Insight from the outside: The solar cycle from a heliospheric perspective

M. Owens¹, N. Crooker², N. Schwadron² and T. Horbury¹

¹Imperial College London ²Boston University

Overview

- A quick summary of the solar cycle
- Probing the heliosphere with electrons
- Interplanetary coronal mass ejections
- Evolution of the coronal/heliospheric field
- Summary

Sunspots

Imperial College London

[Greenwich sunspot data]

Photospheric flux

Imperial College London

[Top: David Hathaway, Goddard]

Heliospheric flux

[Updated regularly at: http://www.sp.ph.ic.ac.uk/~mowens/helioflux.htm]

A snapshot of solar maximum

[Top: Mt. Wilson magnetogram Bottom: Jones et al., 2003 Both at solar maximum]

Solar cycle: corona

Riley et al., 2006

Yang Liu, SHINE 2006

How does the coronal field evolve?

- Wang & Sheeley: Emerging active region loops bring about field reversal by destruction of existing open flux
 – Series of PFSS solutions
- Fisk & Schwadron: Open flux is conserved, but reconfigured by reconnection
- B.C. Low: Magnetic helicity conservation means potential state cannot be reached by reconnection alone
 - CMEs required to shed the helicity
 - CMEs bodily remove flux to allow field reversal

Heliospheric magnetic fields

- Only have local measure of magnetic field
- Electrons can tell us about topology and connectivity
 - Suprathermal electrons
 - Jovian electrons

Suprathermal electrons

[Stverak et al., 2009]

Imperial College London

[Hammond et al., 1996]

Suprathermal electrons

Suprathermal electron evolution

London

Explaining electron evolution

- Two competing effects:
 - Adiabatic focussing (conservation of magnetic moment) – R dependent
 - Pitch angle scattering constant in time?
- Close to the Sun, focussing wins out
- Far from the Sun, scattering dominates

Imperial College London

[Owens et al.,2008]

Modelling electron evolution

Coronal mass ejections

Flux ropes in CMEs?

Flux ropes in ICMEs?

Field-line length

Some evidence from solar electron bursts [e.g., Larson et al., 1997], but sparse data

Expected electron profile

Analysis of ~100 magnetic clouds

Solar connectivity

Marubashi., 1997

Crooker et al., 2004

CMEs add flux to the heliosphere

Owens and Crooker, JGR, 2006

Estimating the CME flux contribution

- Need values for:
 - 1. Flux contained in a typical CME
 - 2. CME rate over the solar cycle
 - 3. Background "open" flux (i.e., non-CME flux)
 - 4. Timescale for CME flux removal

Cross-sectional elongation

• Radial motion will distort flux rope [Riley and Crooker, 2004]

Cross-sectional elongation

Imperial College London [Owens, 2008]

1/11/01 31/10/01

Combining remote and in situ observations

- LASCO/Ulysses
 - x5 more flux than force-free suggests
- ~10¹²-10¹³ Wb of axial flux
- How important a source of magnetic flux are ICMEs?

CME rates

Owens et al., GRL, 2008

Removing CME flux

Simple picture:

- Disconnection: EDs, no decay in CSE
- Interchange: no EDs, decay in CSE

Imperial College London Owens and Crooker, JGR, 2007

Both reduce flux at same rate

Disconnection

 $\Phi_r = \Phi_0 + 2\phi_0$

 $\Phi_{\rm r} = \Phi_0 + 2\phi_0 - 2\Delta\phi + 2\Delta\phi$

 $\Phi_{\rm r} = \Phi_0 + 2\phi_0 - 4\Delta\phi + 2\Delta\phi$

 $\Phi_{\rm r} = \Phi_{\rm o} + 2\phi_{\rm o} - 6\Delta\phi + 2\Delta\phi$

Model estimates: 40-day timescale?

Model of Owens and Crooker [2006] using updated data

Long CME opening times?

- How quickly is the CSE signature removed due to scattering?
 - 8 AU?

Imperial College London

[Owens and Crooker, 2007]

5 AU: Crooker et al., 2002

Evidence for CME loop opening

Riley et al., 2004

Evidence for CME loop opening

Transport of open flux

Owens and Crooker, JGR, 2007

CME footpoint orientations

Bothmer and Schwenn, 1998

Polarity reversal

Imperial College London Owens et al, GRL, 2007

Declining phase

Is there sufficient flux?

- Number of CMEs required to reverse polarity:
- Timescale for such a reversal

Observations

Imperial College London Owens et al, 2007

Crooker and Webb, 2006

In summary...

- CMEs add flux to the heliosphere
 - May explain solar cycle variation in |B|
- CME flux removed by opening closed loops
 Open flux is transported across foot points
- Coronal and heliospheric polarity reversal can be explained in this way

Still to be done

- Better estimates of CME flux content need to combine remote and in situ observations
- Open flux transport by CMEs
 - Identify sources of CMEs and location of reconnection
 - Compare with polarity of open flux in ICMEs
- Look for reconfiguration of closed flux in observations and PFSS solutions

Imperial College London

[Lockwood et al., 2009]

Reconnection?

Interchange reconnection

b) Slow ICME flux opening

Disconnection

