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ABSTRACT

Aims. We aim to construct a general relativistic radiative transfer formulation, applicable to particles with or without mass in astro-
physical settings, wherein ray-tracing calculations can be performed for arbitrary geodesics, for a given space-time geometry.
Methods. The relativistic radiative transfer formulation is derived from first principles: conserving particle number and phase-space
density. The formulation is covariant, and transfer calculations are conducted along particle geodesics connecting the emitters and
the observer. The geodesics are determined through the space-time metric, which is specified beforehand. Absorption and emission
in the radiative transfer calculations are treated explicitly. The particle-medium interaction is evaluated in the local inertial frame, co-
moving with the medium. Relativistic, geometrical and optical depth effects are treated self-consistently within an integral covariant
framework.
Results. We present a self-consistent general relativistic radiative transfer formulation with explicit treatment of emission and ab-
sorption. The formulation is general and is applicable to both particles with mass and without mass. The presence of particles has two
major effects: firstly the particle bundle ray is no longer along the null geodesic, and secondly the intensity variation along the particle
bundle ray is reduced by an aberration factor. The radiative transfer formulation can handle 3D geometrical settings and structured
objects with variations and gradients in the optical depths across the objects and along the line-of-sight. Such scenarios are applicable
in calculations of photon emission from complex structured accretion flows around black holes and neutrino emission from remnant
neutron tori in neutron-star mergers.
We apply the formulation and demonstrate radiation transfer calculations for emission from accretion tori around rotating black holes.
We consider two cases: idealised optically thick tori which have a sharply defined emission boundary surface, and structured tori
which allow variations in the absorption coefficient and emissivity within the tori. We show intensity images and emission spectra
of the tori obtained in our calculations. Our findings in the radiative transfer calculations are summarized as follows. (i) Geometrical
effects, such as lensing induced self-occulation and multiple-image contribution are much more significant in accretion tori than
geometrically thin accretion disks. (ii) Optically thin accretion tori show emission line profiles distinguishable from the profiles of
lines from optically thick accretion tori and lines from optically thick geometrically thin accretion tori. (iii) The line profiles of the
optically thin accretion tori have a weaker dependence on the viewing inclination angle than those of the optically thick accretion
tori or accretion disks, especially at high viewing inclination angles. (iv) Limb effects are present in accretion tori with finite optical
depths, due to density and temperature stratification within the tori.
We note that in accretion flows onto relativistic compact objects, gravitationally induced line resonance can occur. This resonance
occurs easily in 3D flows, but not in 2D flows, such as a thin accretion disk around a black hole.
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1. Introduction

The X-ray emission observed in active galactic nuclei (AGN)
and black hole binaries is believed to be powered by accretion
of material onto black holes (Salpeter 1964; Lynden-Bell 1969;
Shakura & Sunyaev 1973). The accreting hot plasmas rotating
around the black hole form a disk or a torus. It has been sug-
gested that dense remnant neutron tori can also be formed around
compact objects, which could be a very massive neutron star or
a black hole, after two neutron stars merge (see Shibata et al.
2003; Baiotti et al. 2008; Rezzolla et al. 2010). In such systems,
the influence of curved space-time is significant. It affects the ra-
diative transport of particles in the accretion flow as well as the
hydrodynamics of the flow itself (see Novikov & Thorne 1973).

Emission from accretion disks around compact objects has
been investigated for several decades now. Emission lines from
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geometrically thin accretion disks around gravitating objects are
expected to have two peaks (Smak 1969). The peaks correspond
to emission from the two parts of the disk which have opposite
projected line-of-sight velocities. Double-peaked optical lines
have been observed in a variety of binary systems (e.g. black
hole X-ray binaries, Johnston et al. 1989; Marsh et al. 1994;
Soria et al. 1999; Wu et al. 2001). Double-peaked optical lines
are also seen in a small fraction of AGN (Puchnarewicz et al.
1996; Eracleous & Halpern 2003; Strateva et al. 2006). These
double-peaked lines can be explained in a Newtonian framework
as described in Smak (1969) (see also Horne & Marsh 1986).
Double-peaked lines have also been observed in the X-ray spec-
tra of accreting black holes. Broad asymmetric double-peaked
Fe Kα lines were found in the spectra of a number of AGN (e.g.
MCG -6-30-15, Tanaka et al. 1995). The X-rays of AGN are be-
lieved to originate from regions very close to the central black
hole, where the accretion flow is highly relativistic and the grav-
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ity is strong. The emissions from different parts of the accretion
flow are therefore boosted differentially. Various relativistic ef-
fects also cause further differential broadening and distortion of
any line emission. As such, the emission lines from the inner
regions of relativistic accretion disks around black holes have a
very broad profile, with an extended red wing and a pronounced
blue peak (Cunningham 1975; Reynolds et al. 1999; Fabian et al.
2000). Black holes with faster spins would give rise to relativis-
tic accretion lines with a broader red wing, as the inner boundary
of an accretion disk around a maximally rotating black hole can
extend very close to the black hole event horizon.

The emission from accreting gas and outflows in the vicinity
of black holes is subject to Doppler shifts, lensing, gravitational
time-dilation and other relativistic dynamical effects. There have
been numerous calculations of relativistic (photon) lines from
accretion disks and tori around black holes (e.g. Cunningham
1975; Gerbal & Pelat 1981; Fabian et al. 1989; Stella 1990;
Kojima 1991; Bao 1992; Fanton et al. 1997; Reynolds et al.
1999; Fabian et al. 2000; Fuerst & Wu 2004; Beckwith & Done
2004a, 2005; Čadež & Calvani 2006; Fuerst & Wu 2007; Dexter
& Agol 2009; Sochora et al. 2011; Vincent et al. 2011; Wang
& Li 2012). The three most common methods to calculate rel-
ativistic line profiles are (i) the transfer function method (e.g.
Cunningham 1975; Fabian et al. 2000), (ii) the elliptic function
method (e.g. Dexter & Agol 2009) and (iii) the direct geodesic
integration method (e.g. Fuerst & Wu 2004, 2007; Vincent et al.
2011). The transfer function method and the elliptic function
method are efficient for the calculation of emission from thin
axisymmetric optically thick accretion disks but are not appli-
cable to systems that lack the appropriate geometry and sym-
metry. The direct geodesic integration method is a brute force
approach, and less restrictive in this context, compared to the
other two methods. It works well with any three-dimensional
(3D) accretion flow, e.g. time dependent accretion flows from
numerical relativistic hydrodynamic simulations, and can also
handle opacity variations within the system. In most of these
relativistic calculations, focus was given to the investigation of
line broadening due to relativistic effects. While relativistic ray-
tracing of photons in strong gravity and the corresponding cal-
culations of emission line profile broadening have been inves-
tigated in various astrophysical settings for decades, there have
been only a few studies, often in restricted settings, on the opac-
ity effects due to self-absorption, emission and scattering within
the accretion flows and along the line of sight (e.g. Zane et al.
1996; Fuerst 2006; Wu et al. 2006, 2008; Dolence et al. 2009).
Covariant radiative transfer calculations of emission from accre-
tion flows in more general settings with an explicit treatment
of absorption, emission and scattering are lacking. There is also
no corresponding covariant radiative transport formulation ap-
plicable to both relativistic particles without mass (photons) and
with mass (e.g. neutrinos), in a general astrophysical setting in
the present literature. (Note that particles with mass do not fol-
low null geodesics, and the relativistic formulation and the cor-
responding ray-tracing need to be modified.)

