Introduction to HI data

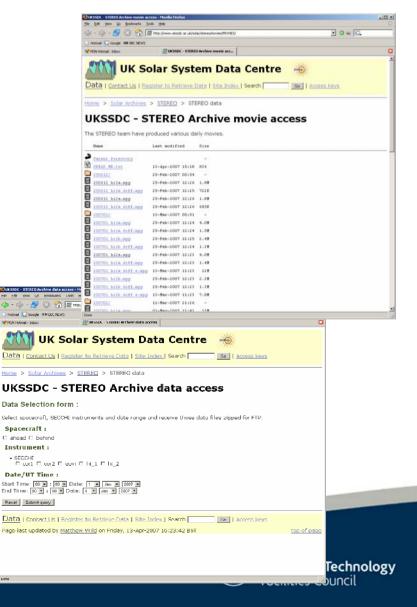
Danielle Bewsher & HI team Rutherford Appleton Laboratory

Where to find general information

•Where is STEREO?

- <u>http://stereo.gsfc.nasa.gov/</u> where.shtml
- <u>http://stereo-</u> <u>ssc.nascom.nasa.gov/where/</u>
- •get_stereo_sep_angle
- \cdot stereo_coord_info
 - doesn't work with IDLde

📹 solar.bnsc.rl.ac.uk - Solar ssh - SSH !	Secure Shell			>
<u>File E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp				
🖶 🍜 🖻 🎩 🎉 🖻 🖻 🖱	M 🙆 🙆	🎭 🥔 🐶		
👔 Quick Connect 📄 Profiles 👻				
<pre>% Compiled module: GET_SUN. % Compiled module: TIM23D. % Compiled module: ANYTIM2JD. % Compiled module: JULDAY.</pre>				4
% Compiled module: RECPOL. % Compiled module: FILEPATH.				
	STERE0-B	Earth	STERE0-A	
Heliocentric distance (AU)	1.054133	1.010832	0.960081	
Semidiameter (arcsec)	910.348	949.344	999.528	
HCI longitude	155.814	158.418	163.734	
HCI latitude	-3.270	-2.679	-1.988	
Carrington longitude	125.026	127.630	132.946	
Carrington rotation number	2056.653	2056.645	2056.631	
Heliographic (HEEQ) longitude	-2.604	0.000	5.316	
Heliographic (HEEQ) latitude		-2.679	-1.988	
Earth Ecliptic (HEE) longitude	-2.651	0.000	5.356	
Earth Ecliptic (HEE) latitude		-0.000	0.052	
Roll from ecliptic north	-6.122		-0.556	
Roll from solar north	-12.734		-7.516	
Separation angle with Earth Separation angle A with B % Program caused arithmetic err IDL> <mark>-</mark>	or: Floatin	2.666 8.015 g illegal operan	5.357 d	
Connected to solar.bnsc.rl.ac.uk	SSH2 - 3	des-cbc - hmac-md5 - n	one 80x31	


Where to find HI data/information...

\cdot RAL STEREO website

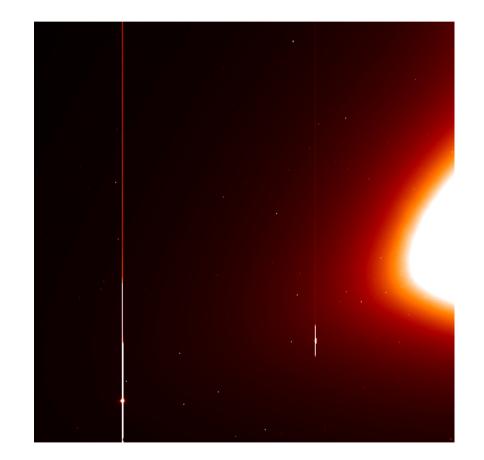
- <u>http://www.stereo.rl.ac.uk/scie</u> <u>nce/</u>
 - \cdot User guide
 - Event List
 - \cdot Gallery

·Daily/Monthly Quicklook Movies

- <u>http://www.ukssdc.ac.uk/solar</u>
 <u>/stereo/movies/MOVIES</u>
- Data
 - <u>http://www.ukssdc.ac.uk/solar</u>
 <u>/stereo/data.html</u>
- ·Email support
 - stereo_support@ukssdc.ac.uk

