parameterized by (n;,n2,n3) and obtain a
length of the compressed data M. It is clear that nj is determined by the reduced
data: it is the number used in the conventional VBWL scheme. On the other hand,
n; and n, are completely arbitrary except for the constraint that n; > n, > n;.
With n; and n, as free parameters, we can search for the combination (n;,n2) which
yields the minimum M. After applying this procedure of optimizing (n1,n2) to the
three decorrelation mechanisms with their respective predictors, we arrive at a set of
. parameters (P;nj,ny,n3) which yields the minimum number of bits for the current
block. Preceded by the appropriate header, the data stream is then supplied to the
downlink mechanism.

Block Shape and Sequencing

As discussed earlier, the decorrelation is probably most efficient where the
block structure is two-dimensional; i.e. a square is better than a rectangular which
is better than a line. Furthermore, a square block has the advantage of being more
tolerant to telemetry error. Suppose a square 16 by 16 block of data is corrupted
beyond recovery and each bad twixel will affect two twixels on each side, then the
final data will be corrupted in square of 20 by 20, or 400 twixels will either go bad
or be affected. In contrast, if the corrupted 256-twixel block is taken from the final
image in a 1 by 256 column, then there are altogether 1280 twixels which either go
bad or are affected. From the point of view of data integrity and resilience, a square
block is definitely more favorable.
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Suppose we are taking blocks of 16 by 16 twixels, then there will be 32 by
32 blocks in the 512 by 512 final image. We can also devise different sequences
of extracting and compressing the blocks which provides operational advantages.
The simplest way of sequencing the block is to do a column-wise (or row-wise)
scan from, say, the lower-left corner to the upper-right corner. With a simple
algorithm, however, we can trace out the blocks in a spiral fashion as shown in Figure
V.3. In the spiral sequence, the central portion of the image, presumably of the
highest quality, will have the highest priority in being processed (compression and
transmission). Since the blocks are transmitted in a sequence of nearest neighbors,
the real time display of images follows a continuous development. Most importantly,
if for whatever reason the telemetry stream is disrupted, the portion of the image
with the highest quality will have the highest priority for processing. Salvaging a bad
situation is easier this way. In principle, we can also apply the spiral sequencing to
the processing of twixels in individual 16 by 16 blocks. However, the advantage is less
apparent and it will require more processing power. At this point, the processing of
twixels within a block is done in a row-major scanning fashion.

V.f. Performance and Operational Issues

Table V.1 lists the size of the compressed data stream of simulated 512 by 512
final images in white light with various stellar density. We have listed three columns
of results with VBTWL and one with VBWL. We have also listed four columns
giving different block sizes. Furthermore, the size of the compressed data stream also
depends on the size of the header. It appears that 40-bit header is the minimum for
the 3-tire VBTWL and a 64-bit header will provide great versatility and redundancy
check." For VBWL, a 32-bit header for each block of data appears sufficient.

TABLE V.1

Compression of Data Stream

Coding Scheme  VBTWL VBTWL VBTWL VBWL
Star Field G. Equator G. Equator Average G. Equator

Header Size (bits) 40 64 64 32
Block Size (Data stream size in bits)
4 2339743 2732959 2713467 2209984
8 1944781 2032085 1991070 2405056
16 1861496 1886072 1856473 3175168
32 1880013 1886157 1885802 3838976
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If a 2 kbps telemetry bandwidth is allocated and the image data is transmitted
with a 85% duty cycle, then we can transmit 1.7 Mbits. The numbers given in Table
V.1 shows that we are close but not yet there. I think we can take the following
approaches listed in the order of their respective desirability.

(1) Ascertain a greater telemetry bandwidth. Even a meager 10% to 20%
increase will put us in a very comfortable position.

(2) Extend the integration time, thus increase the number of bits that can be
transmitted. On the other hand, the size of the compressed data stream will probably
also increase, at a smaller rate though.

(3) Discard part of the image to conform with the telemetry/time constraint.
The spiral pattern processing is intended to minimize the effect of such truncation by
making sure that any truncation will result in the loss of lower quality portion of the
image.

(4) Adopt a non-reversible scheme.

(5) Continue to search for a more efficient reversible compression scheme.
See discussions below on the prospect of substantial improyement in compression
over current implementation. (As a side note, it has be determined that a double-
differencing scheme does not provide improvement in the compression ratio. The
decorrelation scheme 3 described in V.c. is single-differencing. The double-differencing
scheme takes the difference between the differences of consecutive twixels as
fundamental quantities for compression.)

Even though we have discussed three different decorrelations mechanisms,
there could be other viable schemes and we should to keep our minds open on these
possibilities. Furthermore, the code should be implemented to allow the disabling
any particular decorrelation mechanism if it is deemed uneffective. For example,
it has been discovered that in compressing a typical star field, less than 3% of the
blocks use the single-differencing scheme as the optimal method. In processing, each
decorrelation mechanism requires the similar amount of CPU cycles. Thus, if we are
starved for CPU cycles, disabling a decorrelation could yield tremendous benefit at a
price of slightly lower compression efficiency.

V.g9. General Issues of Data Compression

It is helpful to establish some kind of benchmark where the performance of the
compression algorithm can be compared to. In the limited research that went into
this project, I have not encountered any such estimate in the literature. However,
there appear to be some first principle arguments that one can apply and derive a
simple-minded estimate of the “information content” of a data set.