In this work we present the general covariant formulation for
radiative transport of relativistic particles. The radiative trans-
fer equation is derived from the Lorentz-invariant form of the
conservation law. It takes account of emission and absorption
processes explicitly. The formulation is not restricted to general
relativistic radiative transfer of photons. It is general and can be
applied to both relativistic particles without mass (e.g. photons)
and with mass (e.g. relativistic electrons and neutrinos). The ra-
diative transfer recovers its conventional form in the Newtonian
limit. We carry out demonstrative radiative transfer calculations

of emission from model accretion tori around rotating black
holes with different optical thicknesses. Our calculations show
the convolution of geometrical and optical depth effects, such
as limb darkening and brightening caused by optical-depth and
emissivity variations, multiple image contribution, and absorp-
tion and self-occultation induced by gravitational lensing, which
are characteristic of 3D structured flows in strong gravity envi-
ronments. The paper is organised as follows. In Sec. 2 the co-
variant radiative transfer equation is derived and its solution dis-
cussed. In Sec. 3 we show the construction of two torus models,
one with a specific sharp emission boundary surface, and another
with a stratified density and temperature structure. In Sec. 4 we
present the results of radiative transfer calculations for the torus
models. We briefly discuss the astrophysical implications of
our calculations and the possible occurrence of gravitationally-
induced line resonance in 3D accretion flows near black holes.

2. Covariant Radiative Transfer Formulation

The emission and absorption processes may be considered as
sources and sinks in the medium through which the ray bundle of
particles is transported. In their absence, the number of particles
along a ray bundle is conserved. In the presence of emission and
absorption, the radiative transfer equation can be expressed as

dIν

ds
= −ανIν + jν , (1)

where Iν ≡ Iν(s) is the specific intensity of the ray at a frequency
ν, and αν and jν are, respectively, the absorption and emission
coefficients at a frequency ν. By introducing the variable

τν(s) =
�

s

s0

αν(s
�) ds

� , (2)

which is the optical depth (optical thickness of the medium be-
tween s and s0), we may rewrite the radiative transfer equation
as
dIν

dτν
= −Iν +

jν

αν
= −Iν + S ν , (3)

where S ν = jν/αν is the source function. Direct integration of
the equation yields

Iν(s) = Iν(s0) e−τν +
�

s

s0

jν(s
�) e−(τν(s)−τν(s

�))
ds
�

= Iν(0) e−τν +
� τν

0
S ν(τ�ν) e−(τν−τ�ν)dτ�ν , (4)

where the constant Iν(s0) (= Iν(0)) is the initial value of the spe-
cific intensity. While optical depth, which is a scalar quantity,
is invariant under Lorentz transformations, the radiative transfer
equations in the conventional form (equations [1] and [3]) are
not.

We now show that a covariant formulation for radiative trans-
fer can be derived from the conservation of phase space vol-
ume and the conservation of particle number. Construct a phase
space volume V threaded with a small bundle of particles. In
the co-moving frame, these particles occupy a spatial volume
element d

3x = dx dy dz and a momentum volume element
d

3 p = dpx dpy dpz. Liouville’s Theorem ensures that the phase
space volume, given by dV = d

3xd
3 p, is unchanged along the

affine parameter λ, i.e.

dV
dλ
= 0 (5)
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(Misner et al. 1973). This together with the conservation of the
number of particles dN within the phase space volume element
implies that the phase space density

f (x
i, pi) =

dN

dV , (6)

is invariant along λ.
For relativistic particles, |p| = E, and d

3 p = E
2
dE dΩ (here

and hereafter, unless otherwise stated, we adopt the convention
that the speed of light in vacuum c = 1). The volume element
of a bundle of relativistic particles is also given by d

3x = dA dt,
where dA is the area element of the bundle. Thus, we may ex-
press the phase space density of a bundle of relativistic particles
as

f (x
i, pi) =

dN

E2dAdtdE dΩ
. (7)

The specific intensity of a ray (bundle of photons) is simply

IE =
E dN

dAdtdE dΩ
(8)

(see Rybicki & Lightman 1986). It follows that

I ≡ Iν

ν3
=

IE

E3 (9)

is a Lorentz invariant quantity. We denote I as the Lorentz-
invariant intensity, and it can also be regarded as the occupation
number of particles in the phase space for a particle bundle. We
may also obtain the corresponding Lorentz-invariant absorption
coefficient χ = ν αν and the Lorentz-invariant emission coeffi-
cient η = jν/ν2. These two coefficients, as seen by the observer,
are related to their counterparts in the local rest frame of the
medium via ν αν = ν0,ν α0 and jν/ν2 = jν/ν2

���
0 respectively,

where the subscript “0” denotes variables measured in the local
rest frame.

2.1. Photon and Relativistic Massless Particle

For photons (or a massless relativistic particle) kαk
α = 0, where

kα is the (covariant) 4-momentum. Consider a photon propagat-
ing in a fluid with 4-velocity u

β. The photon’s velocity in the
co-moving frame of fluid, v

β, can be obtained by projecting the
photon’s 4-momentum into the fluid frame, i.e.

v
β = P

αβ
kα

= k
β + (kαuα)uβ , (10)

where P
αβ = g

αβ + u
α
u
β is the projection tensor and g

αβ the
space-time metric tensor. The variation in the path length s with
respect to the affine parameter λ is then
ds

dλ
= −||vβ||

����
λobs

= −
�

gαβ(kα + (kβuβ)uα)(kβ + (kαuα)uβ)
����
λobs

= −
�

kβk
β + (kαuα)2uβu

β + 2(kαuα)2
����
λobs

= −kαu
α
����
λobs

. (11)

Here we have used [−,+,+,+] convention for the signature of
the space-time metric. For a stationary observer located at infin-
ity, pβu

β = −Eobs. The relative energy shift of the photon be-
tween the observer’s frame and the comoving frame is therefore

γ−1 =
ν0
ν
=
−kαu

α|λ
Eobs

=
kαu

α|λ
kβu
β|λobs

. (12)

Making use of the Lorentz-invariant properties of the vari-
ables I, χ and η, and of the optical depth τν, we may rewrite the
radiative transfer equation in the following form

dI
dτν
= −I + η

χ
= −I + S , (13)

where S = η/χ is the Lorentz-invariant source function. All
quantities in equation (13) are Lorentz invariant, and hence the
equation is covariant. As dτν = ανds, we have

dI
ds
= −ανI +

jν

ν3
. (14)

It follows that

dI
dλ
= −kαu

α|λ
�
−α0,νI +

j0,ν

ν3

�
, (15)

where α0,ν ≡ α0(x
β, ν) and j0,ν ≡ j0(x

β, ν), where, as before, “0”
denotes variables which are evaluated in the local rest frame, for
a given ν. In ray tracing calculations we specify an observer fre-
quency ν, determine all required variables at this location, and
find how these variables change in different reference frames
through the radiative transfer equation. The solution to equation
(15) is

I(λ) = I(λ0)e−τν(λ)

−
� λ

λ0

j0,ν(λ��)
ν3

exp
�
−
� λ

λ��
α0,ν(λ�)kαuα|λ�dλ�

�
kαu

α|λ��dλ�� (16)

(cf. Baschek et al. 1997; Fuerst & Wu 2004), where the optical
depth is

τν(λ) = −
� λ

λ0

α0,ν(λ
�
)kαuα|λ�dλ� . (17)

In terms of the optical depth,

I(τν) = I(τ0)e−τν +
� τν

τ0

S(τ�ν)e
−(τν−τ�ν)dτ�ν . (18)

For a distant observer, −k
α
uα|λobs

→ E, the observed photon
energy, which may be normalised to unity. The radiative transfer
equation can be expressed as two decoupled differential equa-
tions
dτν
dλ
= γ−1α0,ν , (19)

dI
dλ
= γ−1

�
j0,ν

ν3

�
e−τν . (20)

These two equations are more useful in practical relativistic ra-
diative transfer calculations as they allow efficient computation,
through a simple Eulerian method, of the optical depths and in-
tensities along the rays regardless of whether the ray-tracing is
executed forward or backwards in time.

