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Abstract. We present a general formulation for ray-tracing calculations in curved space-time. The formulation takes full ac-
count of relativistic effects in the photon transport and the relative motions of the emitters and the light-of-sight absorbing
material. We apply the formulation to calculate the emission from accretion disks and tori around rotating black holes. In
our model the emission lines and continuum originate from an accretion disk or torus, and the motion of the emitters in the
disk/torus is determined by the gravity of the black hole and the space-time structure near the black hole. The line-of-sight ab-
sorbing medium is comprised of cold absorbing cloudlets. These cloudlets are kinematically hot, with their velocity dispersion
determined by the local virial temperature. The emission from the accretion disk/torus is resonantly absorbed/scattered. Our
calculations demonstrate that line-of-sight absorption significantly modifies the profiles of lines from the accretion disks. It is
often difficult to disentangle absorption effects from other geometrical and kinematics effects, such as the viewing inclination
and the spin of the black hole. Our calculations also show that emission lines from accretion tori and from thin accretion disks
differ substantially. Large geometrical obscuration could occur in tori, and as a consequence lines from tori generally have much
weaker redshift wings at large viewing inclination angles. Moreover, the blue peak is truncated.
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1. Introduction

The strong X-rays observed in active galactic nuclei (AGN) and
some X-ray binaries are believed to be powered by accretion
of material into black holes. The curved space-time around the
black hole influences not only the accretion hydrodynamics but
also the transport of radiation from the accretion flow.

Emission lines from thin Keplerian disks around non-
relativistic stellar objects generally have two symmetric peaks
(Smak 1969), corresponding to the approaching and receding
line-of-sight velocities due to disk rotation. Because of vari-
ous relativistic effects, lines from accretion disks around black
holes do not always have symmetrical double-peak profiles.
The accretion flow near a black hole is often close to the speed
of light, and emission is relativistically boosted. The blue peak
of the line therefore becomes stronger and sharper. Moreover,
the strong gravity near the black-hole event horizon causes
time dilation, which shifts the line to lower energies. Emission
lines from accretion disks around black holes appear to be
broad, with a very extended red wing and a narrow, sharp blue
peak (see e.g. the review by Fabian et al. 2000, and references
therein). Furthermore, gravitational lensing can produce multi-
ple images and self-occultation, further modifying the emission
line profile.

� Appendices are only available in electronic form at
http://www.edpsciences.org

Various methods have been used to calculate the profiles
of emission lines from accretion disks around black holes. The
methods can be roughly divided into three categories. We now
discuss each of them briefly. The first method uses a trans-
fer function to map the image of the accretion disk onto a
sky plane (Cunningham 1975, 1976). The accretion disk is as-
sumed to reside in the equatorial plane. It is Keplerian and
geometrically thin, but optically thick. The space-time metric
around the black hole is first specified, and the energy shift of
the emission (photons) from each point on the disk surface is
then calculated. A parametric emissivity law for the disk emis-
sion is usually used – typically, a simple power-law which de-
creases radially outward. The specific intensity at each point
in the sky plane is determined from the energy shift and the
corresponding specific intensity at the disk surface, using the
Lorentz-invariant property. The transfer-function formulation
(Cunningham 1975, 1976) has been applied to line calcula-
tions in settings ranging from thin accretion rings (e.g. Gerbal
& Pelat 1981) and accretion disks around Schwarzschild (e.g.
Laor 1991) and rotating (Kerr) black holes (e.g. Bromley et al.
1997). The second method makes use of the impact parameter
of photon orbits around Schwarzschild black holes (e.g. Fabian
et al. 1989; Stella 1990; Kojima 1991). The transfer function in
this method is described in terms of elliptical functions, which
are derived semi-analytically. The Jacobian of the transforma-
tion from the accretion disk to sky plane is, however, deter-
mined numerically via infinitesimal variations of the impact
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parameter (Bao 1992). The method can be generalized to the
case of rotating black holes by using additional constants of
motion (Viergutz 1993; Bao et al. 1994; Fanton et al. 1997;
Cadez et al. 1998). The third method simply considers direct in-
tegration of the geodesics to determine the photon trajectories
and energy shifts (Dabrowski et al. 1997; Pariev & Bromley
1998; Reynolds et al. 1999).

These calculations have shown how the dynamics of the
accretion flow around the black hole and the curved space-
time shape the line profiles. Various other aspects of the radia-
tion processes, e.g. reverberation and reflection (Reynolds et al.
1999) and disk warping (Cadez et al. 1998) were also investi-
gated using the methods described above. The results obtained
from these calculations have provided us with a basic frame-
work for interpreting X-ray spectroscopic observations, in par-
ticular, the peculiar broad Fe Kα lines in the spectra of AGN,
e.g. MCG-6-30-15 (Tanaka et al. 1995). While existing studies
have put emphasis on the energy shift of the emission, trans-
port effects such as extinction have been neglected. Resonant
absorption (scattering) by ambient material can greatly modify
the disk emission line profile. This effect was already demon-
strated in a study by Ruszkowski & Fabian (2000), in which a
simple rotating disk-corona provides the resonant scattering.

Here, we present ray-tracing calculations of spectra from
relativistic flows in curved space-time. We include line-of-
sight extinction and emission explicitly in the formulation.
The radiative-transfer equation is derived from the Lorentz-
invariant form of the conservation law. It reduces to the stan-
dard classical radiative-transfer equation in the non-relativistic
limit. The formulation can incorporate dynamical and geomet-
ric models for the line-of-sight absorbing and emitting mate-
rial. As an illustration, we calculate the emision line profiles
from thin accretion disks and thick accretion tori around rotat-
ing black holes. The emitted spectra include a power law con-
tinuum together with a line. This emission is resonantly scat-
tered by the line-of-sight-material. We include the contribution
from higher-order images and allow for self-occultation.

We organize the paper as follows. In Sect. 2 we show the
derivation of the transfer equation. In Sect. 3 we construct
the equation of motion for free particles in a Kerr space-time
and for force-constrained particles for some simple parametric
models. In Sect. 4 we construct a thin disk and a thick torus
model. In Sect. 5 we generalize this by adding in absorption
due to a distribution of absorbing clouds. In Sect. 6 we present
the results from the models where either emission geometry
(tori), or absorption (clouds) are important.

2. Radiative-transfer equation

Throughout this paper, we adopt the usual convention c = G =
h = 1 for the speed of light, gravitational constant and Planck
constant. The interval in space-time is specified by

dτ2 = gαβdxαdx β (1)

where gαβ is the metric.
Consider a bundle of particles which fill a phase-space vol-

ume element

dV ≡ dx dy dz dpx dpy dpz, (2)

where dx dy dz(≡dV) is the three-volume and dpx dpy dpz is the
momentum range, at a given time t. Liouville’s Theorem reads

dV
dλ
= 0 (3)

(see Misner et al. 1973), with λ here being the affine parameter
for the central ray in the bundle. The volume element dV is
thus Lorentz invariant.

