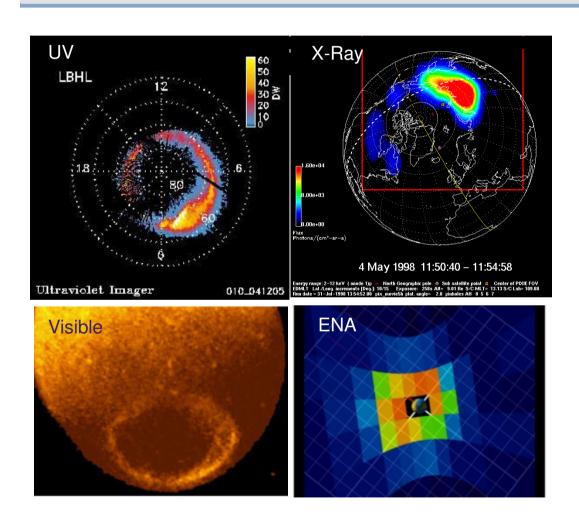
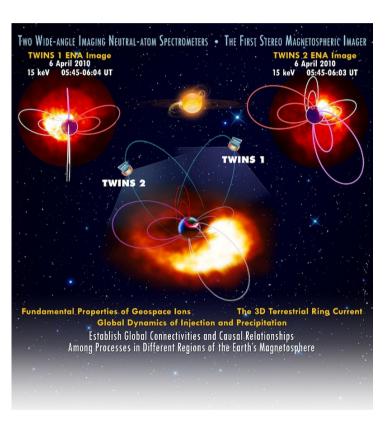


AXIOM: Advanced X-Ray Imaging of the Earth's Magnetosphere

J. P. Eastwood¹, G. Branduardi-Raymont², S. F. Sembay³, D. G. Sibeck⁴, J. A. Carter³, A. M. Read³ and the AXIOM Collaboration⁵

- 1) The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- 2) Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, UK
- 3) Department of Physics and Astronomy, University of Leicester, Leicester, UK
- 4) Code 674, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 5) http://www.mssl.ucl.ac.uk/~gbr/AXIOM/index.html

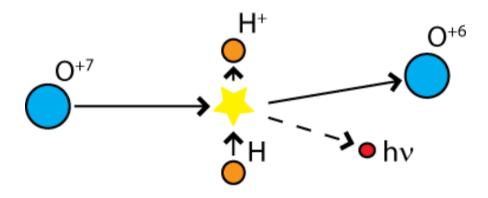

Summary (15 minute talk, inc. 3 minutes questions)


- Introduction
- Solar Wind Charge Exchange
- AXIOM
- AXIOM-C
- Conclusions

Introduction

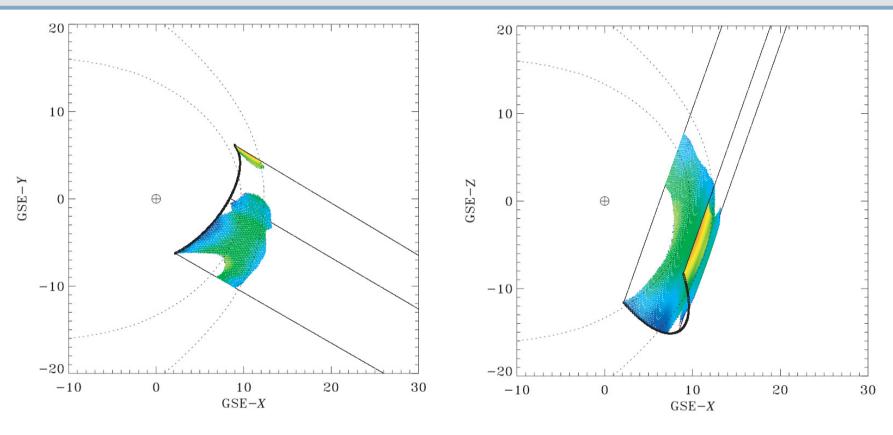
- Plasma and magnetic field environments can be studied in two complementary ways:
 - In situ measurement: provides precise information about plasma behaviour, instabilities and dynamics.
 - Remote measurement: provides knowledge about global configurations and overall evolution.
- To understand how planetary magnetospheres work, we need a combination of precise local information and the global picture.
- Historically, magnetospheric physics has largely relied on in situ measurement.