As described in V.b., the goal of a good compression scheme is to (1)
maximally remove the redundant component of the data set and (2) minimally
formulate the random component of the information. In our application, the field
of view is dominated by twixels which contain only photons from the background.
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At a level of average 300 photons/twixel, the distribution is well approximated by a
Gaussian with a standard deviation of about oy ~ /300 ~ 18. If the image contains
no stars, then more than ninety-nine per cent (99%) of the twixels will be within £3¢
of the mean (300 counts/twixel). To express the random information in each of these
99% of the twixels, we need about

log,(2 x 3 x on) ~ 7 bits (V.3)

per twixel. It is difficult to see how one can devise a coding scheme which can, in an
average sense, express the non-reducible random portion of the data in a number of
bits much smaller than this. Thus, the total number of bits required for the 512 by
512 image is about

N ~ 512 x 512 x log,(2 x 3 X on) ~ 1.8 Mbits. (V.4)

We now formulate these considerations into the following conjectures:

Conjecture 1: An optimal reversible compression algorithm
will yield a data stream containing approximately N bits, where

N ~ N, x log, (). (V.5)

Here Np is the number of packets of data, i is a measure of the
randomness of the data.

Conjecture 2: In the case of a data set dominated by a random
component which follows Gaussian statistics, then ¢ ~ 6oy, or

N ~ N, x log,(6an), (V.6)
where oy is the standard deviation of the background.

We now discuss the application of these conjectures to our results.

First, the estimate given in equation (V.4) is very close to the number of the -
we obtained in V.f. This indicates that the VBTWL scheme is probably very close to
being the optimal for our application, if the above conjectures are correct. This also

means that attempts to further increase the compression ratio will probably not be
cost-effective.

Second, the estimate (V.6) does not have any explicit dependence on the stellar
density. In reality, the stellar density will no doubt contribute to the size of the
compressed data stream. However, it can be viewed as a higher order perturbation
to equation (V.6). For example, in Table V.1 the VBTWL scheme yields compressed
data streams of size 1.89, 1.86 from simulated images in white light with a stellar
density corresponding to the galactic plane and an average FOV; a galactic pole
star field can be compressed into about 1.81 Mbits. In contrast, the background
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contributes about 28%, 48% and 86% to the total number of photons, respectively.
The weak dependence of the size of the compressed data stream to the stellar density
1s apparent.

Finally, equation (V.6) can be used as a rule of thumb for future design. For
example, the question has been raised whether we want to process and transmit
both blue and red images at the same time, if both can be fitted into the allotted
telemetry bandwidth. (Among other things, this will have an impact on the memory
requirement and CPU horsepower.) For a compressed data stream with a size half
that allowed by the allotted telemetry bandwidth, i.e., N ~ 1 Mbits/1000 s, equation
(V.6) requires that the background be of order 6 counts/twixel. In other words, we
need a narrow band filter which transmits about 2% of the photons. In view of the
recent discussions (Lumb) on the desirability of the greater usage of narrow band
filter in order to extend the life time of the micro channel plates, the double image
processing/transmission mode probably deserve more consideration.

Figure Caption for Section V.,

Figure V.1 — Schematics of the Variable-Block-Tired-Word-Length data
compression scheme. Each rectangle brick represents a packet of data. The
accumulated number of bits is shown at the lower right corner of each packet. The
real data (in the first row) is first passed through the decorrelation procedure which
yield the second row of reduced data X. As an example, the packet is labeled ¢1

if the reduced data is in tier 1 and so on. The scheme will search for the optimal
combination of n;, n; and P which yields the minimum number of bits in the final
data stream. The Tiered-Word-Length coding scheme converts row 2 into a stream
like row 3, with unique flags of n; bits leading a higher-tier representation of data.
The packets containing the flags are highlighted. As in rows 1 and 2, the accumulated
number of bits is given. In this example, the data are compressed from 256 bits to
116 bits (plus header).

Figure V.2 - Flowchart of the Variable-Block-Tiered-Word-Length Scheme. The
optimization procedure is not shown.

Figure V.3. — Sequencing of block of image data. We process the block of image
at the center of the final image first and proceed in a spiral fashion. See text for a
discussion on the advantage of this method of sequencing.
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V1. Accounting

In this section, we discuss the accounting issues of the algorithm discussed in
the previous sections. We shall concentrate on two aspects: memory and CPU cycles.
We will not worry about issues such as the real estate on the DPU board, power
consumption and cost.

VI.a. Memory Requirement

Listed here are only the “big-ticket” items in the overall memory scheme for
the entire DPU. Memory requirement which is less than, say 100 Kbytes, will not
be discussed here; these usages are covered under the operation memory which is
allocated a generous 2 Mbytes. There might be a number of them and need to be
look at in the final analysis. Since the coupling of the observing modes of the blue
and red instruments has not be solidified yet, I have included a separate subsection on
the memory requirement of the red instrument.

Basic operation memory requirement

(1) The current working frame. This is the frame being processed for guide star
location, tracking and shift-and-add. This memory requirement is fixed and cannot be
reduced at all:

Siw = 1024 x 1024 x 2 bytes = 2Mbytes. (VI.1)

(2) The current collecting frame. This is the frame which is being written into
by the blue detector contemporaneously to the processing of the current working
frame above. This memory requirement is fixed and cannot be reduced at all:

Sic = 1024 x 1024 x 2 bytes = 2Mbytes. (VI1.2)

This memory is also being read from by the fast mode processing.

(3) Memory of the compressed data to be downlinked. In principle the
compression can be done on a on-demand basis, i.e., when the ICU asks for more
telemetry stream, the DPU compresses the data and deliver it on the spot. However,
I will feel much more comfortable that we maintain a FIFO stack of compressed
data on the DPU. When the telemetry request from the ICU is received, then the
operation is a simple read-and-write on the part of the DPU. On the other hand, as
long as the stack is not overflowing, the CPU can compress the data in any free cycle

it can find and write to the stack. A comfortable size of the FIFO stack is 1000 sec
worth of data, or

Stm = 2000 x 1000 = 2 Mbits = 250 kbytes. (VI1.3)

(4) Operation Memory. This includes the on-board software itself (and
maybe a backup copy), the bright star and the guide star catalog, the drift record,
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a generous stack for the processing stellar image construction, tracking, shift-and-
add and compression as well as all other temporary storage space. Without a detailed
accounting of the memory requirement, let’s allocate a generous 2 Mbytes for this use:

S, = 2 Mbytes. (VI4)

(Blue instrument) mode-specific memory requirement

(1) Threshold mode — The data generated by this mode is very little.