The distribution function for the particles in the bundle,
F(xi, pi) is given by

F(xi, pi) =
dN
dV , (4)

where dN is the number of particles in the three-volume. Since
dN/dV is Lorentz invariant, F(xi, pi) is Lorentz invariant.
From Eq. (2), we have

F =
dN

p2dV dp dΩ
, (5)

where p2 dp dΩ = dpx dpy dpz. For massless particles,
v = c = 1 and |p| = E. The number of photons in the given spa-
tial volume is therefore the number of photons flowing through
an area dA in a time dt. It follows that

F =
dN

E2dA dt dE dΩ
· (6)

Recall that the specific intensity of the photons is

Iν =
EdN

dA dt dE dΩ
· (7)

By inspection of Eqs. (6) and (7), we obtain

F =
Iν
E3
=

Iν
ν3
, (8)

where ν (=E) is the frequency of the photon. We will use this
Lorentz invariant intensity, I ≡ F, in the radiative transfer
formulation.

In a linear medium, extinction is proportional to the inten-
sity, and the emission is independent of the intensity of the in-
coming radiation. The radiative transfer equation is therefore

dI
ds
= −χI + η

(
ν0
ν

)3
, (9)

where χ is the absorption coefficient, η is the emission coeffi-
cient and ds is the length element the ray traverses. The equa-
tion in this form is defined in the observer’s frame, and the
absorption and emission coefficients are related to their coun-
terparts in the rest frame with respect to the medium via

χ =
(
ν0
ν

)
χ0, (10)

η =

(
ν

ν0

)2

η0, (11)

where the subscript “0” denotes quantities in the local rest
frame.

The relative energy/frequency shift in a moving medium
with respect to an observer at infinity is given by

E0

E
=
ν0
ν
=

pαuα|λ
pαuα|∞ , (12)
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where uα is the four-velocity of the medium as measured by an
observer, and

ds
dλ
= −pαuα|∞. (13)

The radiative transfer equation (Eq. (9)) in the co-moving
frame is therefore

dI
dλ
= −pαuα|λ

[
−χ0(x β, ν)I + η0(x β, ν)

]
(14)

(see Baschek et al. 1997).
The results in the co-moving frame can be used to deter-

mine the intensity and frequency in the other reference frames.
The ray is specified by choosing xα(λ0) and pα(λ0). From the
geodesic equation, we have dpα/dλ + Γαβγp βpγ = 0, where we
have scaled λ by m for massive, and by 1 for massless particles.
The total derivative of I is therefore

dI
dλ
=
∂I
∂xα

dxα

dλ
+
∂I
∂pα

dpα

dλ
,

= pα
∂I
∂xα
− Γαβγpβpγ

∂I
∂pα
· (15)

This, combined with Eq. (14), yields

−pαuα|λ
[
−χ0(x β, ν)I + η0(x β, ν)

]
= pα

∂I
∂xα
−Γαβγp βpγ

∂I
∂pα
, (16)

which is the same as that derived by Lindquist (1966) from the
Boltzmann equation.

The metric and the initial conditions define the rays (the
photon trajectories in 3D space), and the solution can be ob-
tained by direct integration along the ray. For simplicity, we
assume the refractive index n = 1 throughout the medium. The
solution to Eq. (14) is then

I(λ) = I(λ0) exp

(∫ λ

λ0

χ0(λ′, ν0)uαpαdλ′
)

−
∫ λ

λ0

exp

(∫ λ

λ′
χ0(λ′′, ν0)uαpαdλ′′

)
η0(λ′, ν0)uαpαdλ′. (17)

In the non-relativistic limit, uαpα = 1, and the equation recov-
ers the conventional form (see Rybicki & Lightman 1979).

3. Particle trajectories

3.1. Free particles

To determines the photon trajectories we need to specify the
metric of the space-time. We consider the Boyer-Lindquist
coordinates:

dτ2 =

(
1 − 2Mr

Σ

)
dt2 +

4aMr sin2 θ

Σ
dtdφ − Σ

∆
dr2

−Σdθ2 −
(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
sin2 θdφ2, (18)

where M is the black hole mass, with the three vector (r, θ, φ)
corresponding to spherical polar coordinates, and defining Σ =
r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. The dimensionless pa-
rameter a/M specifies the spin of the black hole, with a/M = 0

corresponding to a Schwarzschild (non-rotating) black hole and
a/M = 1 to a maximally rotating Kerr black hole.

The motion of a free particle is described by the
Lagrangian:

L = 1
2

[
−

(
1 − 2Mr

Σ

)
ṫ2 − 4aMr sin2 θ

Σ
ṫφ̇ +

Σ

∆
ṙ2

+Σθ̇2 +

(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
sin2 θφ̇2

]
(19)

(here ẋα = dxα/dλ). The Lagrangian does not depend explicitly
on the t and φ coordinates. The momenta in the four coordinates
are therefore

pt = ∂L/∂ṫ = −E, (20)

pr = ∂L/∂ṙ = Σ
∆

ṙ, (21)

pθ = ∂L/∂θ̇ = Σθ̇, (22)

pφ = ∂L/∂φ̇ = L, (23)

with E being the energy of the particle at infinity and L the an-
gular momentum in the φ direction. The corresponding equa-
tions of motion are

ṫ = E +
2r

(
r2 + a2

)
E − 2aL

Σ∆
, (24)

ṙ2 =
∆

Σ

(
H + Eṫ − Lφ̇ − Σθ̇2

)
, (25)

θ̇2 =
1
Σ2

(
Q + (E2 + H)a2 cos2 θ − L2 cot2 θ

)
, (26)

φ̇ =
2arE + (Σ − 2r)L/ sin2 θ

Σ∆
, (27)

where Q is Carter’s constant (Carter 1968), and H is the
Hamiltonian, which equals 0 for photons and massless parti-
cles and equals −1 for particles with a non-zero mass. (See
Reynolds et al. (1999) for more details.) For simplicity, we
have set the black-hole rest mass equal to unity (M = 1)
in the equations above. This is equivalent to normalizing the
length to the gravitational radius of the black hole (i.e., set
Rg ≡ GM/c2 = 1), and we will adopt this normalization
hereafter.

There are square terms of ṙ and θ̇ in two equations of mo-
tion. They could cause problems when determining the turning
points at which ṙ and θ̇ change sign in the numerical calcula-
tions. To overcome this, we consider the second derivatives of r
and θ instead. From the Euler-Lagrange equation, we obtain

r̈ =
∆

Σ

{
Σ − 2r2

Σ2
ṫ2 +

(r − 1)Σ − r∆
∆2

ṙ2 + rθ̇2

+ sin2 θ

(
r +
Σ − 2r2

Σ2
a2 sin2 θ

)
φ̇2

−2a sin2 θ
Σ − 2r2

Σ2
ṫφ̇ +

2a2 sin θ cos θ
∆

ṙθ̇

}
, (28)

θ̈ =
1
Σ

{
sin θ cos θ

[
2a2r
Σ

ṫ2 −
4ar

(
r2 + a2

)
Σ

ṫφ̇ − a2

∆
ṙ2

+a2θ̇2 +
∆ + 2r

(
r2 + a2

)2

Σ2
φ̇2

]
− 2rṙθ̇

}
. (29)
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In terms of the momenta and the Hamiltonian, the equations
above can be expressed as

ṗr =
1
Σ∆

[
(r − 1)

((
r2 + a2

)
H − κ

)
+ r∆H

+2r
(
r2 + a2

)
E2 − 2aEL

]
− 2pr

2(r − 1)
Σ

, (30)

ṗθ =
sin θ cos θ
Σ

[
L2

sin4 θ
− a2

(
E2 + H

)]
, (31)

where κ = Q+L2+a2(E2+H). Equations (21), (22), (24), (27),
(30) and (31) are the equations of motion.