Imaging the inner magnetosphere and aurora



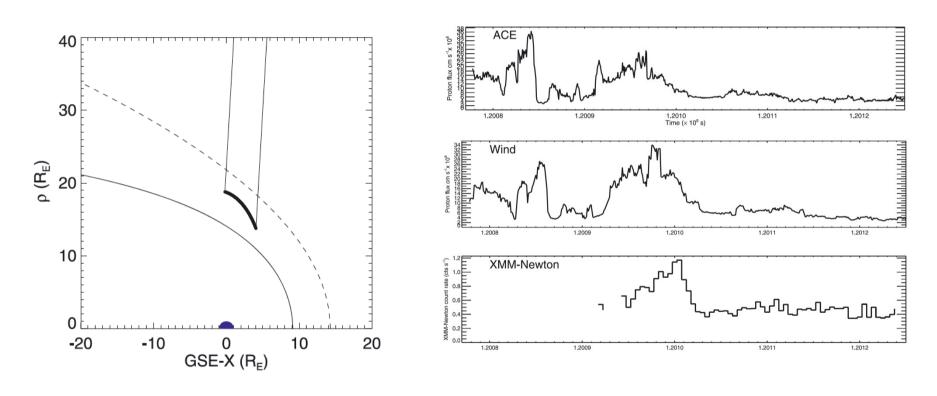
Science questions: outer magnetospheric boundaries

- Magnetopause physics
 - How do upstream conditions control magnetopause location, size and shape, and magnetosheath thickness?
 - Under what conditions do transient boundary layers arise?
- Cusp physics
 - What are the size and shape of the cusps?
 - How do they move in response to SW changes?
 - Density, SW/magnetosphere coupling?
- Shock physics
 - What controls where the bow shock forms?
 - How does its thickness depend on the upstream conditions?
- Interaction of a Coronal Mass Ejection with the magnetosphere
- All require global imaging for science closure


A novel approach to imaging

- Solar Wind Charge eXchange (SWCX) is expected where high charge state SW ions encounter neutrals, e.g. in the Earth's exosphere
- Observed at e.g. comet Hyakutake
- Photon production rate P_X depends on
 - α : scale factor
 - n_{sw}: solar wind proton density
 - n_n: neutral density
 - <g>: relative velocity

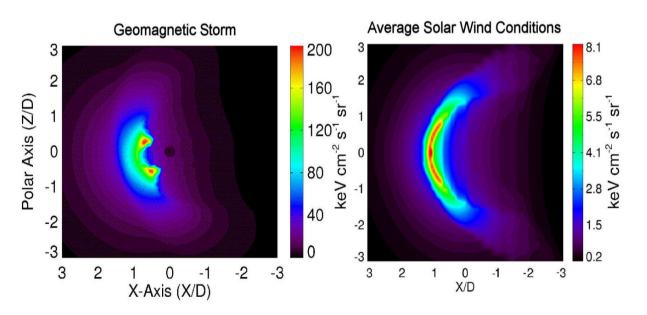
$$P_X = \alpha n_{sw} n_n \langle g \rangle \text{ eV cm}^{-3} \text{ s}^{-1}$$


SWCX emission at Earth really exists (part 1)

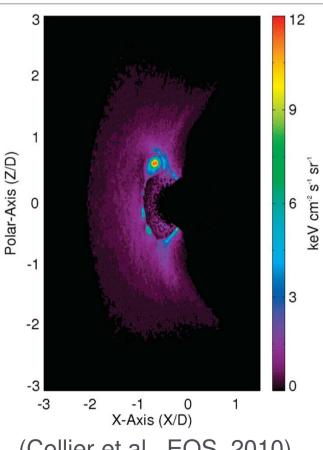
Solar wind charge exchange emission measured by Newton XMM Colour shows emissivity $n_{sw}n_n < g > (n_{sw} = solar wind density, n_n = neutral density, < g > relative velocity)$

(Snowden et al. 2009)

SWCX emission at Earth really exists (part 2)

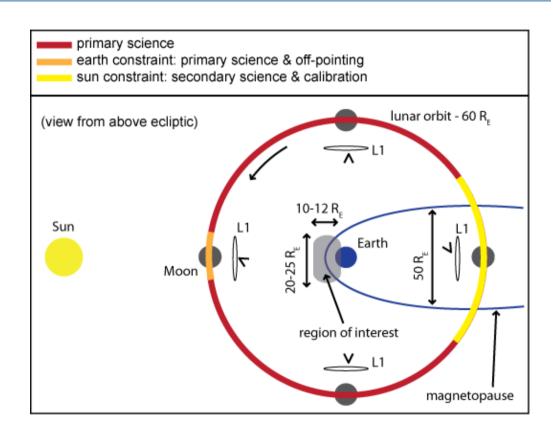


XMM trajectory from $t = 1.2010x10^8 - 1.2012x10^8 s$


A coronal mass ejection was observed by Newton XMM on 21 October 2001 (Carter et al. 2010)