(2) Image mode — We want to store the final image in a memory of
Sim = 512 x 512 x 4 bytes = 1 Mbytes. (VI.5)

From the operational standpoint, we can get by with an allocating this much memory
for the final image if we can compress the image into S, in about 10 second during
which the reference frame of the subsequent 100-frame integration. However, it is
highly unlikely that the compression can be accomplished within 10 s. Thus, we need
to devise a memory scheme similar to the tracking procediire where two copies of the
images are kept at the same time. In the compression procedure, we will have a copy
Sim which is being written into by the shift-and-add. At the same time, we will have
another copy S!,, which was produced by the previous integration. Overall, we need

Sim + Sim = 2 Mbytes (VI1.6)

for storage and processing of the final images.

(3) Fast Mode — The memory requirement for the fast mode is somewhat
uncertain. In the baseline design, the fast mode will be operating mutually
exclusively from the image mode. Thus we can use the memory space allocated
" for the final images in the image mode S, and S}, for use by the fast mode. The
allocation of 2 Mbytes appears sufficient for the use of fast mode.

Memory requirement for the red instrument

(1) Image frame from the red instrument. The red instrument will produce a
frame for about every 200 seconds. For a conservative estimate, let’s say the red CCD
produces frame of 512 by 512 by 4 bytes, i.e. we need

Srr =512 x 512 x 4 bytes = 1 Mbytes. (VI.7)

(2) One additional red frame for cosmic ray removal. To carry out the cosmic

ray removal task, we need at least one other copy of the red frame for comparison, i.e.
we need

S5 =512 x 512 x 4 bytes = 1 Mbytes. (VI.g)
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Furthermore, we want to keep an array which keeps tracks of red pixels that was
contaminated by the cosmic ray, the so-called C array:

See = 512 x 512 x 2 bytes = 500 kbytes. (VI.9)

(3) Final image of the red instrument. The red frames will be accumulated in a
red final image which requires

Sri = 512 x 512 x 4 bytes = 1 Mbytes. (VI.10)

(4) Threshold mode of the red instrument — The threshold mode for the red
instrument should not require much memory.

(5) Fast Mode for the red instrument — If the fast mode of the red instrument
is mutually exclusive from the image mode, then the memory allocation above for the
red image mode should be sufficient.

Final tall
,
The major determining factor of the total memory requirement depends on
whether or not we do simultaneous image mode observations with the blue and red

instrument.

If we do not do the image mode observations simultaneously with the two
instruments, then the amount of memory needed is approximately

Stotal,l = So + Siw + Sic + Srf 4+ S:-f + Scc + Stm ~9 MbyteS (VI].].)

It is conceivable that a judicious design in memory could cut S, down to 1 Mbytes.
This will conform to the baseline design of 8 Mbytes on-board random access memory.
Note that we have only added S;s, S;; and Scc. The same memory space can be used
by Sim and S},,, as long as we don’t do simultaneous imaging. However, we then
have to be careful in accounting for the memory needed for the fast modes of the two
instrument.

A design which leaves greater margin of safety is to assume that we want
to leave open the possibility of doing simultaneous imaging. In this case the total
memory requirement, taking into account the big-ticket items are

Stotal,2 e So+5iw+sic+5im+S,{m+5rf+5:.f+scc+5ri+5tm ~ 12 Mbytes (VI].Z)

It appears that a total of 12 Mbytes of on-board random access memory could
probably be sufficient. A total of 16 Mbytes will be leave more margin though.
Note however that the memory requirement of the fast mode has not be thoroughly
considered. Most importantly, we would need to set aside additional memory if the
image mode and fast mode observations will be done simultaneously.
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The bottom line is this: We can live with 8 Mbytes of memory as designed, but
it will put some constraints on the possibilities of combinations of observing modes. If
the memory is relative inexpensive, from the point of view of this project, I strongly
suggest that we have at least 12 Mbytes of memory.

VIb. CPU Cycles Accounting

In this section, we give the rough accounting of the number and types of CPU
operations needed in the stellar image analysis and the tracking algorithm discussed
earlier. The major operations in the current implementation are IF, TAAD (integer
add) and IMUL (integer multiply). The number of integer division is very small. We
do not include considerations of the memory addressing here. These are MOVEs
from memory to register and vice versa, as well as PUSH and POP from the stack.
Since memory addressing can be quite subtle in high-level languages, there may be a
lot of quicksands and elbow rooms in these unaccounted-for operations. Optimization
and accounting for memory addressing is probably best done at low-level language
with the specific CPU architecture in view. Here we discuss operation/CPU-cycle
accounting in four major areas.

First, Table VI.1 gives an accounting of CPU cycles for the reference
processing. This processing is not subject to the 10-s constraint. It appears that the
most time-consuming part are 1) 1,000,000 IFs in scanning through the whole frame
to locate the bright pixels and the bright stars and 2) the potentially large number of
IMULs in analyzing the bright stars.

TABLE VI.1

CPU Accounting for Reference Frame Processing
Operations IF IADD IMUL
Scan Pixels above Threshold
Per Pixel : 1
Total for a Frame 1,000,000
Building Bright Stars
Per Star 500 500 500
Total for 200 Bright Stars 100,000 100,000 100,000
Sorting Bright Stars
Assuming 200 Bright Stars 1,600
Filtering Good Guide Star
Per Candidate Guide Star 30 50 50
Total for 50 Candidate Guide Stars 1,500 2,500 2,500
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Second, Table V1.2 gives the accounting of the tracking algorithm in the 10-s
frame processing. It appears from Table VI.2 that the analysis of the guide stars and
the calculation of the drifts does not requires an inhibitive amount of CPU cycles. On
a SPARCstation 1, these two steps combined take less than 1 second.