2.2. Particles with Mass

For massless particles, contraction of the 4-momentum gives
kαk
α = 0, but for particles with a non-zero mass m, it gives

pαp
α = −m

2. The presence of the particle mass modifies the
particle’s equations of motion, changing the geodesics from null
to time-like (Carter 1968; Boyer & Lindquist 1967). Moreover,
a covariant particle flux is mass dependent. The radiative trans-
fer equations derived for massless particles (equations (14) and
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(15)) are therefore not applicable for particles with mass, such as
neutrinos or relativistic electrons. Nevertheless, the formulation
obtained for massless particles can easily be modified to take ac-
count of the effects due to the particle mass. We follow a similar
procedure as in the case of massless particles in our derivation.
We express the variation in the path length with respect to the
affine parameter as

ds

dλ
= −
�

gαβ(pα + (pβu
β)uα)(pβ + (pαu

α)uβ)
����
λobs

, (21)

analogous to equation (11) in the case of massless particles. As
p
α

pα � 0, we have

ds

dλ
= −
�

pβp
β + (pαu

α)2

������
λobs

= −
�

(pαu
α)2 − m2

������
λobs

. (22)

Insert this into equation (13), which does not depend on the par-
ticle mass explicitly. After some algebra, we obtain the general
covariant transfer equation for relativistic particles

dI
dλ
= −

����
1 −



m

pβu
β
���
λobs




2

pαu
α

������
λ

�
−α0,νI +

j0,ν

ν3

�
. (23)

For a stationary observer located at infinity, pβu
β = −E.

Equation (23) differs from equation (15) by an aberration factor�
1 − (m/E)2. This factor reduces the intensity gradient along the

ray. As it approaches unity when m → 0, the radiative transfer
equation (15) is the radiative transfer equation (23) in the zero-
mass limit .

3. Accretion Tori around Black Holes

We can see in equation (23) that the essential components of the
covariant radiative transfer formulation are the emission coeffi-
cient, the absorption coefficient, the relative energy shift of the
particles with respect to the medium, and the aberration factor,
which are all evaluated along the particle geodesics. The particle
geodesic is obtained by solving the equation of motion of parti-
cles for the specified space-time metric with the location of the
observer assigned. The local values of the emission coefficient
and the absorption coefficient can be calculated when the ther-
modynamic conditions of the medium are given, and the relative
energy shift and the aberration factor can be determined when
the hydrodynamic properties of the medium are known.

Here we demonstrate the application of the covariant radia-
tive transfer formulation and calculate the emission from 3D ob-
jects in a gravitational field. We consider accretion tori around
rotating black holes. The tori may have several emission compo-
nents with different optical depths. Accretion tori are 3D objects
with internal structure. They are in contrast to optically thick,
geometrically thin accretion disks, which are 2D objects where
explicit covariant radiative transfer is unnecessary in determin-
ing how the radiation propagates and is modified inside the disk.

3.1. Modeling Accretion Tori

For accreting objects, the accretion luminosity Lacc roughly
scales with the mass accretion rate Ṁ as Lacc = εṀ. The con-
version parameter ε ∼ 1020 erg g−1 for black holes. The forma-
tion of geometrically thin accretion disks around a black hole

requires that the radiation pressure force in the accretion flow
is much smaller than the local gravitational force exerted by the
black hole. This condition is usually satisfied when Ṁ is suffi-
ciently low, such that Lacc is much smaller than the Eddington
luminosity, which is given by LEdd = 1.4× 1038(M/M⊙) erg s−1,
where M is the mass of the accretor, and M⊙ the solar mass.
As Lacc increases with Ṁ, high Ṁ implies high Lacc and hence a
large radiative pressure within the disk where the radiation is lib-
erated. When Lacc approaches LEdd, the radiation pressure force
become comparable to the local gravitational force, and the ac-
cretion disk thereby inflates and become a torus (see e.g. Frank
et al. 2002).

In general, full knowledge of the fluid viscosity is required
in determining the structure and hydrodynamics of the accre-
tion torus. However, in accretion tori the angular momentum
transport is non-local. The process cannot be parametrised with
a local viscosity, as in the case of modeling geometrically
thin accretion disks, where the α-viscosity prescription is of-
ten used (Shakura & Sunyaev 1973; Abramowicz et al. 1988).
It is believed that the angular momentum transport in accre-
tion disks/tori is mediated by tangled magnetic fields permeating
the flow (e.g. magneto-rotational instability (MRI), see Hawley
2000; Balbus 2003). In principle this magnetic viscosity and the
flow hydrodynamics need to be determined simultaneously and
self-consistently. Nevertheless, certain phenomenological pre-
scriptions are proposed to bypass the viscosity calculations, e.g.
assuming an angular momentum distribution within the torus in-
stead of solving for the distribution. With this, the structure of
the accretion torus can be determined by solving only the re-
maining hydrodynamic equations and the equation of state. For
the purposes of this work we consider this phenomenological
approach and construct accretion tori assuming a specific angu-
lar velocity profile within the torus (see also Fuerst & Wu 2004,
2007) and Abramowicz (2005). With the angular velocity pro-
file specified, we determine the density and entire flow profiles
in terms of certain normalised variables. The resulting accretion
torus is then rescaled, using the results from accretion tori/disks
obtained by numerical MRI simulations (Hawley (2000); Balbus
(2003)). The torus model constructed as such is able to capture
the geometrical aspects of the MRI accretion tori and the physi-
cal conditions within the accretion flow.

3.2. Emission Surface of Rotationally Supported Torus

To calculate the emission from an opaque accretion torus, we
need only to specify the torus’ boundary surface and its phys-
ical conditions. The simplest model that allows us to specify a
boundary emission surface is a rotationally supported torus. In
it the total pressure force is balanced by the 4-acceleration in an
arbitrary fluid element. The inner boundary of the torus is de-
fined where this balance breaks down. With an appropriate pa-
rameterisation of the angular velocity profile (Ω, as a function of
position in the torus) we can derive the 4-acceleration and hence
obtain the pressure force. Tracing the isobars gives the isobaric
surfaces in the torus. The process is essential in the construction
of gradient contours of the 4-acceleration in the r − θ plane (in
the (t, r, θ, φ) spherical co-ordinate system). The torus boundary
surface is simply the outermost allowed isobaric surface.

