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This release of the document “Tracking and Compression Algorithm” (XMM-
OM/PENN/TC/0004.03) is to provide an updated discussion on the tracking
algorithm. Only chapter 3 of the document is being updated. Chapter 3 of the
previous release including figures (XMM-OM/PENN/TC/0004.02) is superceded by
this release in its entirety. Changes in this release of Chapter 3 are:

e The original section III.d on Image Quality and related figures are removed.
A full discussion on image quality will be presented in a separate document.

e The tracking algorithm has undergone a major overhaul. We have now
included the statistical weighting of individual guide stars. The statistical weighting
discussion is inserted as III.c. The discussion of the tracking accuracy in III.d
is revised accordingly. Furthermore, we have developed two different schemes of
handling outlier stars. These are extensively discussed in IIl.e. These two new
developments (statistical weighting and outlier handling) enhance the accuracy of
the tracking and also increase the robustness of the algorithm under unfavorable
conditions.



III. Tracking

IIl.a. Basic Formalism

Suppose we have located and chosen N good guide stars within the field of
view in the reference frame at (u;,v;) where ¢ runs from 1 to N. At a later moment,
we take an integration of a frame and determine the new locations of the guide stars
at (zi,yi). Our task is to determine the change in the aspect of the current frame
with respect to the reference frame, i.e. to calculate the drift in the z and y direction
as well as the roll with respect to a particular roll center taken to be the origin. The
selection of the roll center is arbitrary. However, see discussions below on a natural
default choice of the roll center where the errors of the calculated drifts are formally
minimized.

Applying a drift and roll (Az, Ay, ©) to the guide stars, their new locations are
given by

Z; = u;C —v;S + Az (III.la)
gi = u; S + v;C + Ay, (II1.1b)
where C' = cos© and S = sin ©. (Without causing any confusion, we use C here

for the cosine of the roll angle, while in the rest of this document, C refers to the
total count in a stellar image. In IILb., we shall see that the cosine equals to unity
for all practical purposes.) With the observed (z;,y;), the drifts are calculated by
minimizing

D? = w;D} (I11.2)

where
D; = (.’17,' - :f:,')2 + (y,' — g,-)2, (III.‘.ZG)

ans w; is the statistical weight for the :-th guide star. We shall discuss the assignment
of w; later. For the moment, let’s assume that the weight w; is independent of the
drift and roll (Az, Ay, ©). Differentiating D? with respect to Az, Ay and O at the
minimum yields

Az =(X-UCH+VS)/W (II1.3q)
Ay=(Y -VC-US)/W (II1.3b)
SP+CQ =0, (III.3c)
where
U=>) wu, (II1.4a)
V=) ww, (I11.4b)
X =) wa, (IIT.4¢)



Y = wiy, (II1.4d)

W = an (III.4¢)

P = LZ wi(ziui + y,-v,.)1 — (XU +YV)/W, (II1.4f)

i ]
Q = | S wizivi — yiws) | — (XV = YU)/W. (II1.49)

For our application, the roll angle is always small and P is always greater than zero,
thus the roll angle is given by

O = sin~!(~Q/R) = sin™! [-Q/(P2 + Q"’)l/z] . (IIL.5)

IIL.b. Small Roll Angle Approzimation

As long as O is small, we can make the following appfoximation in calculating
the roll angle,

C=1, and S=0=-Q/R, (II1.6)

where
R=(Q*+ P*)™/? ~ P+ Q?*/2P. (II1.7)

In this small roll angle approximation, calculation of © via equation (III.7) does

not need the square root operation as in equation (II1.5). This approximation will
introduce error which is of order ©2. Since the roll angle is expected to be on the
order of 0.002 radians from the beginning to the end of a 1000-s integration, using

equation (II1.7) will not introduce any significant error (see below for estimate in the
error of O).

