Collisional vs. Collisionless Processes (an astrophysical perspective)

Zdenka Kuncic, School of Physics, University of Sydney

collision frequency:

$$\nu_{ei} = \frac{4\sqrt{\pi}}{3} \frac{e^2 q_i^2 n_e \ln \Lambda}{m_e m_i (v_e^2 + v_i^2)^{3/2}} \simeq 3 \frac{n_e \ln \Lambda}{T_e^{3/2}} \text{ s}$$

- solar wind
- shocks
- reconnection
- application to astrophysical accretion flows?

The solar wind

- highly collisionless
- T_e in fast solar wind increases outwards, with halo distbn of higher-E electrons \Rightarrow heating/acceleration
- ion cyclotron waves? lower hybrid waves?
 - \Rightarrow electron-ion coupling via wave-particle energy exchange

Planetary/interplanetary bow shocks

- (c.f. Burgess session on Tues)
 - also collisionless
 - electron heating/acceleration observed

Supernova shocks

- \bullet collisionless, high-M
- evidence for electron heating and acceleration from X-ray bremsstrahlung and radio synchrotron spectra

MSSL Workshop – 19/09/07

Collision-al/less Processes

Reconnection

(c.f. Owen session on Tues) In situ evidence of magnetic reconnection in turbulent plasma

A. RETINÒ^{1,2*}, D. SUNDKVIST³, A. VAIVADS¹, F. MOZER³, M. ANDRÉ¹ AND C. J. OWEN⁴

- collisionless
- observed in terrestrial magnetotail, magnetosheath
- heating and acceleration of both ions and electrons detected in turbulent reconnection

Accretion disks

Standard model:

• constant mass inflow: $\dot{M}_{\rm a} = 2\pi r(-v_r)\int
ho dz$

• Keplerian rotation:
$$\Omega = (GM/r^3)^{1/2}$$

- collisional, but viscosity inefficient at angular momentum transport
- turbulent MHD stresses generated by magnetorotational instability $W_{r\phi} = \langle B_r B_\phi \rangle / 4\pi$ can transport angular momentum: $\dot{M}_a \sim -(2\pi/\Omega) \int W_{r\phi} dz$
- radiatively efficient: gravitational binding energy radiated locally \Rightarrow geometrically thin ($h \ll r$)

- internal energy conservation: $F(r) \sim 3GM\dot{M}_{\rm a}/8\pi r^3$
- X-rays generated in a diffuse, magnetized corona \Leftrightarrow solar corona
- relativistic jets probably accretion powered, Poynting-flux dominated

Low- $M_{\rm a}$ systems:

- collisionless ($t_{ei} > t_{inflow} = r/v_r$)
- turbulent
- geometrically thick, 2-temperature plasma: $T_i \simeq 10^{12} \, {
 m K}$, $T_e \simeq 10^{10} \, {
 m K}$

Critical assumption: electron-ion thermal coupling via wave-particle processes negligible \Rightarrow ion pressure supports a "fat torus" geometry and internal energy is advected into the black hole rather than radiated away by electrons

Unresolved issue: to what extent can wave-particle processes couple the electrons and ions and which are the most relevant microprocesses?