Jovian and kronian ring currents

Chris Arridge
Planetary Science Group, Mullard Space Science Laboratory
and Centre for Planetary Sciences, UCL

In collaboration with Chris Russell and Krishan Khurana (IGPP/UCLA), Nick Achileos (APL/UCL), Michele Dougherty (SPAT/IC), Stan Cowley and Emma Bunce (RSPP/U. Leicester), and David Southwood (ESA).
Introduction

• Earth’s ring current produces a magnetic field that doesn’t severely change the largely dipolar magnetic field produced by the planet.

• The jovian ring current strongly distorts the shape of the field into a disc-like configuration called the magnetodisc.
Force balance responsible for the magnetodisc

- In MHD terms the ring current arises from the force balance in the magnetosphere:

\[\rho (u \cdot \nabla) u = -\nabla \cdot P + j \times B \]

- In establishing the magnetodisc nature of Saturn’s ring current we can investigate the forces required to produce a disc.

- Ignoring \(\nabla \cdot P \) we can expand the radial component:

\[\rho \Omega^2 r = j_\phi B_z = \frac{B_z \Delta B_r}{\mu_0 D} \]

- When \(\Delta B_r > B_z \) the field is disc-like and the density corresponding to such a configuration is:

\[n_c = \frac{B_z^2}{\mu_0 D m_p M_i \Omega^2 r} \]

Arridge et al., 2007, submitted
Ring current and the magnetopause

- The location of the magnetopause depends on a pressure balance across the boundary:

\[kP_{SW} = \frac{B^2}{2\mu_0} \]

- Assuming a vacuum dipole, \(B = B_P r^{-3} \)

\[r_0^6 = \frac{B_P^2}{2\mu_0 k} D_P^{-1} \]

\[r_0 = \left(\frac{B_P^2}{2\mu_0 k} \right)^{\frac{1}{6}} D_P^{-\frac{1}{6}} \]

- The Earth’s magnetopause actually follows this 1/6th law quite closely (Shue et al. 1997).

- But a 1/4th law was found for Jupiter (Slavin et al. 1985; Huddleston et al. 1998) and also recently for Saturn (Arridge et al. 2006).
Ring current effect on the magnetopause

- Using a simple model current sheet to represent the ring current, an empirical model for the variation of the ring current with system size was established by Bunce et al. (2007).

- The azimuthal drift relative to the ExB flow is given by:

 $$ v_{d\phi} = \frac{1}{qB} \left(mr \Omega^2 - \frac{W_\perp}{B} \frac{dB}{dr} \right) $$

- The magnetic moment associated with this current loop is:

 $$ \mu_{TOT} = \frac{mr^2 \Omega^2}{2B} + \frac{W_\perp}{B} \left(1 - \frac{r}{2B} \frac{dB}{dr} \right) $$

- Bunce et al. (2007) shows that the inertial term varies much more strongly with system size than the thermal term.
 - A pressure-gradient-dominated ring current will not modify the 1/6th law
 - When inertial terms are important the magnetosphere will be more more compressible.
Questions, outstanding issues and discussion points

• What is the nature of the transition/interaction between a terrestrial-type magnetotail and magnetodisc?
 – Surely depends on the maintenance of (sub)corotation which in turn depends on the magnetosphere-ionosphere coupling?

• What physical processes occur at the transition to the magnetodisc?
 – Plasma flows, changes in stress balance, corotation breakdown
 – Is the importance of the acceleration current a requirement for a magnetodisc?? Some think so, some don’t…

• When the solar wind pressure is high, producing a quasi-dipolar dayside and a highly asymmetric magnetodisc, what are the form and properties of the FAC ensuring $\nabla \cdot \mathbf{j} = 0$ and their place in global force balance? - or do they close along the magnetopause?