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~v · ~∇∧ ~v dΩ



Relative magnetic helicity

~A is not gauge invariant:

~A′ = ~A+ ~∇φ → Hm( ~B, ~A) 6= Hm( ~B, ~A′)

Relative magnetic helicity:

∆Hm =
∫

Ω
( ~A − ~A0) · ( ~B + ~B0) dΩ−

∫

Σ
χ ( ~B + ~B0) · ~n dΣ

(Berger and Field 1984, J. Fluid Mech. 147, 133)

∆Hm =
∫

Ω
( ~A+ ~A0) · ( ~B − ~B0) dΩ

(Finn and Antonsen 1985, Plasma Phys. Controlled Fusion, vol.9, 3, 111)



Force-free Fields and Magnetic Helicity

For a linear force-free field,

~∇∧ ~B = α ~B

where α is a constant in the volume Ω given by

α =
1

Bz

(

∂By

∂x
−

∂Bx

∂y

)

We have

Hc = 2µ0αEm

and

2µ0
d(Em(lff)− Em(pot))

d(∆Hm)
= α

(from Kusano et al. 2002, ApJ, 577, 501)

Basically, α has the same sign as the magnetic helicity



Self and Mutual Helicities (1)

Magnetic helicity in an open volume:

Following Berger (1999), the magnetic field can be decomposed into
two fields inside a volume Ω with a surface boundary Σ,

~B = ~Bcl +
~Bref

where ~∇∧ ~Bref = ~0 and ~B · ~n = ~Bref · ~n on the surface Σ.

~Bcl: closed field pictured as the

blue torus;
~Bref : a reference field or potential

field.



Self and Mutual Helicities (2)

The magnetic helicity can be re-written as follows:

Hm( ~B, ~A) = Hm( ~Bcl, ~Acl) + 2Hm( ~Bcl, ~Aref) +Hm( ~Bref , ~Aref)

where we define the self helicity as

Hself = Hm( ~Bcl, ~Acl) =
∫

Ω

~Acl ·
~Bcl dΩ

and the mutual helicity as

Hmut = 2Hm( ~Bcl, ~Aref) = 2
∫

Ω

~Aref · ~Bcl dΩ

We also define the vacuum helicity (or self helicity of the reference

field) as

Hvac = Hm( ~Bref , ~Bref) =
∫

Ω

~Aref · ~Bref dΩ



Helicity Transport (1)

Following Heyvaerts and Priest (1984), one can derive the rate of

change of the magnetic helicity in a volume V including dissipative

terms:

dH

dt
=

∮

Σ
( ~B · ~A)~v · ~n dΣ+

∮

Σ
(~v · ~A) ~B · ~n dΣ

−2
∫

V

1

σ
~B · ~J dV +

∫

Σ

1

σ
~A ∧ ~J dΣ

In ideal MHD, Berger and Field (1984) have shown the rate of change

of helicity can be re-written as follows:

d

dt
∆Hm = 2

∫

Σ
(~vt · ~Aref)

~B · ~n dΣ− 2
∫

Σ
( ~Bt · ~Aref) ~v · ~n dΣ

where ~Aref is the unique vector potential satisfying

~∇∧ ~Aref · ~n = Bn, ~∇ · ~Aref = 0, ~Aref · ~n = 0

(~n is the normal vector to the surface pointing outside the volume)



Helicity Transport (2)

Therefore, the first term measures the transport of magnetic heli-

city through the surface, and the second term measures the effect of

boundary motions (transverse motions to the surface).

By replacing ~v by ~u, Berger and Démoulin (2002) have shown that

d

dt
∆Hm = 2

∫

Σ
(~u · ~Aref)

~B · ~n dΣ

vecu being the photospheric footpoint motions measured basically by

local correlation tracking, ~v being the plasma velocity:

~u = ~vt −
vn

Bn

~Bt
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Emergence of flux rope from the convection

zone through the photosphere

Emergence of a twisted flux tube

generated in the convection zone

through the photospheric surface

(from Amari et al. 2005).