We consider a stationary, axisymmetric, rotationally sup-
ported accretion torus. The symmetry axis of the torus is aligned
with the spin vector of the central black hole. The 4-acceleration
of the flow is derived from the 4-velocity

a
α = u

α,β u
β + Γαβσu

β
u
σ , (24)
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Fig. 1. Cross sections of the boundary surfaces of model rotationally
supported tori, in cylindrical coordinates with z = r cos θ (The equa-
torial plane of the tori is z = 0). The top panel shows the tori around
Kerr black holes with spin parameters a = 0, 0.5 and 0.988. The angu-
lar velocity profile index of the tori n = 0.21, and the Kelperian radius
rk = 12 rg. The bottom panel shows the tori with angular velocity in-
dices n = 0.14, 0.17 and 0.232. The Keplerian radius of the tori is
rk = 8, and the black-hole spin parameter a = 0.998.

where Γαβσ is the Christoffel symbol. As the poloidal components
of the flow are dynamically unimportant, we set the 4-velocity
as u

α = (ut, 0, 0, uφ). It follows that u
α,β u

β = 0 and

a
α = Γα

tt
u

t
u

t + 2Γα
tφu

t
u
φ + Γαφφu

φ
u
φ . (25)

In Boyer-Lindquist co-ordinates, the r and θ components of the
4-acceleration are

ar =
Σ

∆
a

r = −
�
M

�
Σ − 2r

2

Σ2

� �
ṫ − a sin2 θ φ̇

�2
+ r sin2 θ φ̇2

�
,(26)

aθ = Σa
θ = − sin 2θ

�
Mr

Σ2

�
aṫ −
�
r

2 + a
2
�
φ̇
�2
+
∆

2
φ̇2
�
, (27)

where ∆ = r
2 − 2Mr + a

2, Σ = r
2 + a

2 cos2 θ, and M and a are
respectively the mass and spin parameters of the central gravitat-
ing body. Setting aαu

α = 0 yields a set of differential equations
for the isobaric surfaces. It is more convenient to express the
equations as

dr

dξ
=

ψ2�
ψ2

2 + ∆ψ
2
1

, (28)

dθ

dξ
=

−ψ1�
ψ2

2 + ∆ψ
2
1

, (29)

for the calculation and construction of the torus boundary sur-
face. Here ξ is an auxiliary variable, and the functions ψ1 and ψ2
are given by

ψ1 = M

�
Σ − 2r

2

Σ2

��
Ω−1 − a sin θ

�2
+ r sin2 θ , (30)

ψ2 = sin 2θ
�

Mr

Σ2

�
aΩ−1 −

�
r

2 + a
2
��2
+
∆

2

�
. (31)

Solving equations (28) and (29), with the inner boundary radius
of the torus and the specified angular velocity profile gives the
torus boundary surface.

We consider an angular velocity profile with the form

Ω(r sin θ) =
√

M

(r sin θ)3/2 + a

√
M

�
rk

r sin θ

�n
, (32)

following Fuerst & Wu (2004, 2007), where rk is the radius
on the equatorial plane at which the material circulates with a
Keplerian velocity. The differential rotational velocity gradient
gives rise to an implicit pressure force, supporting the torus ma-
terial above and below the equatorial plane. The parametrisation
using the variable r sin θ ensures the constant density and pres-
sure surfaces coincide in the Newtonian limit and a polytropic
equation of state is applicable for the flow. The index parame-
ter n is crucial for regulating the pressure forces, thus adjusting
the torus’ geometrical aspect ratio. Its property is similar to that
of the q index of the von Zeipel parameter in the study of sta-
bility of accretion disks (see Chakrabarti 1985; Blaes & Hawley
1988). Generally, n ≈ q − 1.5, with the relation being exact for
Schwarzschild black holes. Tori with q >

√
3 are unstable. In

the Newtonian limit tori with n = 0.232 are marginally stable.
The angular velocity and angular momentum of the flow are

Ω = u
φ/ut and l = −uφ/ut respectively, and the redshift factor is

given by

A = u
t =
�
−(gtt + 2Ωgtφ + Ω

2
gφφ)
�−1/2

, (33)

and the energy per unit inertial mass of the flow material is

U = −ut = −

�
g

2
tφ − gttgφφ

gφφ + 2lgtφ + l2gtt

. (34)

These two quantities are related via

AU =
1

(1 − lΩ)
. (35)

Zero values for the denominators in equations (33) and (34) cor-
respond to the locations (the photon surface) where the local
flow speeds reach the speed of light.

In this model we need to specify the condition for the inner
boundary radius. We take it as the intersection of the isobaric
surface with either the orbits of marginal stability or the limiting
surface of photon orbits, whichever has a larger radius. Usually
the photon surface is within the marginally stable orbit. The in-
ner boundary of the torus is therefore in general determined by
the outermost surface of the torus, which satisfies ∂U/∂r = 0.
Solving this gives

2aM sin4 θ

�
r

2

Σ
−
�
r

2 + a
2 +

a
2
Mr sin2 θ

Σ

�
Σ − 2r

2

Σ2

�
Ω3

+ sin2 θ

�
M

�
6Mr(r2 + a

2)
Σ

+ 3∆ − Σ
�
Σ − 2r

2

Σ2 + r

�
1 − 2Mr

Σ

��
Ω2

−6aM
2
r sin2 θ

Σ

�
Σ − 2r

2

Σ2

�
Ω

+∆ sin2 θΩ
∂Ω

∂r
− M

�
1 − 2Mr

Σ

�
Σ − 2r

2

Σ2 = 0 , (36)
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which when solved for r, yields the inner edge of the torus (for
a particular choice of rk and n). Equations (28) and (29) for the
torus surface are now readily integrated.

Figure 1 shows the boundary surfaces of rotationally sup-
ported tori with various system parameters. The shape of the tori
is determined by the rotational velocity index of the torus n and
the black-hole spin parameter a. When rk is fixed, the vertical
thickness of the torus increases with a but decreases with n. The
degree of self-occulation of an optically thick torus and hence
the spectral properties of the emission depend on the aspect ra-
tio of the torus and the viewing inclination. Note that the tori in
Figure 1 are purely rotational supported. The thermal pressure of
the torus gas and the radiative pressure of the emission from the
gas have not been included in their construction. The presence
of gas pressure and radiation pressure will modify the aspect ra-
tio of the tori. In the next subsection we will consider a more
general situation, which includes the gas pressure and radiative
pressure, and construct tori with internal density and temperature
structures.

3.3. Pressure Supported Torus Structure

Accretion tori resemble stars, which have an atmosphere with
an optical depth gradient. While emission from an opaque torus
is from an unobscured skin (surface) layer of the torus, emis-
sion from a translucent or an optically thin accretion torus is
formed by the emission contribution from all regions within the
torus. The thermodynamic and hydrodynamic structures of the
torus determine the spectral properties of its emission, and so
they must be determined prior to performing the radiative trans-
fer calculations.

To model the internal structure of the accretion tori, we adopt
a prescription given by Abramowicz et al. (1978) and Kozlowski
et al. (1978). We consider the tori as stationary and axisym-
metric. They consist of a perfect fluid, and the stress-energy-
momentum tensor of the flow is given by

T
αβ = (ρ + P + �)uαuβ + Pg

αβ , (37)

where P is the pressure, ρ is the density, and � is the fluid internal
energy. As T

αβ
;β = 0, we have

(ρ+ P+ �),βuαuβ + (ρ+ P+ �)(uα;βu
β + u

α
u
β
;β)+ P,βg

αβ = 0 .(38)

Projecting perpendicular to the velocity with the projection ten-
sor P

αβ yields the momentum equation

(ρ + P + �)uα;βu
β + P,βg

αβ = 0 . (39)

As the torus is stationary and axisymmetric, it has negligible
poloidal flow components. Hence,

uα;βu
β = −Γσαβuσu

β = −1
2

u
σ

u
β
gσβ,α . (40)

Differentiating u
α
uα = −1 gives

(uαuα),δ = gαβ,δu
α
u
β + 2u

α
uα,δ = 0 . (41)

Thus,

u
α
uα,δ = −

1
2

u
α
u
β
gαβ,δ . (42)

It follows that

uα;βu
β = u

β
uβ,α = u

t∂αut + u
φ∂αuφ , (43)

where ∂α is the gradient in the x
α direction. Recall thatΩ = u

φ/ut

and l = −uφ/ut. Therefore, we have

u
φ
ut = Ω(ut

ut) = −
Ω

1 − lΩ
. (44)

The gradient of l is

∂αl =
uφ

u
2
t

∂αut −
1
ut

∂αuφ . (45)

It follows that

Ω∂αl

1 − lΩ
=

1
ut

∂αut + u
t∂αut + u

φ∂αuφ . (46)

Equation (43) can now be expressed as

uα;βu
β =

Ω∂αl

1 − lΩ
− 1

ut

∂αut . (47)

Thus,

∂αP

ρ + P + �
= ∂α ln(ut) −

Ω∂αl

1 − lΩ
(48)

(cf. equation (7) in Abramowicz et al. (1978) for the accretion
torus).