3.2. Motion in the presence of external forces

The equations of motion obtained in the previous section are
applicable to free particles only. In a general situation exter-
nal (non-gravitational) forces may be present and we need to
specify the external force explicitly in deriving the equations
of motion. However, in the setting of accretion disks around
black holes we can often treat the effect of the external force
implicitly which we will discuss in more detail in the follow-
ing subsections.

3.2.1. Rotational and pressure supported model

Here we consider a simple model such that

ṫ > φ̇ � ṙ � θ̇. (32)

As ṙ and θ̇ are small in comparison with other quantities, they
can be neglected as a first approximation.

The equation of motion reads

d2xν

dλ2
+ Γναβu

αuβ = aν, (33)

where aν is the four-acceleration due to an external force per
unit mass. For axisymmetry (which is a sensible assumption
for accretion onto rotating black holes), d/dφ = 0 and aφ = 0.
The identity uαaα = 0 together with ṙ = 0 and θ̇ = 0 imply
that at = 0. We may also set ar = 0 for simplicity. Because
we have an extra equation from the identity uαuα = −1, aθ can
be determined self-consistently under the approximation θ̇ = 0.
This scenario thus corresponds to flows supported by rotation
in the r̂ direction and by pressure in the θ̂ direction.

Inserting the affine connection coefficients for the Kerr met-
ric into the equation of motion yields quantities identical to
zero on the left hand side of the equations for the t̂ and φ̂ direc-
tions. This leaves only the non-trivial momentum equation in
the radial direction:

0 = −
(
Σ − 2r2

Σ2

)
ṫ2 + 2

(
Σ − 2r2

Σ2

)
a sin2 θṫφ̇

−
(
r + a2 sin2 θ

(
Σ − 2r2

Σ2

))
sin2 θφ̇2, (34)

which further simplifies to

rΣ2 sin2 θ

2r2 − Σ φ̇
2 =

(
ṫ − a sin2 θφ̇

)2
. (35)

Here we choose the positive solution

ṫ =

( √
rΣ sin θ√
2r2 − Σ

+ a sin2 θ

)
φ̇, (36)

which corresponds to the same rotation as the black hole. This
solution thus allows the flow to match the rotation of a prograde
accretion disk.

From the metric we have

1 =

(
1 − 2r
Σ

)
ṫ2 +

4ar sin2 θ

Σ
ṫφ̇

−
(
r2 + a2 +

2a2r sin2 θ

Σ

)
sin2 θφ̇2. (37)

Combining Eqs. (36) and (37) yields

Σ sin2 θ

(
r(Σ − 2r)
2r2 − Σ +

2
√

ra sin θ√
2r2 − Σ

− 1

)
φ̇2 = 1. (38)

It follows that the components of the four-velocity are

ṫ =
1
ζ

(
Σ
√

r + a sin θ
√

2r2 − Σ
)
,

ṙ = 0,

θ̇ = 0,

φ̇ =

√
2r2 − Σ
ζ sin θ

, (39)

where

ζ =

√
Σ
(
Σ(r + 1) − 4r2 + 2a sin θ

√
r(2r2 − Σ)

)
. (40)

The marginally stable orbit for particles is defined by the sur-
face where

∂E
∂r
= 0. (41)

From Eqs. (24), (27) and (39), we have

E =
1
ζ

(
(Σ − 2r)

√
r + a sin θ

√
2r2 − Σ

)
. (42)

After differentiation, we remove the non-zero factors in the ex-
pression and obtain the condition

∆Σ2 − 4r
(
2r2 − Σ

) (√
2r2 − Σ − a sin θ

√
r
)2
= 0. (43)

Setting a = 0 gives r = 6, which is often regarded as the
limit for the inner boundary of an accretion disk around a
Schwarzschild black hole. This value is the same as that de-
rived by Bardeen et al. (1972) using ∂2 p2

r /∂r
2 = 0.

Before we proceed further, we must note that the expres-
sions for the velocity components in Eqs. (39) hold only for re-
gions “sufficiently” far from the black-hole event horizon. The
approximation that we adopt in the model breaks down when
the square root in the denominator approaches zero. This oc-
curs at the light circularisation radius rcir, which is given by
ζ = 0, or equivalently

Σ(r + 1) − 4r2 + 2a sin θ
√

r(2r2 − Σ)

∣∣∣∣∣∣
r=rcir

= 0. (44)
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Moreover, the assumption of θ̇ = 0 is also invalid for radii
smaller than the radius of the marginally stable orbit – the flow
is neither rotational nor pressure supported and it follows a
geodesic into the event horizon.

3.2.2. Isobaric surfaces

In a stationary accretion flow, the acceleration must be balanced
by some forces, e.g. the gradient of gas or radiation pressure.
As the local acceleration aα can be calculated from the rota-
tion law ω(r, θ) we can derive a set of isobaric surfaces when a
rotation law is given. For a barotropic equation of state of the
accreting matter the isobaric surfaces coincide with the isopic-
nic (constant-density) surfaces.

The accelerations in the r̂ and θ̂ directions are

−Σ
∆

ar =
Σ − 2r2

Σ2

(
ṫ − a sin θφ̇

)2
+ r sin2 θφ̇2, (45)

−Σaθ = sin θ cos θ

[
2r
Σ2

(
aṫ −

(
r2 + a2

)
φ̇
)2
+ ∆φ̇2

]
. (46)

The surface of constant acceleration is given by

aα
dxαsurf

dλ
= 0 (47)

(here and hereafter dxαsurf/dλ ≡ dxα/dλ|xsurf ). The station-
ary condition implies dt/dλ = 0, and axisymmetry implies
dφ/dλ = 0. Without losing generality, we can choose t = φ = 0
on the surface. Thus, Eq. (47) becomes

0 =
Σar

∆

drsurf

dλ
+ Σaθ

dθsurf

dλ
,

= β1
drsurf

dλ
+ β2

dθsurf

dλ
, (48)

where

β1 =
Σ − 2r2

Σ2

(
1
ω
− a sin θ

)2

+ r sin2 θ,

β2 = sin θ cos θ

[
∆ +

2r
Σ2

( a
ω
−

(
r2 + a2

))2
]
, (49)

and drsurf/dλ and dθsurf/dλ determine the intersection of the
isobaric surfaces and the (r, θ) plane. By rescaling Eq. (48) with
a factor of

√
∆/Σ and making use of the invariance

−
(

dτ
dλ

)2

=
Σ

∆
ṙ2 + Σθ̇2, (50)

we obtain

drsurf

dλ′
=

β1√
β2

2 + ∆β
2
1

,

dθsurf

dλ′
=

−β2√
β2

2 + ∆β
2
1

· (51)

These two differential equations can be solved numerically and
yield the isobaric surface as a parametric function of λ′.

4. Model accretion disks and tori

We now demonstrate using the equations of motion above to
construct the emitter models. The first is a geometrically thin
accretion disk, in which the emitting particles are in Keplerian
motion. The second is a torus, a 3-dimensional object with non-
negligible thickness.