In summary, the drift and the roll of the satellite are calculated through the
equations (III.4) which yields the quantities U, V, X, Y, W, P, and Q. From these
quantities, we can calculate the drift and roll in the small angle limit:

S=0=—PQ/(P?+ Q%/2), (II1.8a)
Az =(X —U+VS)/W, (III.8b)
Ay=(Y -V —US)/W. (III.8¢)

II.c. Assignment of Statistical Weight

We need to specify the statistical weight in order to carry out the calculation
of the drift and roll. The simplest form of the statistical weight is to set w; uniformly
to unity (uniform weighting). The calculation is much simplified and this has been
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the adopted approach in earlier versions of the tracking algorithm. In this case,

the uncertainty of the drift and roll is dominated by the worst tracking guide stars,
usually the faintest one. Under nominal conditions, there might be a factor of 2 to 3
difference between the brightest and the faintest guide stars. The resulting accuracy
is generally acceptable. This could, however, become a problem in a pathological field
where the available guide stars are limited and they vary dramatically in brightness.
For example, in one particular simulation of a sparse field through a narrow band
(1%) filter, the brightest (320 counts/frame) and the faintest (20 counts/s) differ in
brightness by a factor of about 16. A uniform statistical weight will then seriously
affect the tracking performance. And it is especially in such cases that the tracking
accuracy becomes important.

With some increase in processing, we can take into account the varying
statistical weights of different guide stars. As discussed in Chapter II of this
document, the guide star location algorithm approximately achieve the accuracy of
opsr/ C'/2 for the centroid of the star, where opsp is the standard variation of the
detector/system PSF. Thus the statistical weight of individual guide star locations is
directly proportional to the counts in the image. Thus, we assign

4

Wy = O, (IT1.9)

where C; is the count of the guide star image. This quantity is readily available from
the guide star location algorithm. For a non-robust (no outlier data point biasing),
this is an adequate and simple designation of the statistical weight for the guide stars.

In the actual implementation, we have two choices of incorporating the
statistical weight. The first one is to use the counts obtained from the reference frame
and apply it throughout (reference count weighting). The advantage of this approach
is that U, V, W can be pre-calculated before the frame integrations. Some saving in
processing could be gained. The disadvantages is that the fluctuation in U, V, W will
be frozen. Such fluctuations would be carried over to the frame-by-frame tracking and
they could lead to a finite offset in the tracking performance. The second approach
is to use the counts for the guide stars in the current frame as the statistical weight
(current count weighting). While this would be more favorable from the statistical
point of view, additional processing would be required.

At the moment, the current count weighting scheme is adopted. CPU timing
benchmark is needed to check whether the drift and roll calculation impose a severe

processing penalty. If this turn out to be the case, then we would have to consider the
reference count weighting scheme.

Figure III.1 shows the tracking result of a nominal situation. Fields with an
average stellar density are simulated in white light with random walk drift. The
upper left panel shows the distribution of the brightest stars. The upper right panel
shows the locations of the guide stars selected by the guide star selection algorithm
discussed in Chapter II. The middle left panel shows the deviation between the
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calculated drift and the (simulated) real drift. The middle right panel shows the
same result, only on a finer scale. The lower left panel shows the deviation of the
calculated roll from the actual roll. The lower right panel shows the deviation of the
observed (from guide star location) guide star locations to the projected (by applying
the calculated drift /roll to the reference) guide star locations. In general, the more
concentrated the cluster, the better the tracking performance. See discussions below
on the application of these quantities for robust outlier handling. Figure III.2 shows
the same case as in Figure II1.2 except that the stellar density is taken to be in the
galactic plane. Figure III1.3 shows the case of the galactic pole.