Filename definitions

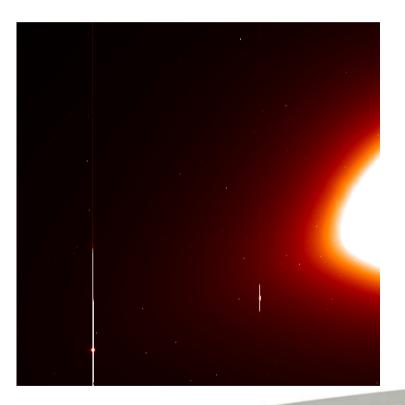
·20070503_001000_s4h1A.fts


- 20070503 date
- 001000 UT time
- s4 summed image (1024x1024)
- h1 HI 1 image (would be h2 for HI 2 image)
- A STEREO A image (would be B for STEREO B image)
- ·20070503_000700_n4h1A.fts
 - n4 hi res (2048x2048) single exposure
 - Only one taken a day will be used for calibration
- ·20070503_011900_s7h1A.fts
 - s7 beacon mode image (512x512, 2 hrs)

General HI data information

- Images made up of number of exposures
 - HI 1 (nominal values)
 - # of exposures: 30
 - · Exposure time: 40s (1200s total)
 - · Cadence: 40 mins
 - Image size: 1024x1024
 - HI 2 (nominal values)
 - # of exposures: 99
 - Exposure time: 50 seconds (4950s total)
 - · Cadence: 2 hours
 - Image size: 1024x1024
- Exposures summed on board
- Exposures also scrubbed of cosmic rays on board

Raw data



Science & Technology Facilities Council

secchi_prep

- \cdot secchi_prep,files,index,data
- \cdot Files
 - list of all files you want to read
 - Can be mix of EUVI, COR and HI
- \cdot Index
 - Header structures
- Data
 - Data cube
 - If images are all different sizes, then can specify size of data cube that you want returned

secchi_prep II

- · HI data
 - Shutterless correction
 - \cdot No shutter
 - Image smeared as readout and CCD cleared out
 - Flatfield
 - Provisional pre-flight flatfield
 - · Calibration on going

secchi_prep III

Warning

- Early data does not work with secchi_prep
- All data from beginning of mission will be re-processed at a date TBD
- Number of files that can be read into secchi_prep depends on machine memory

Header keywords

 \cdot naxis1/2 – length of 1st (columns, x) and 2nd (rows, y) axes

· date_obs - date/time of start of CCD readout

 \cdot exptime – exposure time of all exposure that make up image \cdot summed – combines summing from CCD and IP to get one number for number of rows and columns being summed on CCD, SEB and ground

- ipsum

- sumrow, sumcol, ccdsum
- detector name of telescope within SECCHI
- obsrvtry name of satellite

Header keywords II

 \cdot ctype1(a)/2(a) – string representing coordinate axis

- <u>http://stereo-</u>
 <u>ssc.nascom.nasa.gov/coordinates_explanation.shtml</u>
- Thompson, 2006, A&A, 449, 791
- \cdot cunit1(a)/2(a) units of coordinates

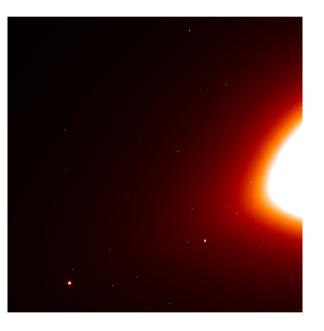
 \cdot crval1(a)/2(a) – reference data coordinates corresponding to centre of image

 \cdot pci_j(a) – coordinate transformation matrix: rotation information is included