4.1. Accretion disk

When space-time curvature is important, the Keplerian angu-
lar velocity of a test particle around a gravitating object is no
longerωk = r−3/2, the expression in flat space-time. Instead, the
Keplerian angular velocity in a plane containing the gravitating
object can be obtained by setting θ = π/2 in Eqs. (39) and (40).
Hence, the components of the four-velocity of the particles in
the disk are

ṫ =
r2 + a

√
r

r
√

r2 − 3r + 2a
√

r
,

ṙ = 0,

θ̇ = 0,

φ̇ =
1

√
r
√

r2 − 3r + 2a
√

r
, (52)

and the rotational velocity of a Keplerian accretion disk around
a black hole is

ωk =
1

r3/2 + a
, (53)

(Bardeen et al. 1972).
The relative energy shift of the emission between the disk

particle and an observer at a large distance is determined by
Eq. (12), with uα as given in Eq. (52). Keplerian disk images
can be found in many existing works (e.g. Bromley et al. 1998),
and we do not show disk images here. The general character-
istics are that a disk image is asymmetric, with the separatrix
for the energy shift of the emission no longer bisecting the disk
image into two equal sectors, one for red shift and another for
blue shift. The whole disk appears to be reddened, especially at
the inner rim.

4.2. Accretion torus

To determine the geometry and structure of an accretion torus
self-consistently is beyond the scope of this paper. Here, we
consider a simple parametric model, with an angular velocity
profile given by

ω =
1

(r sin θ)3/2 + a

( rk

r sin θ

)n
· (54)

The quantity rk is the radius (on the equatorial plane) at which
the material moves with a Keplerian velocity. The parameter n
adjusts the force term, such as a pressure gradient, to keep the
disk particles in their orbits, and it determines the thickness of
the torus. In this study we just take n = 0.21 without losing gen-
erality. If the torus is supported by radiation pressure, its inner



738 S. V. Fuerst and K. Wu: Radiation transfer of emission lines in curved space-time

edge is determined by the intersection of the isobaric surface
with either one of two surfaces. These two surfaces provide the
constraints, inside which the pressure-supported solution does
not hold. The first is a surface defined by the orbits of marginal
stability. For ω(r, θ), it is given by

0 = 2a sin4 θ

[
r2

Σ
−

(
r2 + a2 +

a2r sin2 θ

Σ

)
Σ − 2r2

Σ2

]
ω3

+ sin2 θ

[ 
6r

(
r2 + a2

)
Σ

+ 3∆ − Σ
 Σ − 2r2

Σ2
+ r

(
1 − 2r
Σ

) ]
ω2

−6ar sin2 θ

Σ

(
Σ − 2r2

Σ2

)
ω

+∆ sin2 θ ω
∂ω

∂r
−

(
1 − 2r
Σ

)
Σ − 2r2

Σ2
· (55)

The second is the limiting surface where the linear velocity ap-
proaches the speed of light. It is given by

0 = Σ − 2r + 4arω sin2 θ

−
((

r2 + a2
)
Σ + 2a2r sin2 θ

)
ω2 sin2 θ. (56)

Usually the former is larger than the latter. The outermost of
these two surfaces determines the inner boundary and hence
the critical surface of the torus.

Figure 1 shows the critical density surfaces of two tori. The
first torus is around a Schwarzschild black hole and the second
torus is around a maximally rotating black hole. The tori are
constructed such that their specific angular momentum has a
profile similar to those of the simulated accretion disks in Fig. 3
of Hawley & Balbus (2002).

Model tori can be constructed using various different meth-
ods. An example is that in a study of dynamical stability of
tori around a Schwarzschild black hole carried out by Kojima
(1986), the model parametrizes the angular momentum instead
of the angular velocity. We note that the aspect ratios of the
torus surfaces obtained by Kojima (1986) and those shown in
Fig. 1 are similar.

5. Extinction

The generic setting of the system under our investigation is
that emitters with various strengths are distributed in space in
a curved space-time, and the radiation is attenuated, and may
be re-emitted, when propagating. The emitters and the line-of-
sight material are in relativistic motion with respect to the ob-
server and also with respect to each other. An example is that
shown in Fig. 2, in which the emitters are the surface elements
of an accretion disk and the absorbers are some clouds in the
vicinity of the disk. The photon trajectories and the motion of
the emitters and absorbers are affected by the space-time dis-
torted by the central black hole.

To construct the model we need to determine

(i) the rays that connect the emitters, absorbers and observer;
(ii) the four-velocities of the emitters and absorbers/

scatterers;

Fig. 1. The critical emitting surface of the torus (solid line), the sur-
face defined by the orbits of marginal stability (dashed line) and the
limiting surface where the linear velocity derived from Eq. (54) ap-
proaches the speed of light (dotted line) for a Schwarzschild black
hole (top panel) and a Kerr black hole with a = 0.998 (bottom panel).
In both cases we consider an profile index n = 0.21 (see Eq. (54)),
which gives the tori an angular momentum profile similar to those ob-
tained in the accretion disk simulation of Hawley & Balbus (2002).
The Kepler radius rk is 15 for the Schwarzschild black hole and is 12
for the Kerr black hole.

(iii) the spatial distributions of the emitters and the ab-
sorbers/scatterers; and

(iv) the effective cross section of the absorbers/scatterers.

In the previous section, we have shown how to obtain (i)
and (ii); in this section we incorporate (iii) and (iv) into the
radiative-transfer calculations.

5.1. An illustrative model

We consider a model with the geometry shown in Fig. 2. The
photons are emitted from the elements on the top and bottom
surfaces of a geometrically thin disk in a Keplerian rotation
around a Kerr black hole. The radiation is resonantly scattered
(absorbed) by plasma clouds and is attenuated in its propaga-
tion. We omit emission from the clouds (i.e. η0 = 0 in Eq. (14))
in this study. The size of the clouds is small in comparison with
the length scale of the system. They are not confined to be in the
equatorial plane and are in orbital motion, supported by some
implicit forces (which may be radiation, kinematic or magnetic
pressure gradients). These clouds have a large (thermal) distri-
bution of velocities, in addition to their collective bulk velocity.

We assume that the radiation scattered into the energies of
the lines is insignificant and ignore the photons that are scat-
tered into the line-of-sight. Under this approximation, scatter-
ing simply removes the line photons and causes extinction sim-
ilar to true absorption. Thus, for simplicity, hereafter we do
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Fig. 2. A schematic illustration of the physical setting on which the
radiative-transfer formulation is constructed. The space-time curva-
ture is determined by a gravitating body, which is a rotating black
hole. The emitting object is the accretion disk around the hole. The
cloudlets in the vicinity attenuate the radiation from the accretion disk.
The properties of the radiation are specified by the 4-velocity of the
photon, uαp . The other three important quantities in the model are the
4-velocity of emitting elements in the accretion disk uαem, the bulk ve-
locity of the absorbing cloudlets uαcl and the “microscopic” 4-velocities
of the cloudlets uαab with respect to the bulk motion of the cloudlets.

not distinguish between scattering and absorption1, and the two
terms are interchangeable, unless otherwise stated explicitly.

The rays originating from the accretion-disk surface that
can reach the observer are determined by the 4-momenta of the
photons, which are calculated using Eqs. (24), (27) and (30).
The 4-velocities of the emitting surface elements on the accre-
tion disk are given by Eqs. (52). These determine the relative
energy shifts of the photons between the emitters and the ob-
server. What we need next is to determine the relative energy
shifts between the emitters and the absorbers. Then, we need
a model mechanism by which the absorption takes place, and
to derive the resonant absorption condition for the absorption
coefficient.