An equation of state is required to close the system of equa-
tions and the gas within the torus is assumed to be barotropic.
Due to the complexity of the Kerr metric the solution must
be computed numerically. However, in the special case of l =
constant, corresponding to a marginally stable torus, there is an
analytic solution
�

P

0

dP
�

ρ + P� + �
= ln(ut) − ln(ut)inner , (49)

where ln(ut)inner is evaluated at the inner edge of the torus.
The transparency of the torus to radiation requires that the

local emissivity and opacity within the torus must be specified
explicitly. As such, the velocity, temperature and density struc-
ture of the torus must be determined prior to the radiative transfer
calculations.

The total pressure within the torus is the sum of the gas pres-
sure and the radiation pressure, i.e. P = Pgas + Prad, where

Pgas =
ρkT

µmH

= βP , (50)

Prad =
4σ
3c

T
4 = (1 − β)P . (51)

Here k is the Boltzmann constant, µ the mean molecular weight,
mH the mass of Hydrogen, β the ratio of gas pressure to total
pressure, and σ = π2

k
4/60�3

c
2 is the black-body emittance con-

stant. Eliminating kT in the above equations yields

P = �c

�
45(1 − β)
π2(µmHβ)4

�1/3
ρ4/3 . (52)

For a polytropic equation of state P = κρΓ, the internal energy
is related to the pressure by � = P/Γ − 1. Equation (52) implies
Γ = 4/3, and κ = �c[45(1 − β)/π2(µmHβ)4]1/3.

Combining the momentum equation (39) for a perfect fluid
with the polytropic equation of state gives
�
ρ +

Γ

Γ − 1
P

�
a
α = −P,βg

αβ . (53)
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Fig. 2. Cross-sections show the density, pressure and temperature con-
tours in model translucent tori (panels from top to bottom). The an-
gular velocity profile index of the tori n = 0.21, the Keplarian radius
rk = 12 rg. The black-hole spin paramter a = 0.998. The central density
of the torus ρc = 1011 cm−3. The ratio of the gas pressure to the total
pressure β = 1.235 × 10−5.

Differentiating the polytropic equation of state yields

∂αP = κΓρΓ−1(∂αρ) . (54)

The density structure of the torus is then given by

∂αρ = −aα

�
ρ2−Γ

κΓ
+
ρ

Γ − 1

�
(55)

Introducing a new variable ξ (akin to logarithm of temperature),
where ξ = ln(Γ − 1 + ΓκρΓ−1), equation (55) simplifies to

∂αξ = −aα . (56)

The stationary and axisymmetry conditions imply that there are
only two non-trivial components (r and θ) in the equation. By
evaluating the line integral from r = rK , ρ = ρc at the torus
centre to the required (r, θ) location, the density field ρ(r, θ) is
determined.

If the pressure in the torus is dominated by the radiative pres-
sure, we may set (1 − β) ≈ 1. Then we have

P = �c

�
45

π2(µmHβ)4

�1/3
ρ4/3 , (57)

kT = �c

�
45

π2(µmHβ)

�1/3
ρ1/3 . (58)

With ρ(r, θ) determined, the pressure and temperature are readily
calculated.

Figure 2 shows the density, pressure and temperature struc-
tures of a model torus with n = 0.21, rk = 12 rg, β = 1.235×10−5,
and ρc = 1011 cm−3, where rg = GM/c2 is the gravitational ra-
dius of a black hole with a mass M, and G is the gravitational
constant. The spin parameter of the black hole a = 0.998 There
are several noticeable features in the torus. The torus is pressure
supported. Its boundary is located where the density ρ and hence
the pressure P vanish. The temperature T also vanishes at the
torus boundary surface for the equation of state that we adopt.
As shown the temperature T ∼ 107 K in most of the torus in-
terior, but it drops rapidly within a very short length of ∼ 1 Rg
and reaches 0 K at the torus boundary. Comparing with the rota-
tionally supported tori (Figure 1), the rotationally supported tori
are larger in vertical extent. The vertical inflation of the torus
is caused by the addition of radiative and thermal gas pressure
forces.

4. Radiative Transfer Calculations for Accretion Tori

4.1. Emission from Opaque Rotationally Supported Tori

For the opaque tori, the emission spectrum can be calculated
from the emissivity distribution on the torus’ boundary surface,
with corrections for the relativistic shifts with respect to the dis-
tant observer. We show in Figure 3 images of rotationally sup-
ported tori viewed at inclination angles of 45◦ and 90◦, for vari-
ous black hole spin parameters. The torus is left-right symmetric
in shape if the black hole is not rotating. The black hole’s ro-
tation drags the surrounding space-time around the black hole,
and so the torus around a Kerr black hole no longer has a left-
right symmetrical shape. Optically thick tori would suffer self-
eclipsing at high viewing inclination angles. Only the unob-
scured regions on the torus surface would contribute to the emis-
sion detectable by the distant observer. Each pixel in the torus
images shown in Figure 3 has only one single value for the rel-
ative frequency shift between the emission surface element and
the observer. We code this relative frequency shift with colours
in the torus images. We can easily see that the regions with the
largest red shifts and with the largest blue shifts are obscured by
the front limb of the torus when the viewing inclination angle is
close to 90◦.

In the calculations of the intensity and the emission spec-
trum of the opaque tori, we employ a standard ray-tracing for-
mulation similar to that used in the calculation of relativistic
lines from geometrically thin optically thick accretion disks (e.g.
Cunningham 1975), since it adequately takes account of effects
such as gravitational red-shift, lensing, kinetic time dilation and
Doppler boosting. Since only the propagation of radiation out-
side the torus is relevant, we set the emission and absorption
coefficients to zero in the radiative transfer equation along the
rays emerging from the torus’ boundary surface. We compute
the relativistic frequency shifts at the surface boundary, convolve
this with a specified spatial profile for the source function of the
emission and obtain the emission spectrum.

7
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Fig. 3. False colour frequency shift maps of the surface emission from
opaque tori around different black holes. The torus parameters are
n = 0.232 and rk = 12 rg, where rg is the gravitational radius. The
black-hole spin parameters are a = 0, 0.5 and 0.998 (panels from top to
botom). The viewing inclinations of the tori are 45◦ (left column) and
85◦ (right column). For a = 0 the range of frequency shifts E/E0 for
i = 45◦ and i = 85◦ are respectively (0.874, 1.445) and (0.756, 1.560).
Similarly, for a = 0.5 the frequency shift ranges are (0.870, 1.487) and
(0.755, 1.591). Finally, for a=0.998 the corresponding frequency shift
ranges are (0.864, 1.535) and (0.767, 1.616).