TABLE VI.2
CPU Accounting for Tracking
Operations IF IADD IMUL
Building Guide Stars
Operations per Star 400 300 250
Total for 10 Guide Stars 4,000 3,000 2,500
Drift Calculation 5 50 50

Third, we discuss the CPU-cycle accounting of the shift-and-add and the
threshold mode processing. Whether these operations will be performed by a SAAHC

or a dedicated microprocessor remains an open issue. Table V1.3 lists the minimum
requirements for these processing.

TABLE VI.3
CPU Accounting for Shift-and-Add and Threshold Mode Processing
Operations IF IADD IMUL
Scan Pixels above Threshold
Per Star 1
Total for a Frame 1,000,000
Building Bright Stars
Per Star 500 500 500
Total for 50 Bright Stars 25,000 25,000 25,000
Shift-and-Add
Per Pixel 1
Total 1,000,000
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Finally, we discuss the CPU-cycle accounting for the compression algorithm
discussed in Section V. As in the shift-and-add processing, a mundane task appears
to consume a major fraction of the CPU cycle. In the case of VBTWL compression,
this task is the evaluation of the most significant bit for a given integer. Current
implementation in C uses consecutive downshifting of the integer and check whether
the downshifted integer is equal to zero. Table VI.4 lists a rough accounting of the
number of operations. Since the major operations are IFs, we have not listed the
accounting for IADD and IMUL. Furthermore, we are using C to manipulate the
bits to construct the telemetry stream. The result is shown in the encoding section
of Table VI.4. Here a block size of 16 by 16 is adopted. The compression with
three predictor scheme plus encoding takes about 17 sec on a SPARCstation 1+.

Improvement in the efficiency of compression efficiency can come from the following
directions.

e First, it is conceivable that a more efficient algorithm can be build in machine
code which reduces the usage of CPU cycles in the MSB and encoding procedures.

e If the first avenue is not fruitful, we can always reduce the number of
predictors we use. The code should allow the turn-on and turn-off of certain
predictors. The inclusion of the single-differencing predictor appears to offer only
marginal improvement in compression ratio.

TABLE VI.4
- CPU Accounting for Image Compression

Operations IF

Optimization of Predictor/Tiering Structure
Calculating the Most Significant Bit

Per Predictor Per Twixel ~T
Total for 262144 Twixels Per Predictor 1,800,000
Total for 3 Predictors 5,500,000
Encoding

Per Twixel (4 -10)
Total for 262144 Twixels ~ 2,000,000
Overhead

Per 16 by 16 Block 30
Total for 1024 Blocks 30,000
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VII. Threshold and Fast Mode Processing for The Blue Instrument

In this section, we discuss the processing algorithm of the threshold mode
and fast mode for the blue instrument. Even though these algorithms have not
be fully implemented, there appear to be no major difficulty in their design and
implementation. Their memory and CPU-cycle requirements also appear within
bounds. The greatest uncertainty is probably the compression of the fast mode data.
VII.a. Threshold-Mode Processing

The threshold mode observation uses spare telemetry bandwidth to yield useful
scientific data. The purpose is to know in general what’s going on within the FOV at
a frame-by-frame basis. This mode should pick out N brightest pixels/images within
the frame and downlink the information.

The threshold mode does not in itself cost much memory; it could, however,
be an large user of CPU cycles. Overall, the threshold mode processing is very
similar to the scanning and analysis for the bright stars discussed in Section IIf. See
the Section VLb. for an accounting of the CPU cycles for the bright star scanning
procedure. Current design philosophy for the threshold mode processing is as follows,
depending on whether we have enough CPU cycles.

e If we have spare CPU cycles, then we simply adopt the same algorithm as the
bright star processing for each frame.

¢ If we do not have spare CPU cycles, then we need to consider ways to
economize the threshold mode processing.

In the following, we discuss possible ways to reduce the processing requirement
for threshold mode. Operationally, the threshold mode processing can be broken into
two parts. The first part is the scanning and the second part is the analysis.

Scan for Bright Pixels

We need to scan through all of the frame pixels. If we check every pixel to see
whether it is above the threshold or not (most will not be above the threshold); there
will be altogether ~1,000,000 IF operations. However, it is conceivable that we can
halve the number of IF operations.

We begin by considering the case when the threshold mode data is being
processed contemporaneously with the image mode. It is most natural to embed the
threshold pixel scanning in the shift-and-add as discussed in Section IV. Using the
Approach 3 in Figure IV.3 as an example, after fetching the pixel count from the
memory, the SAAHC (or microprocessor) will first check for the threshold. In the
rare occasion of a bright pixel, an interrupt along with the address of the bright pixel
will be sent to the CPU and initiate the analysis. In Figure IV.3, we show that the
checking is applied for every pixels. We could, however, sum the counts for the two
neighboring pixels (which is then added to the final image) and check tlie sum against
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some threshold value. In other words, the two IFs in Figure IV.3 is combined into
one. In this way, the number of IFs is effectively cut in half.

On a SPARCstation 1+, an IF is estimated to take 2usec. The difference
between processing 1,000,000 and 500,000 IF's is 1 whole second. Keeping in mind
that a SPARCstation is not a realistic representation of the performance of the CPU,
the 1-second difference does provide a critical example of the importance of savings in
the number of IF's in the 10-s frame processing.

In the case when we carry out fast mode observation contemporaneously, a

similar scanning procedure can be applied. Th only difference is that we do not
perform the addition into the final image.

In principle, we can further reduce the number of IF operations by checking
the sum of more than two consecutive pixels. My current feeling is that checking the
sum of two in the threshold scanning should be sufficient.