Now we construct a model for the spatial distribution and
the velocities of the absorbers. Consider a parametric model in
which the bulk 4-velocities of the clouds are given by Eqs. (39)
and (40). In this model the bulk velocities of the clouds in the
equatorial plane matches the 4-velocities of the accretion disk.

The clouds themselves are cold, and the thermal velocity of
the gas particles inside are much smaller than their bulk motion
and root-mean-square velocity dispersion. However, the clouds
have a large velocity dispersion, given by the local virial tem-
perature, which is comparable to the energy of the emission
lines of interest. Therefore, the clouds can be considered as rel-
ativistic particles in the calculation. Using the bulk-motion ve-
locities obtained by Eqs. (39) and (40) together with the virial
theorem, we can derive this temperature and determine the ve-
locity distribution of the absorbing clouds.

The clouds fill most of space, with a radially dependent
number density. However, close to the black hole, the assump-
tions above break down, and the axial force cannot support the
clouds out of the equatorial plane. When this happens, they will

1 Here, in spite of the term “resonant scattering” (which describes
the nature of the process), we have ignored the scattering of continuum
photons into the line energy bins and the energy (frequency) redistri-
bution in our calculations.

flow along geodesics directly into the hole. In the numerical
calculation, we determine the asymptotic boundaries at which
the left hand sides of Eqs. (44) and (43) vanish. This is done
by evaluating these expressions and testing to see if they are
negative at each point along the photon rays. Inside that sur-
face, the number density of the clouds will be much less than
that outside, which we approximate by setting it to zero in this
zone.

5.2. The absorption coefficient

We assume that the absorption is due to “cold” cloudlets with
high virial velocities. The absorption coefficient of individual
cloudlets is

χi ∝ σ δ
(
uαkα + Eline

Eγ

)
(57)

(with σ as the effective absorption cross section of the cloudlet,
and kα the photon four-momentum). The absorption rest fre-
quency is Eline, and Eγ is the energy of the photon in the bulk
rest frame. The total effective absorption coefficient χ0 is the
sum of the contribution of these cloudlets, i.e.,

χ0 =
∑

i

χi. (58)

Converting the sum into an integral in momentum space yields
the absorption per unit length in the rest frame as

χ0 =
−2πλσ

E2
line

×
∫∫

p2dpdµ exp(−E/Θ)uαkαδ

(
uαkα + Eline

Eγ

)
, (59)

where we have defined µ = cos θ, λ is a normalization constant,
Θ is the temperature in relativistic units (with kB = 1), and E
and p are the energy and momentum of a gas particle in the
bulk rest frame. This form assumes isotropic thermal motion in
the rest frame.

There are three terms that we need to determine before we
can evaluate the integral, and they are the normalisation pa-
rameter λ, the temperature Θ and the photon energy in the rest
frame of the absorbing particle uαkα. When these variables are
determined, we can then parametrise σ after integration is car-
ried out.

5.2.1. The normalisation parameter λ

We now derive λ starting from

N = 4πλ
∫ ∞

0
p2dp exp (−E/Θ) , (60)

where N is the number density of absorbing clouds. Integrating
yields

λ =
N m
Θ

4πm3K2( m
Θ

)
, (61)

where Kν(x) is a modified Bessel function, and m is the av-
erage cloud mass. This is called the Jüttner distribution and
corresponds to Maxwell’s distribution except in the case of a
relativistically high temperature.
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5.2.2. The temperature Θ

The total energy in the distribution of clouds is given by

Etot = 4πλ
∫ ∞

0
p2dpE exp (−E/Θ) . (62)

Integrating this yields the energy per unit mass as

Etot

Nm
=

K3( m
Θ

)

K2( m
Θ

)
− Θ

m
· (63)

Using conservation of energy and angular momentum, we cal-
culate the thermal energy of the virialised relativistic gas of
absorbing clouds.

At infinity the medium has

Einit = Nm, (64)

Linit = Lfin. (65)

Close to the black hole it has

Efin =
Nm
ζ

[
(Σ − 2r)

√
r + a sin θ

√
2r2 − Σ

]
, (66)

Lfin =
Nm
ζ

[
2ar
√

r sin2 θ −
(
r2 + a2

)
sin θ
√

2r2 − Σ
]
. (67)

The energy released by the gas falling from infinity and slam-
ming into a wall moving with a velocity given by Eq. (39) is

−Etot = uαpα = −Efin ṫinit − Lfinφ̇init. (68)

After simplification, this becomes

−Etot

Nm
=

1
ζ2

[
(2r2 − Σ)

(
r2 + a2

)
− 2ar sin θ

√
r
√

2r2 − Σ

−
(
a sin θ

√
2r2 − Σ + Σ√r

)
ζ
]
. (69)

Thus the temperature of the media can be derived using
Eqs. (63) and (69). Unfortunately, this yields an implicit re-
lation of m/Θ that contains transcendental functions. The mod-
ified Bessel functions can be expanded in the limit where
Θ � m which corresponds to an “almost relativistic” gas. Since
the potential energy released in accretion is of the order of a few
percent of the rest mass of the infalling material, this approxi-
mation should hold in AGN.

Expanding to second order inΘ/m, cancelling the exponen-
tial factors, and then solving the resulting quadratic yields

Θ

m
=

2
5

−1 +

√
1 +

10
3

( Etot

Nm
− 1

) . (70)

Thus we have an explicit description of how the kinematic tem-
perature varies with position.

5.2.3. The photon energy uαkα

In the rest frame, the motion of the thermalised medium is
isotropic. Thus we can simplify the problem by aligning an
axis along the photon propagation vector and working in a local
Lorentz frame so that

kα = Eγ(−1, 1, 0, 0), (71)

and

pα = muα = (E, pµ, py, pz). (72)

Thus,

uαkα =
Eγ
m

(pµ − E). (73)

5.2.4. Evaluation of the δ-function

Using the relation that

d
dµ

[
uαkα + Eline

Eγ

]
= − p

m
, (74)

we obtain∫
dµ uαkαδ

(
uαkα + Eline

Eγ

)
=

uαkα∣∣∣ d
dµ

[
uαkα+Eline

Eγ

] ∣∣∣
∣∣∣∣∣∣
uαkα=−Eline

= −Eline
m
p

∣∣∣∣∣∣
uαkα=−Eline

. (75)

We change the variable pdp to EdE. The integral in Eq. (59)
can now be simplified to

χ0 =
2πλσm

Eline

∫ ∞

m
2

(
Eγ

Eline
+

Eline
Eγ

) EdE exp(−E/Θ). (76)

Integrating this gives the absorption coefficient in the rest frame
of the gas

χ0 =
Nσ

2K2( m
Θ

)

[
1
2

(
Eγ

Eline
+

Eline

Eγ

)
+
Θ

m

]

× exp

[
−

( m
2Θ

) ( Eγ
Eline

+
Eline

Eγ

)]
· (77)

This equation can be recast in terms of χ by using Eqs. (10)
and (12).

