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Relaxation in the Solar Corona

* Magnetic energy & helicity injected
slowly by footpoint motions.

* Energy released on Alfvénic
timescale.

M1.1 class flare, AR 9166
14th September 2000.
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* What structures will be produced by photospheric motions?

* What triggers a dynamical relaxation”

* What is the end result of a dynamical relaxation?
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Modelling approach

m Ampere’s Law m  Equation of Motion
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5 energy equation.
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m Ohm’s Law m  Solenoidal Constraint

E+vxB=1 V-B=0

Here: B magnetic field, j current density, E electric field,
v plasma velocity, p plasma density, p magnetic permeability,
O electric conductivity.



Nature of an equilibrium state

e Consider the equation of motion:
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* Assume the equilibrium is quasi-static.

* Gas pressure is negligible in most of corona.

* Neglect gravity over typical scale heights. Neglect viscosity.
* Reduce to the force-free condition:

jxB=0




Force-free fields
jxB=0, VxB=ypj, V-B=0

e Simplest solution j=0 known as a potential field.
* More general case has j||B: V x B = &B.

* The force-free parameter &« is not arbitrary but must be
constant along magnetic field lines.

V- (VxB=aB)=0=V:(aB)=aV:-B+B:-Va=B-Vqa]

* |[f & uniform in space = linear force-free field.

o If & varies between field lines = non-linear force-free field.



Which force-free field”?

photospheric P For an ideal dynamics main question is

shearing: slow relaxation: fast

whether smooth force-free equilibria exist
at all (Parker, 1979).

B energy

>

Yes: If the twist in the flux No: If the twist in the flux tube

tube is ‘not too large’. is ‘large’ (compare horizontal
with vertical length scales).

e.g. Binneau (1972); van

Ballegooijen (1985); Aly (1990); e.g. Galsgaard & Nordlund (1996);
Craig & Sneyd (2005); Janse, Low & Parker (2007-2010);
Wilmot-Smith et al. (2009). Bowness et al. (2011).

Here we consider non-ideal relaxations in which the magnetic field
topology can change in localised regions due to magnetic reconnection

events.




Which force-free field”?

* Non-ideal relaxation is an energy minimisation process.

08 13U T 09:.03UT

* Minimise / B; dv subject to the same boundary conditions.



Which force-free field”?

* Non-ideal relaxation is an energy minimisation process.

magnetic energy

mecawwn DOtential field

>

* Minimise / 5; dv subject to the same boundary conditions.

= potential field



Which force-free field”?

* Result from lab. plasmas (Taylor, 1974): ¥
conservation of total helicity

Ko = A-BdV
Vo

C B? : C : :
* Minimise | = / - 4V — NKp via variational principle
* Resulting field is linear force-free, VxB = B, x eR.
* Process known as Taylor relaxation.

e Parameter o« determined by Ko.

* Adapted to the solar case via relative helicity.



Which force-free field”?

* Non-ideal relaxation is an energy minimisation process.
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* Minimise / %2 dv subject to the same boundary conditions

and conservation of helicity = linear force-free field.



Model: test a braided field

* Suppose photospheric motion occurs in random
manner: braid has no net twist.

- Any sufficiently complex random braid will have a
component of the pigtail type.

* Realistic aspect ratio, only 1% energy above that
of the corresponding potential field.

- Field: uniform background + 6 isolated magnetic
flux rings.




e
Model: test a braided field

* Suppose photospheric motion occurs in random

manner: braid has no net twist.

- Any sufficiently complex random braid will have a
component of the pigtail type.

* Realistic aspect ratio, only 1% energy above that
of the corresponding potential field.

- Field: uniform background + 6 isolated magnetic
flux rings.




e
Model: test a braided field

* Suppose photospheric motion occurs in random
manner: braid has no net twist.

- Any sufficiently complex random braid will have a
component of the pigtail type.

* Realistic aspect ratio, only 1% energy above that
of the corresponding potential field.

- Field: uniform background + 6 isolated magnetic
flux rings.




e
Model: test a braided field | M

* Suppose photospheric motion occurs in random

manner: braid has no net twist.

- Any sufficiently complex random braid will have a
component of the pigtail type.