Analysis

The nright pixel threshold should be set such that we are only processing a
very small fraction of the pixels in the frame. There are two approaches.

e We can pick up only the information related to that particular bright pixel.

e We can perform some analysis to the image containing the bright pixels. This
processing can be exactly the same as the bright star/guide star analysis.

My feeling right now is that the bright star processing discussed in Section II
does not seem to require a very large amount of PCU power. I do not any compelling
reason why we should not perform the analysis for each bright star. Of coruse, we will
not subject the subject the bright stars to the good guide star test, since the guide
stars will not be changed during the 1000-s integration.

VIL.b. Fast-Mode Processing

The processing for the fast mode is more CPU intensive than memory
intensive. As far as I can tell, no timing information is provided to the DPU for
individual photons, other than in the engineering mode. We should rely on the
DPU’s own clock to provide the timing information. This is done by reading the

accumulating frame which is being written into by the detector in real time. The
procedure is sketched below. ’

1. Every At, the DPU system clock (assumed to have sufficient accuracy) pulse
the CPU for an action.

2. The CPU reads a specified region in the accumulating frame and stores the
output at a certain location. Let’s refer to this array of data as a window stack.

3. The CPU calculates the difference between the current window stack and
the window stack from the previous read. The result is the counts accumulated
during this At. Let’s refer to this data set as a window.
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4. The final data is a sequence of windows which need to be compressed and
formulated into a telemetry stream.

Issues for the algorithm design include:
o The processing in steps 2, 3 and 4 above must be finished in At.

e The limit in telemetry bandwidth and the brightness of the region of interest
will constrain the size of the window and the timing resolution At.

e The fast mode, more than the other two mdoes, is driven by the science we
wish to achieve. Possible targets of fast mode observation include: core of globular
cluster with high time resolution and moderate spatial resolution (ms pulsar in GC),
field of low count rate with high time resolution and moderate spatial resolution (fleld
fast pulsar), field of high count rate with moderate time resolution and low spatial

resolution (stellar seismology). The fast mode processing should be versatile enough
to handle these situations.

e The compression algorithm appropriate for the fast mode data is most likely
different from the compression of the final image. It should be able to handle the
various situations arised from the wide range of scientific objectives of the fast mode.

More works are needed to develop the fast mode processing algorithm.
However, I do not forsee major obstacles in the completion of the algorithm and
achieving the scientific goals.
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Frame

Pixel

Reference frame

Working frame

Accumulating frame

Final image
Twixel
Bright stars
Goodness
Guide stars
Drift

Roll

SAAHC

VBTWL

Predictor

VIII. Glossary

A 1024 x 1024 array generated by a 10-s integration of the blue
instrument.

A resolved unit in the 1024 x 1024 frame, =(0.5 arcsec)?

The frame taken before the 100-frame integration. Information
extracted from this frame will be used for tracking.

A frame which is obtained after a 10-s integration and is
currently being processed by the DPU for tracking, shift-and-
add, threshold and fast mode processing.

A frame which is being directly written to by the increment
processor, concurrent to the processing of the working frame by

the DPU.
A 512%x512 array resulted from the summation of 100 frames.
A resolved unit in the final image, = 2 x 2 pixels = 1(arcsec)?.

Stars which contain pixels with counts above a certain
threshold and to whom the image analysis algorithm are
applied.

A set of values reflecting the the quality of the stellar image
base on a certain set of disgnostic criterions.

Bright stars with good image qualities (goodness of zero) which
are used for tracking throughout the 100-frame integration.

The translation of the aspect of the working frame with respect
to the reference frame. Az and Ay.

The relative orientation angle between the working frame and
to the reference frame, measured with respect to a pre-defined
center. O.

The Shift-And-Add hardware Coprocessor. This divice external
to the microprocessor is responsible for the efficient shifting-
and-adding of the columns of frame data to the final image.

The Variable-Block-Tiered-Word-Length scheme for image data

compression.

The quantity used in the decorrelation procedure of the

compression scheme to remove the predictable component of
the information.
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This release of the document “Tracking and Compression Algorithm” (XMM-
OMN/PENN/TC/0004.03) is to provide an updated discussion on the tracking
algorithm. Only chapter 3 of the document is being updated. Chapter 3 of the
previous release including figures (XMM-OM/PENN/TC/0004.02) is superceded by
this release in its entirety. Changes in this release of Chapter 3 are:

e The original section III.d on Image Quality and related figures are removed.
A full discussion on image quality will be presented in a separate document.

e The tracking algorithm has undergone a major overhaul. We have now
included the statistical weighting of individual guide stars. The statistical weighting
discussion is inserted as IIl.c. The discussion of the tracking accuracy in I1I.d
is revised accordingly. Furthermore, we have developed two different schemes of
handling outlier stars. These are extensively discussed in IIl.e. These two new
developments (statistical weighting and outlier handling) enhance the accuracy of

the tracking and also increase the robustness of the algorithm under unfavorable
conditions.



III. Tracking

IIl.a. Basic Formalism

Suppose we have located and chosen N good guide stars within the field of
view in the reference frame at (u;.v;) where 7 runs from 1 to V. At a later moment,
we take an integration of a frame and determine the new locations of the guide stars
at (zi,yi). Our task is to determine the change in the aspect of the current frame
with respect to the reference frame. i.e. to calculate the drift in the z and y direction
as well as the roll with respect to a particular roll center taken to be the origin. The
selection of the roll center is arbitrary. However, see discussions below on a natural
default choice of the roll center where the errors of the calculated drifts are formally
minimized.