IIT.d. Precision of the Tracking

Since the observed location of the guide stars (z;,yi) as well as the reference
locations (u;,v;) will no doubt have uncertainties, we expect the calculated drifts
and roll to have some uncertainty. We now estimate the errorbar of the tracking
quantities and the calculated drift and roll in the case of using the count weighting
scheme. We take the error bar for the stellar location in the = and y to be éz; ~

opsr/ Cil 2 1t is straightforward to estimate the standard deviations for X,Y,U, and
V:
6X = 8Y = 6U =6V = W{éz) ~ opsrW/?, (II1.10)

where (6z) = [3; w?(8z;)?)'/2/W. Even though the values of §X(6Y) and sU(§V)
are the same, we need to make a distinction between them. The quantities U and V
are partly universal for the frame-by-frame tracking; errors associated with a linear
dependence of them can be easily removed as a systematic error by an after-the-
fact calibration to align the star positions with some absolute reference frame; this
error is partially reflected in the finite average offset in the tracking performance.

linear contributions of U and V in equations (II1.8b) and (II1.8¢) does not affect the
precision of the tracking.

The error of @ is
(5Q o~ R/WO’PSF, (III.ll)

and the error of O is

~ = ~ JWE (I11.12)
The standard deviations for the drifts are
o i V2] 1/2
§(Az) ~ j%;‘ Lobms| (I11.13q)
and /
op = 772 11/2
§(Ay) ~ \/‘STf 1+ wE| (II1.13b)

As long as the roll center is chosen to lie within the field of view, both V2/W R and
U? /W R will be less than unity.
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Mathematically, applying a rotation and translation parameterized by the
calculated drift and roll (Az 4 §(Az), Ay + §(Ay),© = 60) to any particular point
(z,y) point will yield the same result (z' & 6z',y' & y'), independent to the choice of
the origin (roll center). However, for efficiency reason, we will only perform on-board
compensation to the translation (shift-and-add) to the satellite drift; no compensation
will be applied for the roll. The shift-and-add procedure leads to the smallest errorbar
at the roll center and the error is greater for points at greater distances from the
roll center. Figure III.1 shows the deviation of the calculated drift from the real
(simulated) drift. Figure II1.2 shows deviation of the calculated roll from the real
(simulated) roll. The spread of the deviations is consistent with the estimates given
in equations (II1.12) and (III.13).

We now discuss a special case where the errorbars of Az and Ay are formally
minimized. This is achieved by minimizing U? and V2, i.e., choosing the center-of-
mass of the guide stars as the roll center and setting U = 0 and V = 0. This simplifies
equations (8b) and (8¢) to Az = X/W and Ay = Y/W. The center-of-mass is the
natural default roll center. However, with a moderate increase in arithmetics, we
shall implementing the tracking algorithm as equation (8) which does leave open the

possibility of choosing the roll center at any location. P

In the simulation for Figure III.1, 10 guide stars are used with an averaged
count rate of about 3500 counts/frame, i.e. W =~ 35,000. The estimated (1-sigma)
errarbar for §(Az) is approximately 0.003 arcsec (with opsr of 0.5 arcsec). Visual
inspection shows that the calculated fluctuation is slightly worse than this estimate.
This is probably the result of finite contribution from the background which is

essentially ignored in the discussions above. Similar conclusions is obtained for the
cases shown in Figures II1.2 and III.3.

Ill.e. Outlier Handling

In estimating the precision of the tracking calculation [Egs. (III.12) and
(II1.13)}, we have made the implicit assumption that all guide stars are well-
behaved in that they are singular and does not vary with time other than statistical
fluctuation. There are, however, situations where this assumption is violated. Such
situations include:

o A bad guide star was chosen as a good one in the reference frame due to
statistical fluctuation. For example, a binary image may disguise as a good guide star
if the fainter stars is particularly weak and the brighter star is particularly strong in
the reference frame. Nature, not statistics, could also play cruel trick on us by placing
bright yet intrinsically variable stars in our frame. Even with the multiple guide star

selection criteria discussed in Chapter II, there is no assurance that only good guide
stars will be selected.

e Not enough good guide stars are located in the reference frame. We are

forced to use some bad guide stars. Note that we need at least two guide stars to
calculate the drift and roll.
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e The detector’s nonlinearity /nonuniformity could also offset the guide stars’
location, even when the guide star itself is well behaved all the way. For example,
such distortion could occur at the boundary of the MCP hexagonal pattern.