5.2.5. The effective absorption Nσ

The absorption coefficient depends upon N, the number den-
sity of the clouds, and on σ, the absorption cross-section per
cloud. These are in general a function of position. Since the
pressure gradient and the inflow velocity in the r̂ and θ̂ direc-
tions are ignored in our approximation of the flow, the density
profile cannot be determined in a fully self-consistent manner
via the mass continuity equation. To overcome this, we assume
a simple two-parameter profile

Nσ = σ0r−β. (78)

Where σ0 can be considered as a proportionality constant fix-
ing the density and opacity scales. Without losing generality,
we adopt a value β = 3/2. The results can then easily be gen-
eralized to other values of β. For the case of a swarm of ab-
sorbing clouds around a black hole, the optical depth is ap-
proximately one. This corresponds to the case where σ0 is of
order 0.5 or greater, with the integration proceeding radially to
the event horizon. The effective optical depth depends greatly
on the paths the photons take.
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6. Spectral calculations

6.1. No absorption

6.1.1. Accretion disks

We calculate the observed energy of the flux from a point
on the planar disk using Eq. (12). We ignore absorption. The
line emissivity has a power law profile, which decreases radi-
ally from disk centre. The intensity is proportional to the third
power of the relative shift; the flux has an extra factor of ν0/ν
due to time dilation, i.e. it is proportional to the fourth power
of the relative frequency shift. (Note that F in Sect. 2 is the
distribution function, not the flux of the emission.)

Our calculation reproduces the line profiles of direct im-
ages of accretion disks as those shown in Fabian et al. (1989),
Kojima (1991), Fanton et al. (1997), Bromley et al. (1997), and
Reynolds et al. (1999). Figure 3 shows two example line spec-
tra calculated using the method described above. The spectra
contain only emission from the direct image. We also show line
spectra obtained using the method by Fanton et al. (1997) for
comparison. The results in the two calculations are in excellent
argeement.

We also carry out spectral line calculations which in-
clude contribution from higher-order disk images. (Here and
hereafter we assume that the emissivity powerlaw has an
index of −2, except where otherwise stated explicitly, i.e.
I(λ0) ∝ r−2.) Our calculations show that the contribution of
the higher-order images are significant only at high inclination
angles (see Fig. 4). The emission from high-order images is
mostly at frequencies close to the rest frequency of the line,
because the region where highly red and blue-shifted emission
originates is obscured.

6.1.2. Rotational torus

We now investigate the emission from an accretion torus. We
consider a model in which the inner radius of the torus is de-
termined by the marginally stable orbits of the particles. These
marginally stable orbits, which depend on ω and dω/dr, form
a surface in a three-dimensional space. The marginally stable
orbit for particles in Keplerian motion in the equatorial plane
is 6Rg around a Schwarzschild black hole and is 1.23Rg around
a Kerr black hole with a = 0.998. In Eq. (54), Keplerian mo-
tion corresponds to the case with the index n = 0. In the torus
model that we consider here, n is not necessarily zero. As a
consequence, the location of the marginally stable orbit of par-
ticles in the tori and conventional Keplerian disks are different.
(See Fig. 1 in Sect. 4.2). We use a surface-finding algorithm to
determine the boundary of the torus (see Appendix C).

In Fig. 5 we show three-dimensional images of the model
torus around a Kerr black hole. We include the first four im-
age orders. The inclusion of high order images is mandatory
due to the “mixing” caused by the extension out of the equa-
torial plane (Viergutz 1993). The torus is viewing inclination
angles of 45◦ and 85◦ (top and bottom panels respectively).
The left-right asymmetry is caused by inertial-frame dragging.
The multiple images are consequences of gravitational lens-
ing. At small inclination angles, only the surface above the

Fig. 3. The profiles of emission lines from thin Keplerian accretion
disks around a Schwarzschild black hole (top) and a Kerr black hole
with a = 0.998 (bottom). The line profiles are normalized such that the
flux F(E) = 1 at E/E0 = 1. The viewing inclination angle is 45◦. The
inner radius of the accretion disk is at the last stable orbit, and the outer
radius is 10Rg. The line emissivity on the disk surface is a power-law
which decreases radially outward, and the powerlaw index is −3. Only
emission contributed by the direct disk image is considered; emission
from higher-order images is not included. The emission is unabsorbed.
In each case, the solid lines correspond to the line profiles obtained by
semi-analytic calculations described in Fanton et al. (1997), and the
circles represent the line profile obtained by our numerical ray-tracing
calculations.

equatorial plane of the torus is seen in the direct image. At very
large inclination angles, the surface below the equatorial plane
is severely lensed and also becomes visible.

The false-colour map laid on the torus surface show the
energy shift of the emitted photons (determined by Eq. (12)),
as viewed by a distant observer. The separatrix, which corre-
sponds to zero energy shift, divides the torus surface into re-
gions of blue energy shift and regions of red energy shift. At
large inclination angles the inner surface of the near side of the
torus is not visible, and the inner surface of the far side is ob-
scured by the near side of the torus. Thus, emission with the
largest energy shifts is hidden. This is very different to the sit-
uation for a planar accretion disk – regardless of the viewing
inclination and the visual distortion, the emission from the in-
nermost part of the disk is always visible.

Figure 6 shows the resulting line profiles obtained by inte-
grating the emission over the images shown in Fig. 5. The line
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Fig. 4. Comparison of the line profiles for cases considering only the direct disk image (dotted line) and cases including high-order images
(solid line). The line profiles are normalized such that F(E) = 1 at E/E0 = 1. The viewing inclination angles of the disks are 75◦, 85◦ and 89◦

(panels from top to bottom). Line profiles for Schwarzschild black holes are shown in the left column; line profiles for the Kerr black holes
with a = 0.998 are shown in the right column. The outer radius of the accretion disk is 20Rg, and the index of the emissivity powerlaw is −2.

profile of a torus viewed at 45◦ is similar to that of the planar
accretion disk. It has a sharp blue peak and smaller red peak.
It also has an extended red wing. This is due to the fact that
the projections of a torus and a disk on the sky plane are very
similar at low inclination angles.

However, our calculations show that geometric effects are
very important for large viewing inclination angles. When
some part of the emission region is self-obscured. the result-
ing profile, as observed from infinity, to be completely differ-
ent from that of the flat disk (see Fig. 7). For a torus with large
viewing inclination angles, the inner surface of the torus tends
to be obscured. This corresponds to the region where the most
redshifted flux of the line is emitted (due to large transverse
red shift and gravitational red shift). This makes the red wing

less prominent. The outer surface of the torus is visible from
all inclinations. As a result the line profile tends to be singly
peaked, with the maximum at the unshifted line frequency due
to the emission from the outer surface dominating. By altering
the geometry of the emitter a wide variety of emission profiles
can be obtained.

6.2. Resonant scattering

We use a disk model to illustrate the resonant scattering effects.
We assume the inner edge of the accretion disk is given by the
marginally stable orbit. We use an outer disk radius of 20Rg

in all the disk simulations. This was chosen to accentuate the
relativistic effects. The emission line profile is assumed to be
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Fig. 5. Images of an accretion torus around a Kerr black hole viewed
at inclination angles of 45◦ (top) and 85◦ (bottom). The angular mo-
mentum of the black hole a = 0.998. The torus is constructed using
the velocity law in Sect. 4.2. The inner and outer radii are determined
by the critical surface as described in the same section. High-order
images are shown. The energy shift of the emission is represented by
a false-colour map laid on the torus surface. Red-shifted emission is
coloured yellow/red and blue-shifted emission is coloured blue. The
grey lines indicated by the arrows mark the region where the emission
has zero energy shift, separating the torus into regions with red and
blue shifted emission.

a delta function. We collate the light from the first four image
orders of the accretion disk.