Applying a drift and roll (Az, Ay, ©) to the guide stars, their new locations are
given by

z; = uiC —v;S + Az (II1.1a)
yi = uiS + viC + Ay, (III.1b)
where C' = cos© and § = sin ©. (Without causing any confusion, we use C here

for the cosine of the roll angle, while in the rest of this document, C refers to the
total count in a stellar image. In IILb., we shall see that the cosine equals to unity
for all practical purposes.) With the observed (z;,y;), the drifts are calculated by
minimizing

D* = w;D} (IT1.2)

where
D; ={x; - %)+ (yi — 0:)?, (II1.2a)

ans w; is the statistical weight for the i-th guide star. We shall discuss the assignment
of w; later. For the moment, let’s assume that the weight w; is independent of the
drift and roll (Az, Ay, ©). Differentiating D? with respect to Ar, Ay and O at the

minimum yields

Az =(X -UC +VS)/W (II1.3a)
Ay=(Y -VC -US)/W (III.3b)
SP+CQ=0, (II1.3c)

where

U= zuviui, (I1].4a)
V=Y w, (ITI.4b)

X = Zwix,-, (II1.4¢)



}" = Z u’iyi» (III4d)

W=> uw. (IIT.4¢)

B T o
P= Z wi(ziui + yivi)| — (XU + YV)/W, (IT1.4f)
Q = | > wilzivi —yiui) | — (XV - YU)/W. (IT1.4g)

For our application, the roll angle is always small and P is always greater than zero,
thus the roll angle is given by

© = sin"}(-Q/R) = sin~! [-Q/uﬂ + Q2)1/2] : (I11.5)

II1.b. Small Roll Angle Approzimation

As long as O is small, we can make the following approximation in calculating
the roll angle,

C=1, and S=0=-Q/R, (II1.6)

where

R=(Q*+P)V/? ~ P+ Q*2P. (IIL.7)

In this small roll angle approximation, calculation of @ via equation (III.7) does

not need the square root operation as in equation (II1.3). This approximation will
introduce error which is of order ©2. Since the roll angle is expected to be on the
order of 0.002 radians from the beginning to the end of a 1000-s integration, using

equation (III.7) will not introduce any significant error (see below for estimate in the
error of O).

In summary, the drift and the roll of the satellite are calculated through the
equations (II1.4) which yields the quantities U, V, X, Y, W, P, and Q. From these
quantities, we can calculate the drift and roll in the small angle limit:

S=0=—-PQ/(P?+Q%/2), (IT1.8q)
Ar = (X - U + V"S)/11, (III.8b)
Ay= (Y =V =US)/IV. (ITI.8:)

IIl.c. Assignment of Statistical Weight

We need to specify the statistical weight in order to carrv out the calculation
of the drift and roll. The simplest form of the statistical weight is to set w; uniformly
to unity (uniform weighting). The calculation is much simplified and this has been
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the adopted approach in earlier versions of the tracking algorithm. In this case,

the uncertainty of the drift and roll is dominated by the worst tracking guide stars,
usually the faintest one. Under nominal conditions, there might be a factor of 2 to 3
difference between the brightest and the faintest guide stars. The resulting accuracy
is generally acceptable. This could, however, become a problem in a pathological field
where the available guide stars are limited and they vary dramatically in brightness.
For example, in one particular simulation of a sparse field through a narrow band
(1%) filter, the brightest (320 counts/frame) and the faintest (20 counts/s) differ in
brightness by a factor of about 16. A uniform statistical weight will then seriously
affect the tracking performance. And it is especially in such cases that the tracking
accuracy becomes important.

With some increase in processing, we can take into account the varying
statistical weights of different guide stars. As discussed in Chapter II of this
document, the guide star location algorithm approximately achieve the accuracy of
opsr/CY/? for the centroid of the star, where opsF is the standard variation of the
detector/system PSF. Thus the statistical weight of individual guide star locations is .
directly proportional to the counts in the image. Thus, we assign

wi = Cj, ’ (II1.9)

where C; is the count of the guide star image. This quantity is readily available from
the guide star location algorithm. For a non-robust (no outlier data point biasing),
this is an adequate and simple designation of the statistical weight for the guide stars.

In the actual implementation, we have two choices of incorporating the
statistical weight. The first one is to use the counts obtained from the reference frame
and apply it throughout (reference count weighting). The advantage of this approach
is that U, V, W can be pre-calculated before the frame integrations. Some saving in
processing could be gained. The disadvantages is that the fluctuation in U, V. W will
be frozen. Such fluctuations would be carried over to the frame-by-frame tracking and
they could lead to a finite offset in the tracking performance. The second approach
is to use the counts for the guide stars in the current frame as the statistical weight
(current count weighting). While this would be more favorable from the statistical
point of view, additional processing would be required.

At the moment, the current count weighting scheme is adopted. CPU timing
benchmark is needed to check whether the drift and roll calculation impose a severe
processing penalty. If this turn out to be the case, then we would have to consider the
reference count weighting scheme.

Figure III.1 shows the tracking result of a nominal situation. Fields with an
average stellar density are simulated in white light with random walk drift. The
upper left panel shows the distribution of the brightest stars. The upper right panel
shows the locations of the guide stars selected by the guide star selection algorithm

‘discussed in Chapter II. The middle left panel shows the deviation between the
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calculated drift and the (simulated) real drift. The middle right panel shows the
same result, only on a finer scale. The lower left panel shows the deviation of the
calculated roll from the actual roll. The lower right panel shows the deviation of the
observed (from guide star location) guide star locations to the projected (by applying
the calculated drift /roll to the reference) guide star locations. In general, the more
concentrated the cluster, the better the tracking performance. See discussions below
on the application of these quantities for robust outlier handling. Figure II1.2 shows
the same case as in Figure 111.2 except that the stellar density is taken to be in the
galactic plane. Figure III.3 shows the case of the galactic pole.