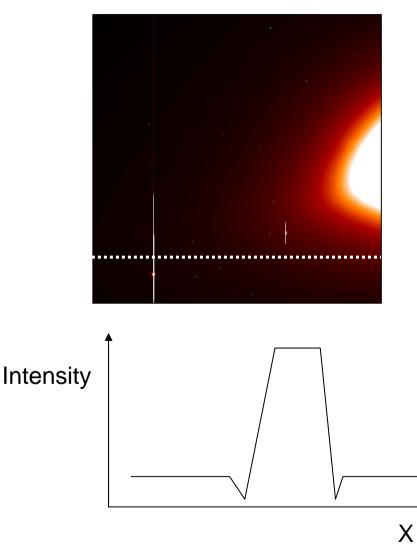
 \cdot cdelt1(a)/2(a) – height/width of pixels

 $\cdot\,pv2_1$ – parameter which encodes information about optical properties of telescope

Header keywords III


- \cdot More info on header keywords
 - <u>ftp://louis14.nrl.navy.mil/pub/secchi/ssw/doc/FITS_ke</u> <u>ywords.pdf</u>
- •Warning!
 - Values of header keywords have changed during mission
 - All values will be correct when data is reprocessed
 - Don't hard code header values in to programs until data is reprocessed
 - Need to check that header values are reasonable!

Saturated Pixels


 Brightest objects (e.g. planets & stars) will saturate

- Blooming
 - Occurs up & down column
 - Not side to side like LASCO
- \cdot Can remove blooming

Saturated Pixels II

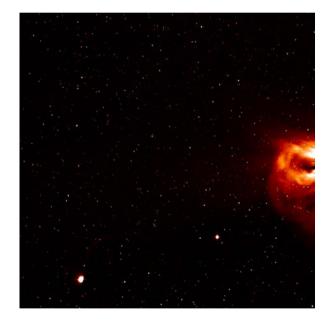
• Must deal with saturated columns before doing background subtraction

• Anomolous low values in background

•Anomolous high values in background subtracted data

- Bright stripes in data
- <u>http://www.ukssdc.ac.uk/</u> <u>solar/stereo/movies/MOVI</u> <u>ES/200705_hi1a.mpg</u>

Background subtraction

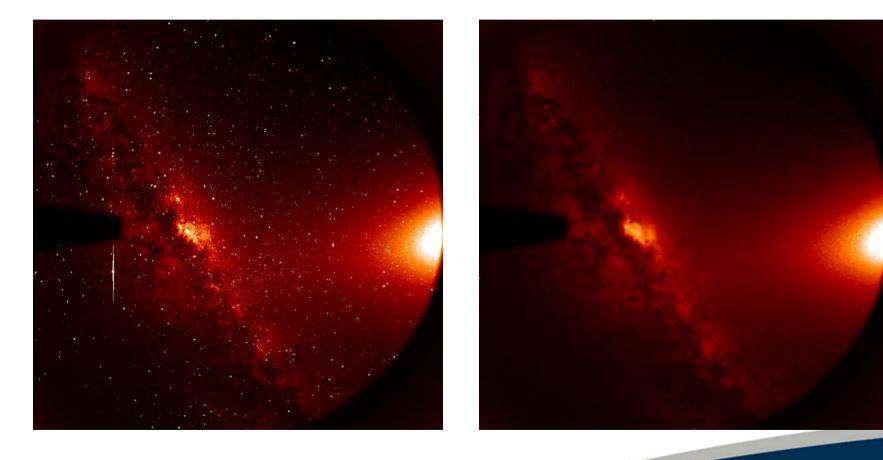

- \cdot bg = min(data,dimension=3)
 - Need to also account for missing blocks and saturated columns when using minimum
- \cdot bg = median(data,dimension=3)
 - More robust
 - But not physically meaningful?