Evidence of helical structures at

the photospheric level by measur-

ing the transverse magnetic field

components or the value of α

(force-free parameter) at a given

location (e.g. Krall et al. 1982,

Solar Phys., 79, 59), or by look-

ing at the long-term evolution of

active regions (López Fuentes et

al. 2000, ApJ, 544, 540)



On the photosphere: measure of α

The force-free parameter α can be derived from vector field measure-

ments or by comparing with a linear force-free field extrapolation:

From vector fields: the α parameter is derived locally (at each pixel)

from

α =
1

Bz

(

∂By

∂x
−

∂Bx

∂y

)

Averaged or mean values of α are used as proxies for the magnetic

helicity (e.g., Leka 1999) as well as to established the hemispheric rule

(left-handed in the northern hemisphere, right-handed in the southern

hemisphere, Canfield and Pevtsov 2000)

From lfff: Démoulin et al (2002) and Green et al. (2002) have derived

the α from a linear force-free field comparing with soft X-ray data, and

then estimated the magnetic helicity following the expression given by

Berger (1985).



On the photosphere: rate of change

The magnetic helicity rate of change

associated with transverse motions can

be derived from line-of-sight magneto-

grams, using a local correlation track-

ing technique to compute the transverse

velocity field. Kusano et al. (2002)

have developed a technique by combin-

ing line-of-sight measurements to derive

the transverse velocity, vector magneto-

grams for the 3 components of ~B and the

induction equation for the vertical com-

ponent of the velocity. See Figure on

the left for the total helicity rate (top),

due to vertical motions (middle), due to

horizontal motions (bottom)



Flux rope observed in the corona (1)

Filaments/prominences as well as sigmoids are considered as twisted

flux tubes. The measurement of the shear angle can give an estimate

of the α parameter in a thin flux tube approximation.



Flux rope observed in the corona (2)

Using nonlinear force-free field reconstruction, we (Régnier et al. 2002,
2004) have evidenced twisted flux tubes in magnetic configurations
with different twist and different handedness.

Quasi- Highly
Filament Sigmoid potential twisted

α (Mm−1) 0.15 -0.15 -6 10−3 0.03

Jz (mA.m−2) 2.4 -2.3 -0.7 3.5

L (Mm) 205 180 220 169

h (Mm) 34 45 54 61

θs 5o 5o 50o 75o

Bh (G) 49 56 20 36

N 0.5–0.6 0 1.1–1.2

Magnetic Dips Yes No No No



Flux rope in the interplanetary medium as a

consequence of CME

Ejection of a twisted flux tube or mag-

netic cloud from the low corona into the

interplanetary medium.

Evidence of helical structures by in-

situ measurements of the magnetic

field components. The α value is

derived from a model of flux rope

in cylindrical coordinates (e.g., Lun-

dquist solutions–linear force-free field,

Gold-Hoyle solutions–nonlinear force-

free field with uniform twist
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Aim and Method

• Determining the magnetic helicity including self and mutual heli-

cities from nonlinear force-free field (nlfff) extrapolation technique

• nlff numerical scheme based on Grad-Rubin method re-written in

terms of the vector potential

• study of two simple cases (one with a twisted flux tube, one with

a simple topology) and a solar active region



Extended Gold & Hoyle solutions (1)

The Gold & Hoyle (1960) solutions describe a set of nonlinear force-

free fields representing a uniformly twisted flux tube.

Bz(r) =
B0

1+ q2r2
, Bθ(r) =

B0qr

1+ q2r2
, α(r) =

2q

1+ q2r2
,

where q characterizes the twist (unit of 1/r).