III.d. Precision of the Tracking

Since the observed location of the guide stars (z;,y;) as well as the reference
locations (u;,v;) will no doubt have uncertainties, we expect the calculated drifts
and roll to have some uncertainty. We now estimate the errorbar of the tracking
quantities and the calculated drift and roll in the case of using the count weighting
scheme. We take the error bar for the stellar location in the r and y to be éz; ~
O’psF/Cil/z. It is straightforward to estimate the standard deviations for X, Y, U, and
|4

6X = 6Y = 6U = 6V = W(z) ~ opspW'/?, (II1.10)

where (6z) = [, w?(6z:)?)'/2/W. Even though the values of §X(6Y") and §U(6V)
are the same, we need to make a distinction between them. The quantities U and V'
are partly universal for the frame-by-frame tracking; errors associated with a linear
dependence of them can be easily removed as a systematic error by an after-the-
fact calibration to align the star positions with some absolute reference frame; this
crror is partially reflected in the finite average offset in the tracking performance.

linear contributions of U and V in equations (I11.8b) and (II1.8¢) does not affect the
precision of the tracking.

The error of Q is
6Q ~ VR/WopsF, (II1.11)

and the error of © is

éQ  opsr
60 ~ 2 ~
& R

T (II1.12)
The standard deviations for the drifts are
[ ";2 b 1/2
§(Az) =~ ";%{f ol (II1.13a)
and B
o [ v? 1!
§(Ay) ~ \%_F It - (I11.13b)

As long as the roll center is chosen to lie within the field of view, both V"2/1V' R and
U? /YW R will be less than unity.
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Mathematically, applying a rotation and translation parameterized by the
calculated drift and roll (Azr + §(Azx), Ay £ §(Ay). O = §0) to any particular point
(zr,y) point will yield the same result (z' £ éz',y" + '), independent to the choice of
the origin (roll center). However, for efficiency reason, we will only perform on-board
compensation to the translation (shift-and-add) to the satellite drift; no compensation
will be applied for the roll. The shift-and-add procedure leads to the smallest errorbar
at the roll center and the error is greater for points at greater distances from the
roll center. Figure II1.1 shows the deviation of the calculated drift from the real
(simulated) drift. Figure II1.2 shows deviation of the calculated roll from the real
(simulated) roll. The spread of the deviations is consistent with the estimates given
in equations (II1.12) and (II1.13).

We now discuss a special case where the errorbars of Az and Ay are formally
minimized. This is achieved by minimizing U? and V2, i.e., choosing the center-of-
mass of the guide stars as the roll center and setting U = 0 and V = 0. This simplifies
equations (8b) and (8¢) to Az = X/W and Ay = Y /1. The center-of-mass is the
natural default roll center. However, with a moderate increase in arithmetics, we
shall implementing the tracking algorithm as equation (8) which does leave open the
possibility of choosing the roll center at any location.

In the simulation for Figure III.1, 10 guide stars are uéed with an averaged
count rate of about 3500 counts/frame, i.e. W =~ 35,000. The estimated (1-sigma)
errorbar for §(Az) is approximately 0.003 arcsec (with opsp of 0.5 arcsec). Visual
inspection shows that the calculated fluctuation is slightly worse than this estimate.
This is probably the result of finite contribution from the background which is
essentially ignored in the discussions above. Similar conclusions is obtained for the
cases shown in Figures II1.2 and IIL.3.

IIl.e. Qutlier Handling

In estimating the precision of the tracking calculation [Egs. (II1.12) and
(IT11.13)], we have made the implicit assumption that all guide stars are well-
behaved in that they are singular and does not vary with time other than statistical
fluctuation. There are, however, situations where this assumption is violated. Such
situations include:

e A bad guide star was chosen as a good one in the reference frame due to
statistical fluctuation. For example, a binary image may disguise as a good guide star
if the fainter stars is particularly weak and the brighter star is particularly strong in
the reference frame. Nature, not statistics, could also play cruel trick on us by placing
bright yet intrinsically variable stars in our frame. Even with the multiple guide star
selection criteria discussed in Chapter II, there is no assurance that only good guide
stars will be selected.

e Not enough good guide stars are located in the reference frame. We are

forced to use some bad guide stars. Note that we need at least two guide stars to
calculate the drift and roll.
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e The detector’s nonlinearity /nonuniformity could also offset the guide stars’
location, even when the guide star itself is well behaved all the way. For example,
such distortion could occur at the boundary of the MCP hexagonal pattern.

We have examine two methods of handling the outliers. The first one is detect
the outliers and exclude them outright. The second one is to assign smaller weight to
the outlier by modifying the weighting factor.

IIl.e.1. Outlier Exclusion

We begin by examining the guide star consistency through the calculated
deviation from equations (III.1) and (III.2). If some of the guide stars turn sour in
the tracking frame or a bad guide star was chosen in the reference frame, then these
star will have large deviations, i.e., inconsistent with the calculated drift which is
dominated by the rest of the presumably well-behaved guide stars. Once we single
out the outliers, then excluding it from the drift calculation will enhance the precision
of the tracking.

The outlier exclusion algorithm is implemented as follows.

1. We calculate the drift and roll with the current set of guide stars using
equations (IIL.4) to (IIL.8). '

2. We use the calculated drift and roll to calculate the deviation of the
observed from the expected locations for individual guide stars. This is done by
applving Az, Ay and © (in the small roll angle limit) in equation (III.1) and
calculating the deviation for individual guide star D? defined in equation (IIL.2).

3. The deviations D} are sorted by magnitude. The largest deviation D? .. is
examined for two outlier exclusion criterions:
Dyp14 exclusion : D?,max > D?hld’ (II1.14)
or
Q exclusion : D} pax > QU x (D? - D} nax)/(Nggs — 1), (II1.15)

where D?,,, and Q@ = w? are two predetermined parameters for the drift calculation.
If either equation (III.14) or (III.13) is satisfied for the outermost guide star, then
we’ve found an outlier and it is excluded from the current guide star list. In each
iteration, we only exclude one outlier.

4. With the updated current guide star list, we repeat step 1. The iteration is
terminated if no guide star is excluded. Furthermore, to avoid a run-away process
where the procedure does not converge, we impose the following additional exit
conditions: a) the number of excluded guide star should not be greater than a
certain number Nz outlier, b) the number of used guide star should not be less than

-

Nomin,gs- Currently, we use Nyyos ouitize = 3 and Npyip oo = 4.