 $\cdot \mbox{Time scale: several days depending on conditions}$

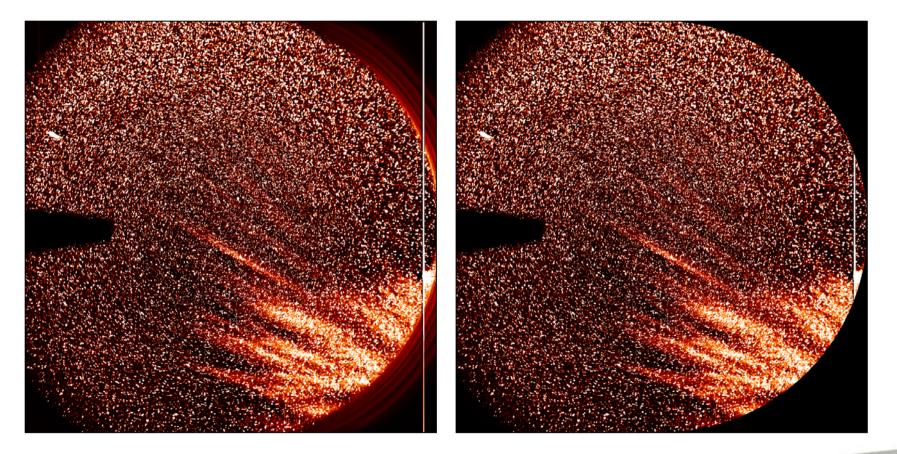
•Warning! This will only work if spacecraft is not rolling too much (few degrees) during period of observations

 <u>http://www.ukssdc.ac.uk/solar/stereo</u> /movies/MOVIES/200702_hi2b.mpg

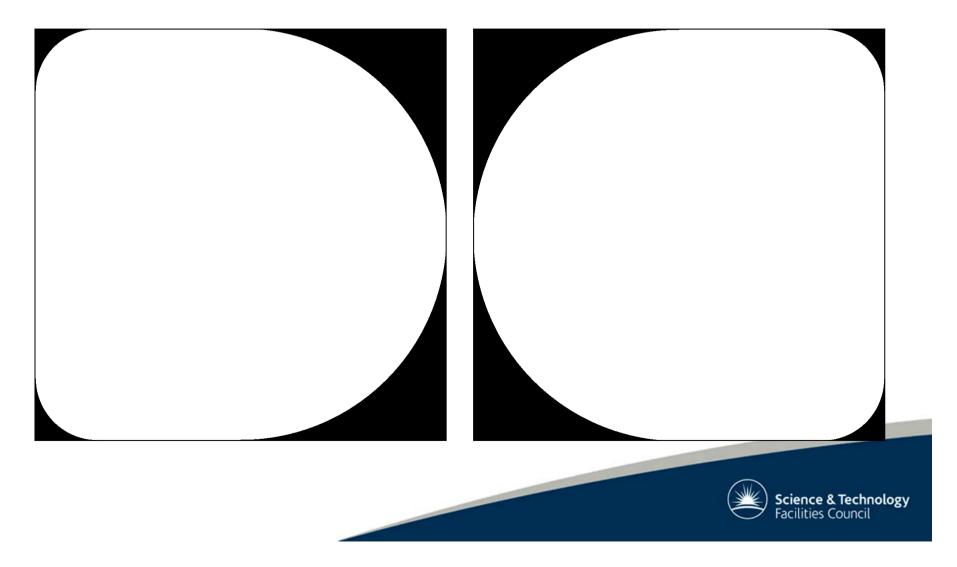
•Looking into generating monthly backgrounds which could be used for subtraction


Star Removal

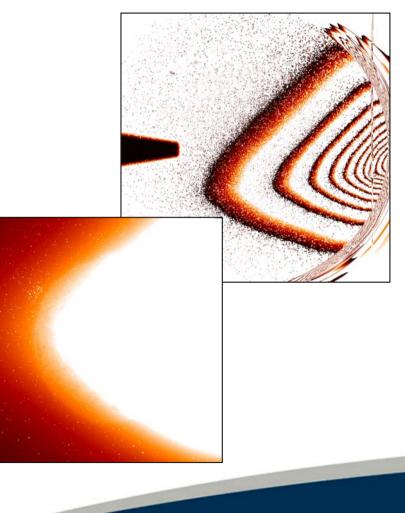
Finds peaks in data over a user specified threshold
Uses successive over relaxation method to fill in stars with values from surrounding pixels