Figure 4 shows the profiles of emission lines from an opaque
torus and a geometrically-thin, optically thick disk with the same
inner and outer radius. The inner radius of the model accretion
disk is much larger than the minimum radius allowed, which is
about 1 rg for a maximally rotating black hole. A major differ-
ence between a torus and a thin disk is that self-obscuration can
occur for the torus at high viewing inclinations, while the first or-
der emission from the upper disk surface is always visible by a
distant observer. Thus, for an opaque torus, self-eclipsing blocks
the emission from the inner torus regions where relativistic ef-
fects are most severe and the emission suffers the highest and
lowest frequency shifts. For a thin disk, the inner disk regions
with the highest and lowest frequency shifts contribute to the to-
tal emission spectra. The line profiles of the torus and the disk in
Figure 4 show little difference at low viewing inclinations. This
is easily understood, as the torus and disk not only look similar
when they are viewed pole on, they show similar radial depen-
dences in the surface emissivity distribution and the entire upper
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Fig. 4. Profiles of emission lines from an opaque rotationally supported
accretion torus (top panel) and a geometrically thin optically thick ac-
cretion disk (bottom panel) viewed at different inclinations i. The torus
dynamical parameters are n = 0.21 and rk = 12 rg. The inner bound-
ary radius of the torus rin = 8.486 rg and the outer boundary radius
rout = 20.246 rg. The disk has the same values for the inner bound-
ary radius and the outer boundary radius as the torus. In both cases,
the black-hole spin parameter a = 0.998. The line emissivity is propor-
tional to r

−2, where r is the radial distance from the central black hole.
The line profiles are normalised such that the flux F(E0) = 1 at the view
inclination angle i = 60◦, where E0 is the rest-frame line centre energy.

emission surface obscured. For viewing inclinations i ∼ 80◦ or
higher, the line from the torus is narrower than the line from the
disk, and in particular the edge of its blue wing is at a lower en-
ergy than that of the line from the disk, because the inner torus
region where the bluest emission originates is eclipsed by the
front limb.

4.1.1. Emission from Translucent Pressure Supported Tori

Optically thin and translucent tori do not have a sharply de-
fined emission surface. All parts within the tori contribute to
the emission, with the contribution weighted according to matter
concentration (density) and to the local values of the thermody-
namic variables (e.g. temperature) relevant to the radiation pro-
cesses considered. The low optical depth across the torus permits
the transmission of the emission from high-order lensed images,
thus the emission spectrum of the torus is the sum of the spec-
tra from all the orders of lensed images weighted by the optical
depth of the ray. Figure 5 shows the intensity images of an opti-
cally thin radiative pressure dominated torus for different view-
ing inclination angles, and Figure 6 shows the intensity images
of an optically thin radiative pressure dominated torus with a
lower internal radiation pressure.

8
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For the β = 1.235 × 10−5 optically thin torus model, the
value of β is chosen so that the inner and outer radii of the torus
very closely match the inner and outer radii of the opaque tori
and thin disks discussed in the previous section, allowing com-
parison of both the resultant images and emission line profiles.
The second model with β = 5 × 10−5, i.e. a smaller internal ra-
diation pressure, illustrates the dependence of the torus size on
β. The dynamical parameters of the two tori are n = 0.21 and
rk = 12 rg, and the spin parameter of the central black hole is
a = 0.998. The emissivity takes the form j ∝ ρ, and the light-of-
sight optical depth across the tori τ � 1. As seen in the figures,
changes in the pressure ratio parameter β alter the aspect ratio of
the torus, which determines to what degree self-eclipsing would
occur for a given viewing inclination angle. In spite of this, the
general emission properties as shown in the images are qualita-
tively similar, because of the low optical depth in the torus. In
both tori, the intensity of the emission is strongest at the interior
of the torus, where the density is high. The rotation of the torus
causes frequency shifts in the emission and Doppler boosting of
the emission’s intensity. These relativistic effects are more obvi-
ous for high viewing inclination angles. The emission from the
approaching limb of the torus is amplified and appears signifi-
cantly brighter than the emission from the receding limb of the
torus.

Figure 7 shows the profile of an emission line from a ra-
diative pressure dominated optically thin torus viewed at differ-
ent inclination angles (top panel). The lines are broad and have
an asymmetric profile, characteristic of line emission from rel-
ativistic accretion disks viewed at moderate inclination angles,
i ≈ 45◦ −70◦ (see e.g. Cunningham 1975; Fabian et al. 2000). In
contrast to the lines from relativistic accretion disks, the profiles
of lines from optically thin tori do not change significantly when
the viewing inclination angle changes from 45◦ to 85◦ (cf. the
line profiles in Figure 4). The asymmetric broad profiles of the
lines from optically thick relativistic disks are due to the com-
bination of a number of effects: Doppler boosting, Doppler ve-
locity shift, gravitational time dilation and gravitational lensing.
Emission from an optically thin torus does not depend on the
projected area of an emission surface element, as is the case of
the optically thick accretion disks or optically thick accretion
tori. While the emission from an optical thin torus is modified
by Doppler boosting, Doppler velocity shifting and gravitational
time dilation, it is less affected by gravitational lensing and the
area projection effect. The transparency of the torus to the emis-
sion could complicate the process of using the emission lines
to diagnose the dynamical properties of the torus. First of all,
the emission of the high-order lensed images, which are unob-
scured, could severely contaminate the emission from the direct
image. Secondly, two emission lines can cross contaminate each
other in the spectrum, and because of the large relativistic shifts
one line could cause absorption of another line originating from
a different region within the torus. For an optically thin torus,
multiple rays corresponding to different energy shifts can hit the
same pixel in the image plane. This is forbidden for ray-tracing
in the case of optically thick disks or tori, where each ray orig-
inates from a single point on the emission boundary surface of
the disk or the torus and each pixel in the disk or torus image cor-
respond to a uniquely defined relativistic energy shift. We show
in Figure 7 (bottom panel) that two distinct lines can be blended
easily and confused as a single emission line with a complex
relativistic line profile.

Fig. 5. Surface brightness images of optically thin radiative pressure
dominated accretion tori viewed at inclination angles of 15◦, 30◦, 45◦,
60◦, 75◦ and 89◦ (left to right, top to bottom). The torus parameters are
n = 0.21, rk = 12rg and β = 1.235 × 10−5. The black-hole spin parame-
ter a = 0.998. The brightness of each pixel represents the total intensity
integrated over the entire spectrum. The torus brightness is normalised
such that the brightness of the brightest pixel in each image is the same.

4.1.2. Emission from Quasi-Opaque Pressure Supported

Tori

The structured torus has density and temperature stratifications
(see Figure 2) which give rise to opacity variation across the
torus and opacity gradients along the line-of-sight, for different
radiative processes. When the density is sufficiently high, the
torus becomes opaque to radiation. Quasi-opaque structured tori
have more complex emission properties than their optically thin
counterparts and the idealised optically thick rotationally sup-
ported tori in the previous sections.