The line profiles are obtained from 750× 750 pixel images.
The intensity scale on the graphs is in arbitrary units. (It is just
the log of the sum of pixel intensity over the image, as a func-
tion of frequency.) The x-axis of the graph is in units of the line
rest energy, with E/E0 = 1 corresponding to the unshifted line.

We bin the injection spectrum and the absorption coeffi-
cient linearly with energy. There are 1000 bins from E = 0
to E = 2E0. Since the thermal width of the line is small, we
assume that the emission line is narrow, with a width of only
one energy bin. After the calculation, we smooth over sets of
ten adjacent bins to remove numerical noise which has a large
scatter. See Appendix B for more information about the algo-
rithm used.

We investigated two space-time models. One with a = 0
corresponding to a Schwarzschild black hole, and one with

Fig. 6. Profiles of emission lines from an accretion torus around a Kerr
black hole with a = 0.998 at viewing inclination angles of 45◦ (solid
line) and 85◦ (dotted line). The parameters of the torus are n = 0.21
and rk = 12Rg in the velocity profile Eq. (54).

Fig. 7. A comparison of the profiles of lines from an accretion disk
(dotted line) and an accretion torus (solid line) around a Kerr black
hole with a = 0.998. The disk and the torus are viewed at an inclina-
tion angle of 85◦. The parameters of the torus are the same as those in
Fig. 6. The disk has an outer radius of 20Rg, an inner radius of 1.23Rg,
and a Keplerian velocity profile.

a = 0.998, corresponding to a maximally spinning Kerr black
hole. We have plotted spectra containing the continuum and
the continuum plus line as we have varied the opacity of the
absorbing clouds.

We have also shown how the spectra change with inclina-
tion due to geometric effects. We have included a nearly edge-
on model (i = 85◦), and a model with a moderate inclination
of 45◦. See Fig. 8 for the results of absorbing the power law
continuum, and Fig. 9 for the results of absorbing both the line
and continuum.

7. Discussion

We have modelled line profiles from accretion disks to demon-
strate the use of a general formulation for transfer of radiation
through relativistic media in arbitrary space-times. In this pa-
per, we used the transfer of emission from AGN as an illustra-
tion. In this model, we parametrized the disk/torus to describe
the emitters and the space-density distribution of the ab-
sorbers. We took into account relativistic effects on the bulk
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Fig. 8. Absorbed continuum emission from accretion disks around Schwarzschild and Kerr black holes with a = 0.998 (left and right columns
respectively), for i = 45◦ and 85◦ (top and bottom panels respectively), σ0 = 0, 0.05, 0.2 and 0.5 (curves from top to bottom in each panel).

dynamics and the microscopic kinematic properties of the ab-
sorbing medium.

Resonant absorption/scattering of line emission from ac-
creting black holes in the general relativistic framework had
been investigated previously by Ruszkowski & Fabian (2000).
In their study, a thin Keplerian disk was assumed and the ab-
sorbing medium is a spherical corona of constant density cen-
tred on the black hole. The corona is rotating, with local rates
obtained by linear interpolation from the rotation rate of a pla-
nar Keplerian accretion disk and the rotation rate at the polar
region caused by frame dragging due to the Kerr black hole.
The Sobolov approximation was used in the resonant absorp-
tion calculations, and a Monte Carlo method determined the
re-emission/scattering.

Our calculation is different to that of Ruszkowski & Fabian
(2000) in the following ways. Firstly, the emitters are not con-
fined to the equatorial plane, i.e. they can be thin accretion
disks or thick tori. Secondly, the absorbing medium is a col-
lection of (cold) clouds with relativistic motions. The number
density distribution of the clouds is parametrized by a pow-
erlaw decreasing radially. The local bulk (rotational) velocity
of the clouds is determined by general relativistic dynamics,

and the velocity dispersion is calculated from the Virial the-
orem. Thirdly, we do not assume the Sobolov approximation.
The resonant condition for the absorption coefficient is derived
directly from the kinematics of the absorbing cloud particles.
Fourthly, we ignore the contribution from re-emission to the
line flux. However, we include emission from higher order disk
images, in addition to the direct image.

One of the main differences between the two studies is
the treatment of resonant absorption. In the Sobolov approx-
imation, the absorption takes place locally (see Rybicki &
Lightman 1979). The line profile is practically a delta function;
otherwise, the assumption of quasi-local absorption breaks
down. Moreover, it requires that the absorbing medium is a
radial flow. The emission lines are broadened because of rel-
ativistic effects, and the motion of the medium is rotation-
ally dominated. The locality of the absorption (required by the
Sobolov approximation) therefore breaks down. To overcome
these difficulties, we abandon the Sobolov approximation but,
instead, employ full ray tracing.

In modelling the bulk flow, we derived the equation of mo-
tion of the absorbers using the rotational-support approxima-
tion for the accretion disk. In addition, we assume that the flow
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Fig. 9. Line and continuum emission from accretion disks around Schwarzschild and Kerr black holes with a = 0.998 (left and right columns
respectively), for i = 45◦ and 85◦ (top and bottom panels respectively), σ0 = 0, 0.05, 0.2 and 0.5 (curves from top to bottom in each panel).

is supported out of the equatorial plane. There is negligible ra-
dial force in the equations of motion, and the radial velocity
can be neglected. To include outflowing as a wind, or inflow-
ing, requires additional components in the equation of motion.
This complicates the formulation, in particular, when match-
ing the flow boundary condition at the surfaces of the accretion
disk/torus. A self-consistent boundary condition requires a dis-
sipation mechanism in the boundary regions of the disk/torus
and absorbing clouds. The inclusion of such dissipation is be-
yond the scope of this paper and this issue will be addressed in
future works.

As the rays propagate from the accretion disk to the ob-
server, they experience position-dependent absorption. The ab-
sorption depends upon the velocity profile of the material as
well as its density and the line profile function of the absorp-
tion coefficient. Since the absorbers are moving in relativistic
speeds, the bulk velocity is an important factor. Lorentz con-
traction increases the absorption coefficient accordingly, and
Doppler shift alters the frequency of the emission as seen by
the absorbers.

The potential energy liberated by material infalling into a
black hole is of order a few percent of the material’s rest mass,

and the energy corresponding to “thermal” kinematic velocity
dispersion approaches this rest mass energy. Thus, we replace
the conventional Maxwellian distribution by the Jüttner distri-
bution for relativistic particles in deriving the resonant line ab-
sorption coefficient. This distribution does not give a Gaussian
absorption profile even in the bulk rest frame of the absorbers.

The absorption line profiles of the direct images show
a dip around the line rest frequency (energy) (E/E0 = 1).
Absorption can change the line profile significantly. The flux
around the rest frequencies is, however, augmented by the flux
from shifted lines from the higher order images, especially at
high disk inclination. These two effects compete, and when the
line-of-sight optical depth is high, the contribution of the high-
order images is masked.

8. Conclusion

We present a numerical ray-tracing method for radiative-
transfer calculations in curved space time and apply the method
to calculate line emission from accretion disks and tori around
black holes. Our calculations have shown that lines from rela-
tivistic accretion tori have profiles very different to lines from
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relativistic thin planar accretion disks for the same system pa-
rameters, such as the spin of the black hole and the viewing
inclination. The self-obscuration of the inner region of the ac-
cretion torus leads to weaker red wing in the emission lines
when compared with the lines emitted from a thin planar ac-
cretion disk. At high inclination angles the strong blue peak is
also absent in the line emission from the tori.