We have examine two methods of handling the outliers. The first one is detect
the outliers and exclude them outright. The second one is to assign smaller weight to
the outlier by modifying the weighting factor.

II1.e.1. Qutlier Exclusion

We begin by examining the guide star consistency through the calculated
deviation from equations (III.1) and (III.2). If some of the guide stars turn sour in
the tracking frame or a bad guide star was chosen in the reference frame, then these
star will have large deviations, i.e., inconsistent with the calculated drift which is
dominated by the rest of the presumably well-behaved guide stars. Once we single
out the outliers, then excluding it from the drift calculation will enhance the precision
of the tracking.

The outlier exclusion algorithm is implemented as follows.

1. We calculate the drift and roll with the current set of guide stars using
equations (II1.4) to (IIL.8).

2. We use the calculated drift and roll to calculate the deviation of the
observed from the expected locations for individual guide stars. This is done by
applying Az, Ay and O (in the small roll angle limit) in equation (III.1) and
calculating the deviation for individual guide star D? defined in equation (IIL.2).

3. The deviations D? are sorted by magnitude. The largest deviation D

2
i,max 1S
examined for two outlier exclusion criterions:

Dyhi14 exclusion : D? > D% 145 (I11.14)

i,max

or

Q exclusion : D? oy > O x (D% — D} ax)/ (Nggs — 1), (ITI.15)

where D?,,; and @ = w? are two predetermined parameters for the drift calculation.
If either equation (III.14) or (II.15) is satisfied for the outermost guide star, then
we’ve found an outlier and it is excluded from the current guide star list. In each
iteration, we only exclude one outlier.

4. With the updated current guide star list, we repeat step 1. The iteration is
terminated if no guide star is excluded. Furthermore, to avoid a run-away process
where the procedure does not converge, we impose the following additional exit
conditions: a) the number of excluded guide star should not be greater than a
certain number Npaz outlier, 0) the number of used guide star should not be less than
Niin,gs. Currently, we use Nmaz outiier = 3 and Noin g5 = 4.

The key step in the outlier exclusion is equations (II1.14) and (II1.15). We now
discuss the implications of this procedure. The objective of the D;p14 exclusion is
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straightforward. The selected Dypq is basically an estimate of the largest possible
acceptable deviation due to statistics. The theoretical basis of the intuitive
exclusion, on the other hand, is more convoluted.

Suppose one of the guide stars turns bad in the current frame, then the
exclusion is roughly equivalent to excluding a star which has a deviation such that

D;i/{(D) > Nygato/(Nygs — ), (II1.16)

where (D) is the average deviation we expect from the good guide stars. In arriving at
equation (II1.16) we have taken into account the influence of the bad guide star to the
current drift calculation. Several key features in equation (III.16) need to be noted.
First, the exclusion is not a linear function of w; it approximates linear function only
when Nygs > w. Second, if w 2 Nggs, then equation (II1.18) cannot be satisfied;

the Q exclusion does not pick up any outlier. In the current implementation, we use

Q = 16. If Nyg, = 10, then the Q exclusion is equivalent to a 6-sigma exclusion, if we
think of (D) as the standard deviation.

In summary, there are four adjustable parameters in the outlier exclusion
scheme, th,d, Q, Nmaz,outlier ald Npin gs. These four numbers should be fine-tuned
by extensive simulations and more importantly, applications to realistic data and
detector characteristics.

III.e.2. Robust Estimation

The use of robust estimator is well developed. Numerical Recipe contains a
discussion on the basics of these methods. Here we simply discuss a twist to the
robust estimator as in the current implementation.

The idea of robust estimator is to modifying the statistical weighting such
that outlier data point will give proportionately smaller contribution. In our current
implementation, we modify the statistical weight as (cf. Eq. II1.9})

W! = Ci/(1 + pC;D?), (II1.19)

where D? is the deviation calculated through equation (III.2) as discussed in the
outlier exclusion algorithm, and p is an externally specified parameter.