The key step in the outlier exclusion is equations (III.14) and (IIL.15). We now
discuss the implications of this procedure. The objective of the D14 exclusion is
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straightforward. The selected D¢4i4 is basically an estimate of the largest possible
acceptable deviation due to statistics. The theoretical basis of the intuitive Q
exclusion, on the other hand, is more convoluted.

Suppose one of the guide stars turns bad in the current frame, then the {2
exclusion is roughly equivalent to excluding a star which has a deviation such that

Di/(D) > Ngga/(Nggs — w), (I11.16)

where (D) is the average deviation we expect from the good guide stars. In arriving at
equation (III.16) we have taken into account the influence of the bad guide star to the
current drift calculation. Several key features in equation (III.16) need to be noted.
First, the exclusion is not a linear function of w; it approximates linear function only
when Ngg, > w. Second, if w X Ngq,, then equation (III.18) cannot be satisfied;

the Q exclusion does not pick up any outlier. In the current implementation, we use
Q = 16. If Nyy, = 10, then the 2 exclusion is equivalent to a 6-sigma exclusion, 1f we
think of (D) as the standard deviation.

In summary, there are four adjustable parameters in the outlier exclusion
scheme, D%,,,, @, Nmaz outtier and Npin go. These four numbers should be fine-tuned

by extensive snfnulatxons and more importantly, applications to realistic data and
detector characteristics.

IIl.e.2. Robust Estimation

The use of robust estimator is well developed. Numerical Recipe contains a
discussion on the basics of these methods. Here we simply discuss a twist to the
robust estimator as in the current implementation.

The idea of robust estimator is to modifyving the statistical weighting such
that outlier data point will give proportionately smaller contribution. In our current
implementation, we modify the statistical weight as (cf. Eq. II1.9])

W! = C;/(1 + pC;D?), (II1.19)

where D? is the deviation calculated through equation (II1.2) as discussed in the
outlier exclusion algorithm, and p is an externally specified parameter.

The essence of the modifier M; = (1 + pC;D?)~! is to simulate the Lorentzian
distribution. See page 541 of Numerical Recipe for more discussions. Formally, if we
assume the underlying distribution is Lorentzian, rather than Gaussian, then the drift
and roll are calculated through a set of simultaneous non-linear equation similar to
equation (III.4) except that the summations will now include the M; factor. Since D;
depends on the calculated drift and roll, it is a non-trivial task to find the solution.

In the implementation, we apply an iterative scheme where the calculated drift
and roll is fed back into the calculation of the statistical weighting [Eq. (III.18)] in
the subsequent iteration. We start the iteration with the non-robust estimation,

1.7



i.e., setting the weight modifier to unity for the initial iteration. The iteration is
terminated after a maximum number of iterations or the improvement in the averaged
deviation (D? /W) becomes negligible.

The meaning of the modifier parameter p is the following: Stars whose
deviation follows

D? 2 1/pC; (I11.20)

will have a significantly suppressed statistical weight. Compared to the estimate

of star location fluctuation o‘psp/Cl-l'm, this means that stars whose deviation is
greater than opsr/p'/? standard deviation will be suppressed. In other words, in
order to achieve suppression of data points which are k-standard deviation away from
expectation, we need to specify p as opsr/k?. Currently, we adopt p = 0.050psF
which corresponds to a suppression of point beyond ~ 4.5 standard deviation.

To conclude, we have developed two schemes to handle the possible presence
of outliers. The outlier exclusion algorithm applies an abrupt exclusion to eliminate
outliers (it’s either in or out), while the robust estimation uses more gradual
suppression. The requirement on real-time CPU cycles for these two algorithms
appears to be comparable. One can probably identify situations where one algorithm
could work better than the other and vice versa. Overall, the robust algorithm has
the advantage of having fewer major parameters (p versus D;piq and §2), the meaning
of this parameter is also more transparent. It is also easier for parameter optimization
as the Optical Monitor continues to evolve in the future.

II11.f. Summary

In summary, a paradigm has been developed to calculate the satellite drift and
roll. There are multiple variations within this paradigm: We can choose among three
different weighting factors and we have a choice between two different kinds of outlier
handling scheme (plus no outlier handling at all). The decision of which algorithm to
use depends on two factors.

First, the algorithm must be efficient enough that the CPU can carry out
the calculation without stress. CPU benchmarking/timing is important once the
appropriate hardware becomes accessible. Given sufficient CPU power, the current
top contender for the tracking algorithm configuration is the iterative robust
estimation with current count weighting.

Second, the tracking algorithm must be able to yield acceptable performance
over a wide range star fields. The results of tracking with pathological star field is
given in a separate document (XMM-OM/PENN/TC/0019.xx). We expect both this
document and the compilation of tracking for pathological fields to evolve over the
course of this project.
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Figure Captions for Chapter III

Figure III.1 — Tracking performance for an average star field in white light. The
upper left panel shows the distribution of the stars. The upper right panel shows the
locations of the guide stars selected by the guide star selection algorithm discussed

in Chapter II. The middle left panel shows the deviation between the calculated

drift and the (simulated) real drift. The middle right panel shows the same result,
only on a finer scale. The lower left panel shows the deviation of the calculated roll
from the actual roll. The lower right panel shows the deviation of the observed (from
guide star location) guide star locations to the projected (by applying the calculated
drift /roll to the reference) guide star locations. In general, the more concentrated the
cluster, the better the tracking performance. See discussion in IIl.e on the application
of these quantities for robust outlier handling.

Figure II1.2 —  Same as Figure 1 with a simulated dense (galactic plane) stellar
distribution.
Figure III.3 — Same as Figure 1 with a simulated sparse (galactic pole) stellar
distribution.
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