We also investigate the effects of resonant absorp-
tion/scattering by the line-of-sight material in relativistic
motion with respect to the emitters in the disk/torus, and the
observer. Our method does not invoke the Sobolov approxima-
tion, and the resonant absorption/scattering condition is derived
directly. We have shown that absorption effects are important in
shaping the profiles of emission lines. The interpretation of ob-
servations of relativistic lines from AGN is non-trivial when
absorption is present.
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Appendix A: Frequency bins

Using an astrophysical model together with the metric, we can
obtain an equation describing the flow of the medium through
which the ray is propagating; uα(xα(λ)). The properties and dis-
tribution of the medium can be used to derive the absorption
and emission terms χ0(xα(λ)) and η0(xα(λ)). These can then be
used to calculate what is observed from infinity via Eq. (17).
In practice this simple method is altered with a ray-tracing nu-
merical algorithm. The radiative transfer equation is not time-
symmetric, so if one follows rays back from the observer to
the emitter the above formulation cannot be used. The emis-
sion frequency and intensity is not known until the emitter is
reached along the path.

This problem can be solved using one of two approaches.
The first is to collate the path from emitter to observer, and then
to integrate along that path forward in time using Eq. (17). The
second approach is to collate the optical depth for I for a table
of frequencies as one travels back in time. This optical depth
can then be used to calculate the observed intensity, I, for each
binned frequency. The results for each emission element along
the path are simply summed.

Since, in general, the resulting frequencies are binned any-
way to get a spectrum, we choose the second method. It re-
quires less storage, and is a simple extension of the grey-
absorber case where χ0 and η0 are no longer functions of ν.
In our treatment, we sum over the observed frequencies rather
than those in the rest frame, avoiding the need to transform the
distribution of the frequencies along the path due to the gravita-
tional redshift factor. The act of going from the emission frame
to the observer’s frame also affects the intensity I, so we use
the invariantI instead, only converting to specific intensity just
before outputting the results.

Binning the optical depth with frequency along a path also
allows us to model the radiative transport of the continuum as
well as the lines, provided that one is in the limit where scat-
tering is unimportant. (Stimulated emission can be modeled by
using a negative absorption coefficient.) Depending on the rel-
ative intensities of the continuum and the line, absorption may
cause the emission feature to be converted into an absorption
feature.

We assume that the continuum is a power law, which we
parametrize by a slope and intensity at the line rest frequency.
We have assumed that the continuum is emitted with an inten-
sity that scales with the line emissivity. This means that the
equivalent width of the emission line is constant across the
disk. We set this to be 0.05 of the rest line frequency. (This
value is roughly what is seen in AGN.) To simplify things fur-
ther, we will fix the power law index of the continuum to be
γ = 0.5, where γ is defined by

I = CE−γ, (A.1)

in which I is the continuum intensity as a function of energy, E,
and C is derived from the given equivalent width. This rather
hard spectrum was chosen to emphasise the line.

The treatment assumes that the continuum is created in a
relatively thin planar structure above the accretion disk. In ef-
fect, we treat the emission from the disk corona as part of

the injection spectrum, together with the emission line, which
we propagate through the absorbing material suspended much
higher above.

Appendix B: Ray tracing algorithm

A direct ray-tracing method is used instead of the conventional
transfer-function method, as it is easier to incorporate the nu-
merical radiative-transport calculations. The ray-tracing algo-
rithm is as follows:

1. integrate the equations governing the geodesics, and those
describing the optical depth for each frequency, from the
observer to the emitting surface;

2. at each crossing of the equatorial plane/torus surface, col-
late the position and the direction of the photon;

3. construct the image, and determine the observed fre-
quency/energy shift;

4. integrate the emission over the images of each order to pro-
duce the line profiles.

We use a Runge-Kutta integrator to calculate the ray trajecto-
ries. The relative tolerance is set to 10−11, which prevents the
ray tracer from missing the torus by taking steps which are too
large. It also allows a simple Eulerian method to be used to in-
tegrate the optical depths. The absorption coefficient is a slowly
varying function on the scale of the step size, which allows this
optimisation.

The foot points of the null geodesics (photon trajectories)
on the disk surface are calculated by a root-finding algorithm
(see e.g. Press et al. 1992, p. 343). The first four intersections
of the null geodesics and the disk plane (corresponding to the
direct and first three higher-order images), and the four-vectors
of the photons emitted from there are recorded. The incorpo-
ration of an emissivity law is therefore straightforward, as it is
defined in terms of the spatial coordinates on the disk plane.
Since the trajectory of the photon is also saved at each crossing
point, it is also possible to include the effects of limb darkening,
and to model a semi-transparent disk.

Since the disk is imaged upon a sky plane, all gravitational
lensing effects on the intensity of the light are implicitly in-
cluded in the calculation of the image itself. If a region of
the disk is magnified then it will cover more area in the im-
age, and thus will appear brighter than a non-magnified region.
Inclination effects are also included implicitly. An inclined disk
will cover less pixels than a face-on disk, where the number of
pixels is roughly proportional to cos i, where i is the inclina-
tion angle. (Light bending causes this Euclidean formula to be
only an approximation.) Gravitational lensing does not alter the
observed surface brightness of a point.

This implicit inclusion of changing areas of photon flux-
tubes linking the observer to the emitter vastly simplifies the
calculation of the observed flux. All that is required is to in-
tegrate over each pixel on the image, taking into account the
redshift of the emission regions corresponding to the pixels. If
one were integrating over the surface of the disk, instead of
over the image, then the Jacobian of the transformation from
the disk to the image plane coordinates would be required. This
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is numerically difficult to obtain, and would require a separate
transformation for each image order.

The programs (written in Fortran) take a few hun-
dred kilobytes of memory under Tru64 Unix on a
OSF1 V5.1 1885 Alpha. One version outputs the inten-
sity/frequency shift of the emission line for each “pixel” in
the sky plane. Another version collates the continuum as well
as the line, and outputs a table of intensity verses energy
integrated over the whole disk. Depending on load on the
shared system, and on the image size requested, a typical run
takes a few hours per image.

Appendix C: Surface finding algorithm

We consider the following algorithm to determine the torus
surface. We integrate Eq. (51) and tabulate the resulting
points (r, θ) along the path of the integration. Then we inter-
polate (r, θ) and construct the torus surface, where the emis-
sion originates. We use spline interpolation between the surface
points.

When ray tracing the photon paths, we determine the in-
tersection of the trajectory and the torus surface. As the pho-
ton trajectory calculations may take large spatial steps, there
is a possibity that the torus is not “detected”. To prevent this
from happening, we consider the following procedure. We take
note of the region where the photon is located during the tra-
jectory calculation: either inside or outside the torus and ei-
ther above or below the equatoral plane. Whenever the pho-
ton leaves one of the four regions, and enters another region,
we use a boundary-searching algorithm to find the exact loca-
tion where the transit occurs. If the trajectory hits the equatorial
plane outside the torus, the integration will continue. If the tra-
jectory hits the torus, then integration is terminated.

By taking smaller steps required by the boundary-finding
algorithm, we can prevent the integrator from missing the torus
entirely. This algorithm can be used for more complicated sur-
faces. It works well, because the integrator will only miss in-
tersections when the trajectory is close to tagential to a surface.
This happens close to the equatorial plane in the torus models.
Adding in a fake boundary there, and thus decreasing the step
size, helps in preventing missed intersections.