The essence of the modifier M; = (1 + pC;D?)! is to simulate the Lorentzian
distribution. See page 541 of Numerical Recipe for more discussions. Formally, if we
assume the underlying distribution is Lorentzian, rather than Gaussian, then the drift
and roll are calculated through a set of simultaneous non-linear equation similar to
equation (III.4) except that the summations will now include the M; factor. Since D;
depends on the calculated drift and roll, it is a non-trivial task to find the solution.

In the implementation, we apply an iterative scheme where the calculated drift
and roll is fed back into the calculation of the statistical weighting [Eq. (III.18)] in
the subsequent iteration. We start the iteration with the non-robust estimation,
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i.e., setting the weight modifier to unity for the initial iteration. The iteration is
terminated after a maximum number of iterations or the improvement in the averaged
deviation (D? /W) becomes negligible.

The meaning of the modifier parameter p is the following: Stars whose
deviation follows

D? 2,1/pC; (II1.20)

will have a significantly suppressed statistical weight. Compared to the estimate

of star location fluctuation apsp/C,-l/Z, this means that stars whose deviation is
greater than opsr/p! /? standard deviation will be suppressed. In other words, in
order to achieve suppression of data points which are k-standard deviation away from
expectation, we need to specify p as opsr/k%. Currently, we adopt p = 0.050psF
which corresponds to a suppression of point beyond ~ 4.5 standard deviation.

To conclude, we have developed two schemes to handle the possible presence
of outliers. The outlier exclusion algorithm applies an abrupt exclusion to eliminate
outliers (it’s either in or out), while the robust estimation uses more gradual
suppression. The requirement on real-time CPU cycles for these two algorithms
appears to be comparable. One can probably identify situations where one algorithm
could work better than the other and vice versa. Overall, the robust algorithm has
the advantage of having fewer major parameters (p versus Dyzq4 and 2), the meaning
of this parameter is also more transparent. It is also easier for parameter optimization
as the Optical Monitor continues to evolve in the future.

IIL.f. Summary

In summary, a paradigm has been developed to calculate the satellite drift and
roll. There are multiple variations within this paradigm: We can choose among three
different weighting factors and we have a choice between two different kinds of outlier

handling scheme (plus no outlier handling at all). The decision of which algorithm to
use depends on two factors.

First, the algorithm must be efficient enough that the CPU can carry out
the calculation without stress. CPU benchmarking/timing is important once the
appropriate hardware becomes accessible. Given sufficient CPU power, the current
top contender for the tracking algorithm configuration is the iterative robust
estimation with current count weighting.

Second, the tracking algorithm must be able to yield acceptable performance
over a wide range star fields. The results of tracking with pathological star field is
given in a separate document (XMM-OM/PENN/TC/0019.xx). We expect both this

document and the compilation of tracking for pathological fields to evolve over the
course of this project.
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Figure Captions for Chapter III

Figure III.1 —  Tracking performance for an average star field in white light. The
upper left panel shows the distribution of the stars. The upper right panel shows the
locations of the guide stars selected by the guide star selection algorithm discussed

in Chapter II. The middle left panel shows the deviation between the calculated

drift and the (simulated) real drift. The middle right panel shows the same result,
only on a finer scale. The lower left panel shows the deviation of the calculated roll
from the actual roll. The lower right panel shows the deviation of the observed (from
guide star location) guide star locations to the projected (by applying the calculated
drift /roll to the reference) guide star locations. In general, the more concentrated the
cluster, the better the tracking performance. See discussion in IIl.e on the application
of these quantities for robust outlier handling.

Figure II1.2 —  Same as Figure 1 with a simulated dense (galactic plane) stellar
distribution.
Figure II1.3 —  Same as Figure 1 with a simulated sparse (galactic pole) stellar
distribution.
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