We define an extended set of nonlinear force-free fields describing a

non-uniformly twisted flux tube:

Bz =
B0

(

1+ κr2

r20

)κ, Bθ = ±
B0

√

κ(2κ − 1)

r0
r













1−

1+ 2κ2r2

r20
(

1+ κr2

r20

)2κ













1
2

where κ and r0 are two free parameters. Solutions exist only for κ > 1
2



Extended Gold & Hoyle solutions (2)

Left: α as a function of the characteristic thickness r0 (dashed curves)

for r0 = 0.8,1,1.5,2,3,4 and as a function of κ (solid curves) for

κ = 0.8,1,1.5,2,3,4

Right: Same as for the left plot for Φ =
r0Bθ
rBr

, the twist function



Extended Gold & Hoyle solutions (3)

Typical nonlinear force-free field

distribution reconstructed from

the extended Gold & Hoyle solu-

tion.

EG&H solutions Hself( ~Bcl) Hmut( ~Bpot, ~Bcl) ∆Hm Hself( ~Bpot)

κ = 0.8, r0 = 0.56 0.13 (2.2%) 5.6 (96%) 5.8 -3.7 10−4 (6 10−3%)
κ = 0.8, r0 = 0.4 0.38 (4.4%) 8.2 (96%) 8.5 -3.7 10−4 (4 10−3%)
κ = 2, r0 = 1.4 0.15 (2.9%) 4.8 (95%) 5.1 -3.4 10−4 (7 10−3%)
κ = 2, r0 = 1 0.44 (5.8%) 7.2 (94%) 7.6 -3.4 10−4 (4 10−3%)

Magnetic helicities for 4 different EG&H solutions (unit of 1043 G2.cm4). The per-

centage in parenthesis is computed with respect to the relative helicity.



Three-source configuration

Distribution of magnetic field with three bal-

anced sources (see e.g. Brown & Priest

1999). The configuration has a topology:

one negative null (triangle), spine and fan

directions are indicated by the white and the

black lines respectively

Trisources Hself( ~Bcl) Hmut( ~Bpot, ~Bcl) ∆Hm Hself( ~Bpot)

α = 0.04 7.92 10−5 (34%) 9.08 10−5 (62%) 1.45 10−4 4.9 10−5 (33%)
α = 0.08 1.24 10−3 (86%) 2.44 10−4 (16%) 1.44 10−3 4.9 10−5 (3.5%)

Magnetic helicities for 2 linear force-free configurations (unit of 1043 G2.cm4). α unit

is Mm−1. The percentage in parenthesis is computed with respect to ∆Hm.



Active region 8210 (1)

Nonlinear force-free configuration of

AR 8210 using photospheric boundary

conditions provided by one MSO/IVM

vector magnetogram observed at 19:40

UT on May 1st 1998.

AR 8210 Hself( ~Bcl) Hmut( ~Bpot, ~Bcl) ∆Hm Hself( ~Bpot)

at 19:40 UT -8.8 10−2 (21%) -0.36 (86%) -0.42 2 10−2 (4.7%)

Magnetic helicities for AR8210 at 19:40 UT on May 1st 1998 (unit of 1043 G2.cm4).

The percentage in parenthesis is computed with respect to ∆Hm.



Active region 8210 (2)

We follow the evolution of the magnetic helicities during ∼4 hours with

one vector magnetogram every 15 min (see Régnier and Canfield 2006,

A&A, 451, 319).



Conclusions (1)

• The self helicity characterises the twist and the writhe of confined

flux bundles

• The mutual helicity characterises the crossing of field lines, which

also includes large scale twist

• The vacuum helicity can be proxy for the topology of the magnetic

configuration (warning: this quantity is not gauge invariant)



Conclusions (2)

What do we need?

• Long time series of vector magnetograms of good quality: good

polarization resolution (reduce the noise on the transverse field),

higher spatial resolution (to better resolve the polarity inversion

line), higher temporal cadence (?): Solar-B, SDO, SOLIS, GREGOR,

THEMIS, ATST, ...

• Improving the nonlinear force-free modeling codes. We are working

on it!! NLFFF group will meet next month in Stanford

• Need to improve the the correlation photosphere-corona-interplanetary

medium: STEREO?