* Realistic aspect ratio, only 1% energy above that i
of the corresponding potential field. | Y

- Fleld: uniform background + 6 isolated magnetic .
flux rings. /
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Hi-C 193A. 0.2” resolution,
C1.7 flare 11/07/12




Resistive MHD simulation

0B -y
E = = N5 E, o '[
E = —(vxB) + nd, Full domain:
J = VxB, [-6,6]° x [-24,24]
dp
o = V), Braid in:
-3,3]° x [-24,24
gz(pv)=—V~(pvv+;)—VP+JxB, 3,31 x1 ]
_aa—iz—v'(ev)_Pv'v+Qvisc+QJa gl P

* Copenhagen Stagger code: rMHD finite difference scheme.
e Take uniform n=103, 5123 grid points, line-tied boundaries.
* |nitial plasma beta ~ 0.1.

e Time: units of Alfvén time.



Non-ideal relaxation
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Non-ideal relaxation
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Magnetic

Reynolds numloer comparison

|J| at z=0

nN=2x10"*

* Relaxation time increases with magnetic Reynolds number.

- Greater current sheet fragmentation, more & faster rec.



Relaxation: energy release

* 66.2% of free magnetic energy released in the relaxation.

* Homogeneous heating of the loop.

t=40 t=80 t=120 t=180 t=350
L
0.066 0.072 0.078

average temperature

Temperature averaged along magnetic field lines and shown in the z=0 plane.



Relaxation: end state

* Trace field lines from two sets
of circles on lower boundary.

* Lower boundary shows force-
free parameter & (VxB = «B).

* Field evolves into two unlinked
flux tubes of opposite helicity.

* Final state non-linear fff.

* Overall helicity remains zero.
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Relaxation: end state

* Trace field lines from two sets
of circles on lower boundary.

* Lower boundary shows force-
free parameter & (VxB = «B).

* Field evolves into two unlinked
flux tubes of opposite helicity.
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* Final state non-linear fff.

Foree-free parameter * Overall helicity remains zero.

o*=j-B/B-B on lower boundary



Which force-free field”?

* Non-ideal relaxation is an energy minimisation process.
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* Minimise / 5; dv subject to the same boundary conditions

and conservation of helicity = linear force-free field.

Suggests additional constraint acts!



Topological Degree

If(xy e Field line mapping f(xo,yo) from lower to
‘ upper boundary includes number of fixed
points.

* Generic fixed points can be elliptic (+1) or
hyperbolic (-1)

* Sum of all fixed points gives index of field.
* Index of field = index of boundary.
* Index conserved during relaxation.

 Taylor state can’t be reached if index
Lo incompatible with initial state.




Topological

Initial State: index +2

= 00l

Final State: index +2

Degree

e Field line mapping f(xo,yo) from lower to
upper boundary includes number of fixed
points.

e Generic fixed points can be elliptic (+1) or
hyperbolic (-1).

e Sum of all fixed points gives index of field.
* Index of field = index of boundary.
* [Index conserved during relaxation.

e Taylor state can’t be reached if index
incompatible with initial state.



Complex vs. Coherent

f
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Sraiding
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ES — oppositely directed
rotational stirring motions

S3 — same sign rotational
stirring motions



Complex vs. Coherent Braiding
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Complex vs. Coherent Braiding

» Topological entropy: T(E3)=3.3, T(S3)=2.3
- Estimate with algorithm of Thiffeault (Chaos 20, 017516, 2010).



Complex vs. Coherent Braiding

magnetic energy above potential
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dimensionless magnetic energy
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* 66.2% free energy released for E3, 45.8% for S°.

* Higher degree of complexity in initial state of E° allows for a more
efficient relaxation.

- Complex braiding leads to homogeneous heating, coherent
braiding to local heating.



Complex vs. Coherent Braiding

t=120 t=180 t=350

t=40 t=80

Temperature averaged along field lines, z=0

* 66.2% free energy released for E3, 45.8% for S°.

» Higher degree of complexity in initial state of E3 allows for a more
efficient relaxation.

- Complex braiding leads to homogeneous heating, coherent
braiding to local heating.



Conclusions

- Sufficiently complex braids are incompatible with a stationary
equilibrium. Instability can occur even when free magnetic
energy is low (~1% in our example).

- Constraint above conservation of total helicity acts in non-
ideal field relaxations, limiting energy release.

- Complex photospheric motions lead to homogeneous loop
heating while coherent motions to localised heating.