Star Removal II



HI 2 Mask



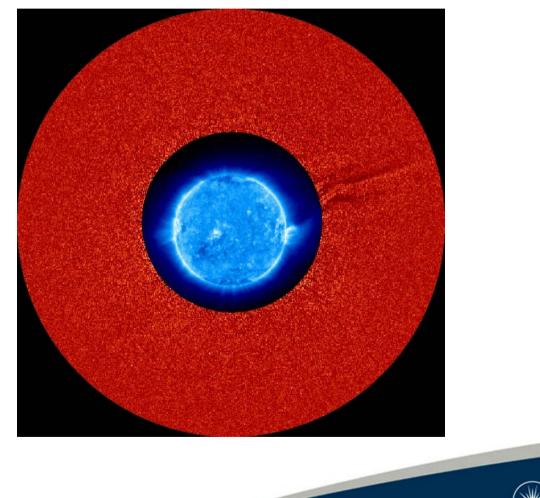
HI 2 Mask II

Things to look out for!

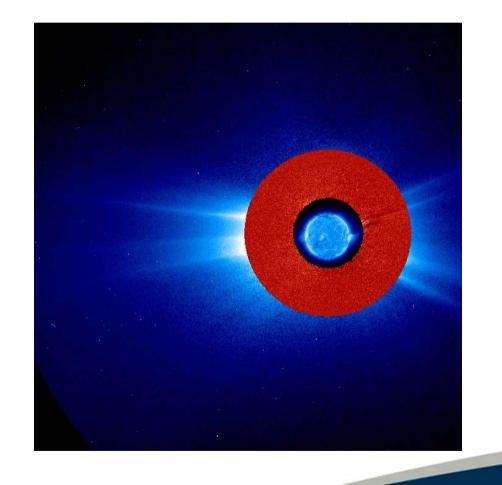
- ·High/low word images
 - <u>http://www.ukssdc.ac.uk/solar/</u> <u>stereo/movies/MOVIES/200702</u> <u>_hi2a.mpg</u>
 - Mucks up background subtraction!
- \cdot Mixed images
 - <u>http://www.ukssdc.ac.uk/solar/</u> <u>stereo/movies/MOVIES/200705</u> <u>_hila.mpg</u>
 - Mucks up background subtraction!
- \cdot Earth and Moon
 - HI B observations only
 - <u>http://www.ukssdc.ac.uk/solar/</u> <u>stereo/movies/MOVIES/200701</u> <u>_hi2b.mpg</u>
- Ghosts
 - <u>http://www.ukssdc.ac.uk/solar/</u> <u>stereo/movies/MOVIES/200701</u> <u>_hi1a.mpg</u>

Image manipulation

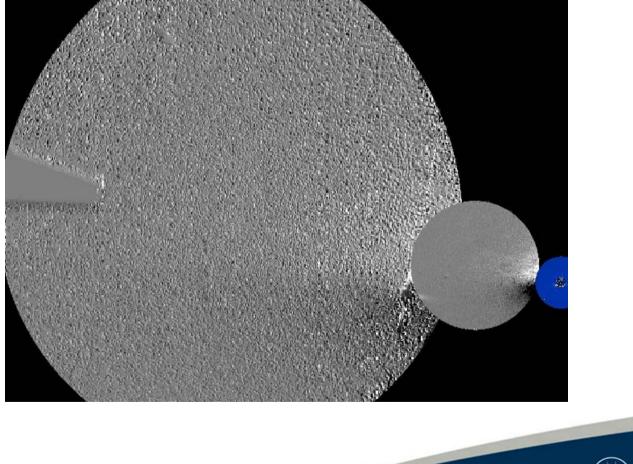
Festival

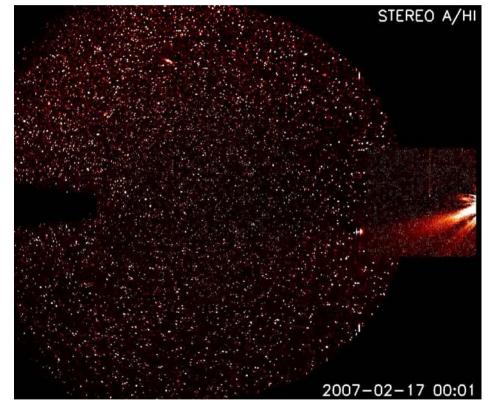

- <u>http://www.ias.u-psud.fr/stereo/festival/</u>

· Solarsoft package


 \cdot 'simultaneous, fast and easy manipulation of SECCHI/STEREO, EIT/SOHO and LASCO/SOHO images'