We investigate the emission properties using our covariant
radiative transfer formulation, conducting a full radiative trans-
fer calculation for a model structured torus. We consider two
opacity sources, with their specific emissivities in the rest frame
given by

j0,1(E0) = K
�

ne

cm−3

�2�
E0

keV

�−1�
Θ

keV

�−1/2

e−E0/Θ, (59)

j0,2(E0) = C

�
ne

cm−3

��
E0

keV

�−2.5

, (60)
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Fig. 6. Surface brightness images of optically thin radiation pressure
dominated tori viewed at inclination angles of 30◦, 45◦, 75◦ and 85◦
(left to right, top to bottom). The torus parameters are n = 0.21, rk =
12rg and β = 5 × 10−5. The black-hole spin parameter a = 0.998. The
brightness of each pixel represents the total intensity integrated over
the entire spectrum. The torus brightness is normalised such that the
brightness of the brightest pixel in each image is the same.

where Θ = kT is the relativistic temperature (in units of mec
2)

and K = 8 × 10−46 erg s−1cm−3 Hz−1. C is a normalisation,
dependent on β, chosen such that both j0,1 and j0,2 are equal
at E0 = 0.1 keV, at the torus centre. For β = 1.235 × 10−5,
C = 2.162 × 10−45 erg s−1cm−3 Hz−1, whereas for β = 5 × 10−5,
C = 2.681×10−45erg s−1cm−3Hz−1. The electron number density
is defined as ne = ρ/µmH . The corresponding specific absorption
coefficients are

α0,1(E0) = B1

�
ne

cm−3

�2
σT f1(E0) cm−1 , (61)

α0,2(E0) = B2

�
ne

cm−3

�
σT f2(E0) cm−1 , (62)

where σT is the Thomson cross section, and f1(E0) and f2(E0)
are functions of photon energy. The torus is optically thin to the
first process, but is partially opaque to the second process. We
therefore set B1 = 0. Without loss of generality we consider an
energy independent absorption, which implies f2(E0) = 1. The
normalisation constant B2 is chosen such that α0,2rout ∼ 1 − 5
across the torus, where rout is the outer boundary radius of
the torus. Note that the first process has a similar density and
temperature dependence to thermal free-free emission. The sec-
ond process mimics a free-electron scattering-like process which
converts photons with different energies indiscriminately into a
power-law energy distribution.

Figures 8 and 9 show intensity images of opaque radiative
pressure dominated tori using the aforementioned spectral pa-
rameters. These tori differ from the optically thin case in that the
emissivity and opacity have changed, causing significant differ-
ences in the intensity images. Towards the outer-edges of the tori
there is now obvious limb darkening (dark red). There is now an
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Fig. 7. (Top panel) Profiles of an emission line from an optically thin
pressure supported structured accretion torus viewed at different in-
clinations i. The dynamical parameters of the torus are n = 0.21 and
rk = 12 rg. The black-hole spin parameter a = 0.998. The ratio of the
gas thermal pressure to the total pressure β = 1.235 × 10−5. The radius
of the inner boundary rin = 8.528rg and the radius of the outer bound-
ary rout = 20.246 rg. The line emissivity is proportional to the density
ρ. These line profiles are normalised such that the line flux F(E0) = 1
when the torus is viewed at i = 60◦. (Bottom panel) Profiles of compos-
ite profiles due to two emission lines. The torus and black hole parame-
ters are the same as those for the lines in the top panel. The line energies
are such that one line has an energy 10% higher than the other line and
the emissivity of the line with the higher line centre energy is 14% of
that of the line with the lower line centre energy (cf. analogous to the
relative properties of the Fe Kα and Kβ lines (Hölzer et al. 1997)).

additional temperature dependence to the emission and due to
the temperature stratification of the torus, nearly tangential rays
sample only the cooler surface layers of the torus. However, rays
almost perpendicular to the torus surface have a much higher
probability of traversing the hotter layers deeper beneath the
torus surface. Consequently, surfaces viewed face on by an ob-
server will appear much brighter than those viewed at higher
inclination angles. For these tori we have assumed τ � 1.

4.2. Some Remarks

4.2.1. Optically Thin vs Optically Thick Emission

For the optically thin tori in figures 5 and 6, the low optical
depth means these tori are almost transparent, allowing the
entire torus volume to contribute to the emission. The emission
from the approaching side of the torus is much stronger due to
Doppler boosting causing an increase in the projected velocity
of the gas along the line of sight towards the observer. The re-
ceding limb’s projected velocity is decreased and consequently
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Fig. 8. Surface brightness images of opaque radiative pressure domi-
nated accretion tori viewed at inclination angles of 15◦, 30◦, 45◦, 60◦,
75◦ and 85◦ (left to right, top to bottom). The torus parameters are
n = 0.21, rk = 12rg and β = 1.235 × 10−5. The black-hole spin parame-
ter a = 0.998. The emissivity is provided by emission from two spectral
lines, and the two opacity sources given in equations (59) and (60).
Absorption is provided through the Thomson cross section in equation
(62). The brightness of each pixel represents the total intensity inte-
grated over the entire spectrum. The torus brightness is normalised such
that the brightness of the brightest pixel in each image is the same.

dimmed. At higher viewing inclination angles geodesics travel
through more emissive material than at lower inclinations. Since
the fast moving gas in the inner region of the torus is visible,
blueshifting and beaming are very strong and emission from
the approaching side of the torus dominates these images. The
overall brightness of the optically thin tori at high inclination
angles is much brighter than at lower inclinations, as at high
inclinations geodesics may sample significantly more emissive
material in the limbs.

For the rotationally supported opaque tori, emission is
from the surface of the torus only. Since the opaque torus
models are optically thick, the front limb of the torus obscures
the fast-moving inner regions of these tori at higher inclination
angles. This is reflected in their emission spectra in figure 4,
where for i ≥ 45◦ the observed flux decreases rapidly. For the
optically thin torus model, emission is observed from the entire
volume of the torus, not just the surface. Since the fast-moving

Fig. 9. Surface brightness images of quasi-opaque accretion tori around
extreme Kerr (a=0.998) black holes, viewed from left to right, top to
bottom, at observer inclination angles of 30◦, 45◦, 75◦ and 85◦. Same
parameters as figure 8, but now β = 5×10−5. Line emission and contin-
uum emission are included. These tori also self-occult and higher-order
emission is greatly suppressed at high inclination angles. The images
are normalised such that the brightest pixel in each image is of the same
intensity.

gas from the inner-region contributes to the observed emission
line profile (Figure 7), this gives rise to the more pronounced
red and blue wings, which are observed even at high inclination
angles. Additionally, for optically thin tori the observed line
profiles appear to be roughly monotonically increasing with
observer inclination angle. This is in contrast to the line profiles
from optically thick accretion disks and tori in Figure 4, which
decrease in amplitude and appear wedge-shaped for inclination
angles beyond 45◦ (Kojima (1991), Beckwith & Done (2004b),
Fuerst & Wu (2004)). As was found in Fuerst (2006), altering
the black hole spin does not affect the observed torus images
or emission line profiles significantly. The inner-edges of the
tori presented in this paper do not extend as close to the event
horizon as thin disks. Consequently the red wing of their line
profiles is not as extended. The shape of these tori, as well as
the location of their inner edges, depends much more on the
distribution of pressure forces within the tori themselves. If
these models are realistic it would prove difficult to derive the
central black hole spin from the observed spectral information.

The emission from quasi-opaque tori is restricted to a thin
surface skin layer, which is similar to cases of the opaque
accretion tori and disks. However, the quasi-opaque torus is
distinguishable from the fully opaque accretion tori and accre-
tion disks by the effects arising from gradients in the optical
depth. This effect is particularly noticeable near the edges of
the quasi-opaque tori, where significant limb darkening occurs.
Such limb effects are a manifestation of the temperature and
density stratification within the tori. When looking at the edge
of a torus, for a given optical depth, cooler, less dense material is
observed than when looking towards the torus centre. Just above
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the surface of the quasi-opaque torus is an optically thin pho-
tosphere. As can be seen in figures 8 and 9, photons traversing
only the edges of the limb of the torus are weakly attenuated by
the cool material and so appear significantly darker than the rest
of the torus surface, i.e. only line photons are observed. Hotter
neighbouring regions appear much brighter due to continuum
photons being attenuated by the local emission and absorption
properties of the emitting medium.

