UCL DEPARTMENT OF SPACE AND CLIMATE PHYSICS MULLARD SPACE SCIENCE LABORATORY

# 

### Jovian and kronian ring currents

#### Chris Arridge Planetary Science Group, Mullard Space Science Laboratory and Centre for Planetary Sciences, UCL

In collaboration with Chris Russell and Krishan Khurana (IGPP/UCLA), Nick Achileos (APL/UCL), Michele Dougherty (SPAT/IC), Stan Cowley and Emma Bunce (RSPP/U. Leicester), and David Southwood (ESA).

# **UCL**

#### Introduction

- Earth's ring current produces a magnetic field that doesn't severely change the largely dipolar magnetic field produced by the planet.
- The jovian ring current strongly distorts the shape of the field into a disc-like configuration called the magnetodisc.

Jupiter

Plasma Sheet

Region 2

FAC 60 MA

Interplanetary

Magnetic Field

Ring

Current

90 MA

Radial

Current

60-100 MA

Magnetopause Current

Solar Wind



#### 4 (a) 2 B, [nT] 0 4 b B∲⊡Ţ 2 -2 0 (c) -2 B<sub>z</sub> [nT] -4 -6' -8 10<sup>2</sup> 10<sup>1</sup> 10<sup>0</sup> SCET 05049 05050 05051 05052 05053 05054 05055 r [R<sub>s</sub>] 13.3 21.5 27.6 32.3 36.1 39.1 41.3 z<sub>DIP</sub> [R<sub>S</sub>] SLT [hrs] 0.0284 0.00663 -0.0209 0.0336 0.0381 0.0187 -0.00677

5.52

4.41

6.06

6.42

6.7

6.93

Arridge et al., 2007, submitted |B| [nT] B InT



7.13

#### Force balance responsible for the magnetodisc

In MHD terms the ring current arises from the force balance in the magnetosphere:

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla \cdot \mathbf{P} + \mathbf{j} \times \mathbf{B}$$

- In establishing the magnetodisc nature of Saturn's ring current we can investigate the forces required to produce a disc.
- Ignoring ∇•P we can expand the radial component:

$$\rho \Omega^2 r = j_{\phi} B_z = \frac{B_z \Delta B_r}{\mu_0 D}$$

• When  $\Delta B_r > B_z$  the field is disc-like and the density corresponding to such a configuration is:

$$n_c = \frac{B_z^2}{\mu_0 D m_p M_i \Omega^2 r}$$



## **UCL**

#### **Ring current and the magnetopause**

Magnetopause Standoff Distance,  $r_0^{}\,[
m R_S^{}]$ 

- The location of the magnetopause depends on a pressure balance  $kP_{SW}$  = across the boundary:
- Assuming a vacuum dipole, B=B<sub>P</sub>r<sup>-3</sup>

$$r_0^6 = \frac{B_P^2}{2\mu_0 k} D_P^{-1}$$
$$r_0 = \left(\frac{B_P^2}{2\mu_0 k}\right)^{\frac{1}{6}} D_P^{-\frac{1}{6}}$$

- The Earth's magnetopause actually follows this 1/6th law quite closely (Shue et al. 1997).
- But a 1/4th law was found for Jupiter (Slavin et al. 1985; Huddleston et al. 1998) and also recently for Saturn (Arridge et al. 2006).





- Using a simple model current sheet to represent the ring current, an empirical model for the variation of the ring current with system size was established by Bunce et al. (2007).
- The azimuthal drift relative to the ExB flow is given by:
- The magnetic moment associated with this current loop is:

$$\mu_{TOT} = \frac{mr^2\Omega^2}{2B} + \frac{W_{\perp}}{B} \left(1 - \frac{r}{2B}\frac{dB}{dr}\right)$$

- Bunce et al. (2007) shows that the inertial term varies much more strongly with system size than the thermal term.
  - A pressure-gradient-dominated ring current will not modify the 1/6th law
  - When inertial terms are important the magnetosphere will be more more compressible.



**UCI** 

# **UCL**

# Questions, outstanding issues and discussion points

- What is the nature of the transition/interaction between a terrestrialtype magnetotail and magnetodisc?
  - Surely depends on the maintenance of (sub)corotation which in turn depends on the magnetosphere-ionosphere coupling?
- What physical processes occur at the transition to the magnetodisc?
  - Plasma flows, changes in stress balance, corotation breakdown
  - Is the importance of the acceleration current a requirement for a magnetodisc?? Some think so, some don't...
- When the solar wind pressure is high, producing a quasi-dipolar dayside and a highly asymmetric magnetodisc, what are the form and properties of the FAC ensuring ∇•j=0 and their place in global force balance? - or do they close along the magnetopause?