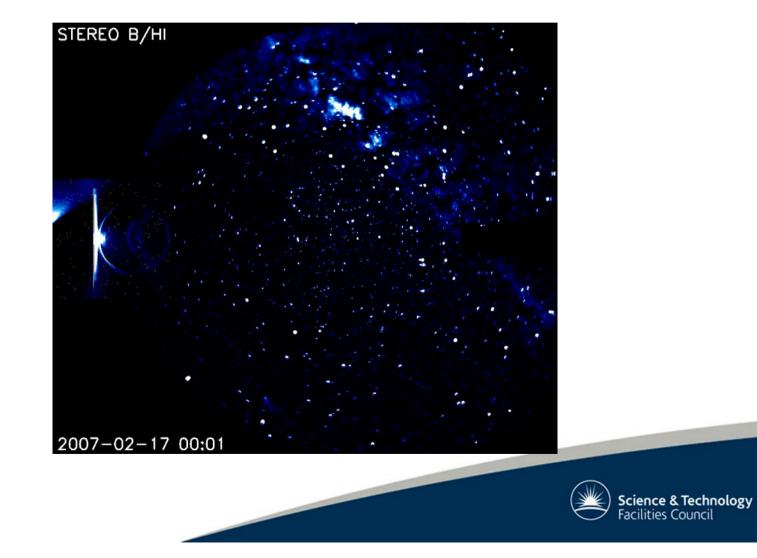
Festival Movie – EUVI & COR1


Festival Movie – EUVI, COR1 & COR2

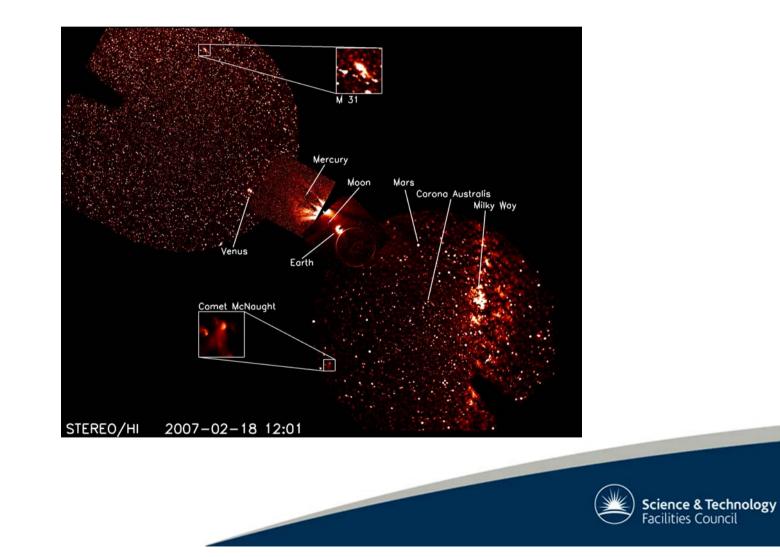


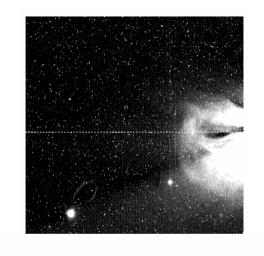
Science & Technology Facilities Council

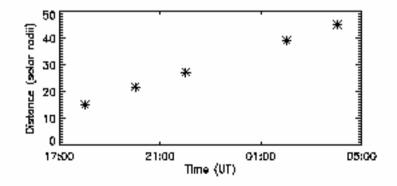
Festival Movie – All SECCHI



STEREO A 17/02/07




STEREO B 17/02/07



STEREO A & B 18/02/2007

CME Velocity

- Example 24/01/07
 RAH manual front detection
- Amount of structure makes it hard to know what to track
- Automatic detection and tracking will be developed

ence & Technology

CME Density

- \cdot Calibration ongoing
 - Absolute intensity
- ·Vourlidas et al. 2000, ApJ, 534, 456
 - Mass calculations from LASCO data
 - Details Thomson scattering assumptions