We illustrate the limb effect with a simple phenomenolog-
ical model of an emitting and absorbing medium, in local
thermodynamic equilibrium (LTE), at a uniform temperature T,
with a background source of intensity I(0). In the absence of
scattering, taking τ0 = 0 at the outer edge of the limb, equation
(18) implies:

I(τν) = I(0)e−τν + B(T)(1 − e−τν ), (63)

where B(T) is the Planck function. For low optical depths,
τν → 0 and so I(τν) → I(0), i.e. the observed intensity of the
limb tends towards the background intensity, is independent of
temperature, and emission from regions deeper within the torus
becomes negligible. In our calculations we presume I(0) � 1
and so the limb darkening effect is obvious, and in strong con-
trast to the rest of the torus image.

4.2.2. Gravitationally-Induced Line Resonance in 3D Flows

Consider a two-level atomic system. Absorption of a photon
causes the excitation of an electron from a lower energy state
to a higher energy state. Conversely, a photon is emitted when
an electron is de-excited from a higher energy state to a lower
energy state. The energy of the absorbed and the emitted photon
is the same as the energy difference between the two states. Such
a system can be considered an oscillator. Under general condi-
tions, two oscillators with different intrinsic frequencies at dif-
ferent locations would not be resonantly coupled, and two lines
from different atomic transitions would not exhibit resonant be-
haviour without coupling to either other lines or an optical pump.

However, in the vicinity of black holes, where relativistic
effects are severe and gravity is extreme, lines from different
atomic transitions can couple and exhibit resonance phenomena.
As shown in numerous publications (e.g. Cunningham 1975;
Fabian et al. 1989; Stella 1990; Fanton et al. 1997; Reynolds
et al. 1999; Fabian et al. 2000; Fuerst & Wu 2004), the gravita-
tional frequency shifts of lines from relativistic accretion disks
around black holes can be severe. Photons propagating upwards,
out of the gravitational well of the black hole, are subject to en-
ergy redshifts, whereas photons propagating in the opposite di-
rection, deeper into the gravitational well, are blueshifted.

Consider a radiative transition process occurring in a
medium at a radial distance r1 from the black hole, which con-
sequently emits a photon of energy E1. The photon propagates
outward, and its energy is red-shifted. When the photon reaches
a distance r2, its energy becomes E2, lower than E1, the energy
at its point of emission. Suppose that the photon encounters an
electron and is absorbed. The electron is excited to a higher en-
ergy state. The electron is then de-excited and returns to its orig-
inal state, emitting a photon of energy E2. This photon, how-
ever, propagates inward. When it reaches r1, its energy has been
gravitationally blue-shifted and is now E1. Again suppose that
this photon encounters an electron, is absorbed, and causes the
electron to be excited to a higher energy level. This electron is
subsequently de-excited, and again emits a photon of energy E1.
The photon propagates outward once more, is absorbed by an

Fig. 10. Schematic illustration of the resonance between two lines with
E1 and E2, emitted at radial distances r1 and r2 respectively from a black
hole, where r2 > r1. In the rest frames E1 > E2.

electron, and causes another excitation. The later de-excitation
of this electron leads to the emission of another photon of en-
ergy E2, and the photon propagates inward again... Such a pro-
cess would persist, forming a resonant feedback cycle between
the transitions of the two lines with different rest-frame energies
(see Figure 10).

Such a line resonance occurs easily in 3D flows but not in
geometrically thin accretion disks or 2D flows. This can be un-
derstood as follows. In the Schwarzschild space time, for a pho-
ton with an energy E1 located at r1, one can also find a closed
surface corresponding to a energy red-shift of ∆E, such that the
photon energy becomes E2 = E1 − ∆E, located at r2 > r1. The
converse also holds, and a photon of energy E2 located at r2 al-
ways finds a closed surface corresponding to blue-shift of ∆E,
such that the photon energy increases to E1 = E2 + ∆E. A pho-
ton emitted from the vicinity of a black hole must pass through
the closed surface with a specific energy shift before reaching
infinity, and in 3D radial flows the entire surface is in principle
embedded completely in the flow. A 2D flow cannot completely
contain such a surface and hence the photon can escape to infin-
ity, passing through the surface with a specific energy shift at a
location not inside the flow. The situation is similar in the Kerr
space-time. A detailed quantitative analysis of such a line res-
onance, and relativistic radiative transfer calculations including
these masing effects warrants further investigation. We leave this
to a future article.

5. Conclusions

We have derived the radiative transfer equation from first princi-
ples, conserving both particle number and phase-space density.
The equation is thus manifestly covariant, and it is applicable in
arbitrary 3D geometrical settings and for any pre-defined space-
time metric. The more general form of the equation takes ex-
plicit consideration of a covariant particle flux with mass. We
have found that aside from modifying the geodesic trajectories
connecting the observer and the emitting regions, the presence of
particle mass in the radiative transfer equation introduces mass-
dependent aberration, which reduces the intensity gradient along
the ray. In the zero mass limit this general radiative transfer equa-
tion recovers its original form for the massless particles.

We carry out demonstrative numerical general relativistic ra-
diative transfer calculations, with a ray-tracing algorithm con-
structed from the formulation. Different 3D accretion tori around
rotating black holes with different geometrical aspects, physi-
cal structures, emission properties, and optical depth variations
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are considered. We have demonstrated radiative transfer calcu-
lations based on the formulation are able to deal with the com-
plexity in the various combinations and convolution of relativis-
tic, geometrical, physical and optical effects. Our calculations
have clearly shown the significant role that structures and opti-
cal depth, and their gradients, together with geometrical and rel-
ativistic factors, play in shaping the emission properties of these
3D relativistic flows in the vicinity of rotating black holes. The
calculations also show the presence of limb effects in 3D objects
with finite optical depths.

We note that gravitationally induced line resonance can oc-
cur in 3D accretion onto a compact object. This phenomenon
is not present in 2D planar objects, such as geometrically thin
accretion disks, where the radiation can escape from the disk
surface to free space without further absorption or re-emission.
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Dolence, J. C., Gammie, C. F., Mościbrodzka, M., & Leung, P. K. 2009, ApJS,

184, 387
Eracleous, M. & Halpern, J. P. 2003, ApJ, 599, 886
Fabian, A. C., Iwasawa, K., Reynolds, C. S., & Young, A. J. 2000, PASP, 112,

1145
Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729
Fanton, C., Calvani, M., de Felice, F., & Cadez, A. 1997, PASJ, 49, 159
Frank, J., King, A., & Raine, D. J. 2002, Accretion Power in Astrophysics: Third

Edition (Cambridge: Cambridge University Press)
Fuerst, S. V. 2006, PhD thesis, University College London
Fuerst, S. V. & Wu, K. 2004, A&A, 424, 733
Fuerst, S. V. & Wu, K. 2007, A&A, 474, 55
Gerbal, D. & Pelat, D. 1981, A&A, 95, 18
Hawley, J. F. 2000, ApJ, 528, 462
Hölzer, G., Fritsch, M., Deutsch, M., Härtwig, J., & Förster, E. 1997,
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