Interaction of ICMEs / MCs with the Solar Wind

Pascal Démoulin

A crude analogy

Large scale implications of MCs / ICMEs

3D MHD simulation (Manchester et al. 2004)

Main properties of MCs and ICMEs

cycle dependence)

interaction 1

Global interaction ICME / SW :

modification of the ICME mean velocity and mass

acceleration / deceleration of ICMEs (I)

acceleration / deceleration of ICMEs (II)

- Confirm with later studies (Gopalswamy et al. 2000, 2001, Zhang et al. 2003, Schwenn et al. 2005)
- More results are coming with the Heliospheric Imager (STEREO)

mass loading in ICMEs

3D MHD simulation

(Lugaz et al., 2005)

Accumulation of slow plasma => a part of the drag force from the SW

what is observed in a coronagraph?

3D MHD simulation

simulated Thomson-scattered light (expected view in HI2 on STEREO A/B)

(Lugaz et al., 2005 Manchester et al., 2008)

interaction 2

Expansion rate of ICMEs / MCs

How the SW define the ICME expansion rate ...

Density (distance) in ICMEs

Expansion rate of MCs

Expansion rate of MCs

Why a typical expansion rate for MCs?

=> self-similar expansion :
$$r = r_0 D^{n_p/4} \sim r_0 D^{0.7}$$

The SW total pressure defines the cross-section expansion rate

(Démoulin & Dasso 2009)

interaction 3

Magnetic interaction ICME / SW

Loss of magnetic flux

in situ measurements in ICMEs / MCs

Notice: do not worry about the spacecraft-swimmer, it will cross the ICME-boat without damage !

The solar wind is a parallel world like in the "**the matrix**" movie... :)=

- 1D : plasma & B data only along a line
- we need models

to have a more global view

Defining the MC axis & frame

* <u>Minimum variance analysis</u>

(e.g. Sonnerup & Cahill 1967)

* <u>Relate the in/out bound physical properties</u> <u>of the flux rope</u>

- plasma + B_{axial} pressure: $P_t(A)$ (Hu & Sonnerup 2002)

conservation of azimuthal flux: (Dasso et al. 2005)
 => Constraints on the MC orientation

* <u>Fit data with a model</u> large variety !

- Force-free field (Burlaga et al. 1981, Lepping et al. 1990, Farrugia et al. 1999, ...)

- Magneto-hydrostatic (Hu & Sonnerup 2001, Mulligan & Russell 2001, Hidalgo et al. 2002, ...)

- Include self-similar expansion

(Marubashi 1997, Vandas & Romashets 2003, ...)

Uncertainty on the axis orientation $\sim +/-10^{\circ}$

Loss of magnetic flux by reconnection

The amount of reconnected flux depends on the amount of overtaken flux during the MC transit from the Sun

<u>Percentage of azimuthal flux lost</u> :

Oct. 18, 1995 : ~ 60 % Oct. 28, 2003 : small Nov. 9, 2004 : ~ 25 %

> Highly variable with the MC considered !

One origin of MC asymmetry (others: aging, front compression, overtaken by SW, intrinsic)

⁽Dasso et al. 2006, 2007)

interaction 4

Deformation of the flux rope

MHD simulations + observational clues

<u>3D MHD simulations</u> (I)

(Manchester et al. 2004, Lugaz et al. 2005)

<u>3D MHD simulations</u> (II)

Comparison: simulations / observations

(Manchester et al. 2004b)

Comparison: simulations / observations

(Manchester et al. 2004b)

axisymetric MHD simulations (2.5 D)

(**Chané et al. 2006**)

Cross-section shape of MCs

Some MCs are flat : e.g. 18 Oct. 1995 aspect ratio ~ 6 fitting an elliptic flux rope to B observed

But this is NOT a generic property !

Cross-section: ~ circular

(magnetic + plasma pressure balance) (Liu et al. 2008,

Mostl et al. 2009)

interaction 5

<u>Overtaking of an ICME</u> by another ICME / fast SW stream

beware of corsairs (pirates) !

interaction 5

Overtaking of an ICME by another ICME / fast SW stream

beware of corsairs (pirates) !

Many processes going on during the interaction... e.g. compression & reconnection

MC overtaken by another MC (simulations)

2.5 D ideal MHD simulation

Results at r = 200 Rs

MC overtaken by another MC (observations)

(Dasso et al. 2009)

MC overtaken by a fast SW stream (observations)

(Gulisano et al. 2009)

MC overtaken by a fast SW stream (simulations)

Conclusion

The interaction with the SW affects the main ICME / MC properties

mass & bulk velocity (interaction 1)
expansion rate (interaction 2)
magnetic flux (interaction 3)
shape of the flux rope (interaction 4)

The boats are shaped / eroded during the trip

and also:

 \mathcal{L}

- magnetic helicity

- anchorage to the Sun (interchange reconnection)

Happy the man who, like Ulysses, has made a fine voyage... Joachim du Bellay (1522-1560)

It was a trip full of interactions...