Simulated SWCX emission from around the Earth

SWCX emission from the magnetosphere has been simulated (e.g. Robertson and Cravens, GRL, 2003; Robertson et al. 2006)


(Robertson et al. 2006)

(Collier et al., EOS, 2010)

AXIOM: Advanced X-ray Imaging Of the Magnetosphere

- ESA M-Class mission proposal (2010)
- Payload
 - Wide FOV X-ray imager with spectroscopy
 - · Compact plasma package
 - Magnetometer:
- Vega launch
 - Vantage point far out from Earth
 - Lissajous orbit at Earth Moon L1 point (~50 R_E)

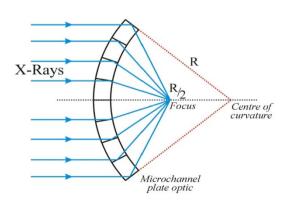
Branduardi-Raymont, Sembay, Eastwood et al., Exp Astron 33:403-443, 2012

AXIOM payload – X-ray WFI (Sembay, University of Leicester)

X-ray Wide Field Imager (WFI):

Wide FOV (10° x 15 °baseline)

Energy range 0.1 – 2.5 keV


Energy resolution < 65 eV (FWHM) at 0.6 keV

Angular resolution of \sim 7 arcmin (0.1 R_F at 50 R_F)

Time resolution of ~ 1 min

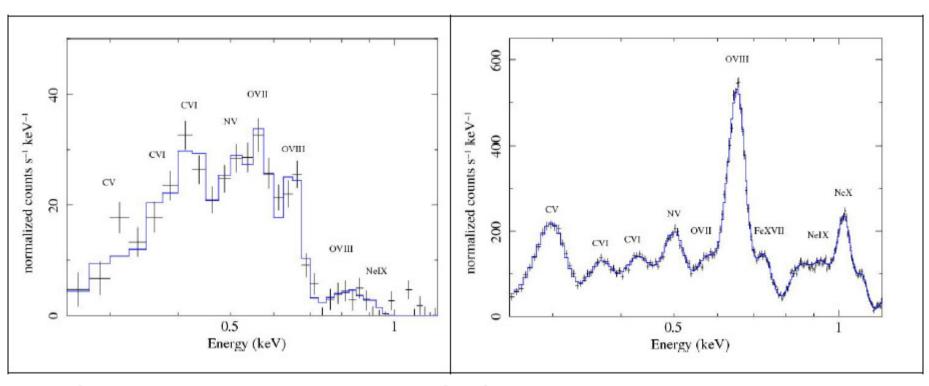
Grasp = effective area x FOV = 25x XMM at 0.6 keV

Achievable with MCP optics coupled with X-ray sensitive CCDs at focus

Basic focusing geometry

WFI predicted effective area

(cm²) mult. by (QE * trans) 6 6


Frame holding individual MCP plates

AXIOM WFI simulated images

http://www.star.le.ac.uk/~jac48/axiomsims/

AXIOM WFI spectral measurements

Simulated background-subtracted SWCX spectra

Left: quiescent solar wind

Right: during a coronal mass ejection

AXIOM in situ payload

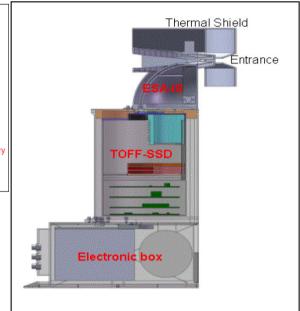
Proton-Alpha Sensor (PAS): to measure the solar wind density and velocity.

Ion Composition Analyser (ICA): to measure properties of minor ions in the solar wind (2-56 amu/q).

Electrostatic Aperture
Deflection Plates

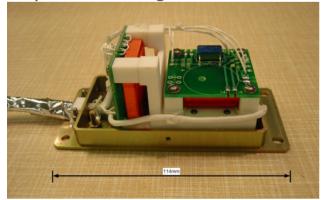
OV Variable GF system

+ HV

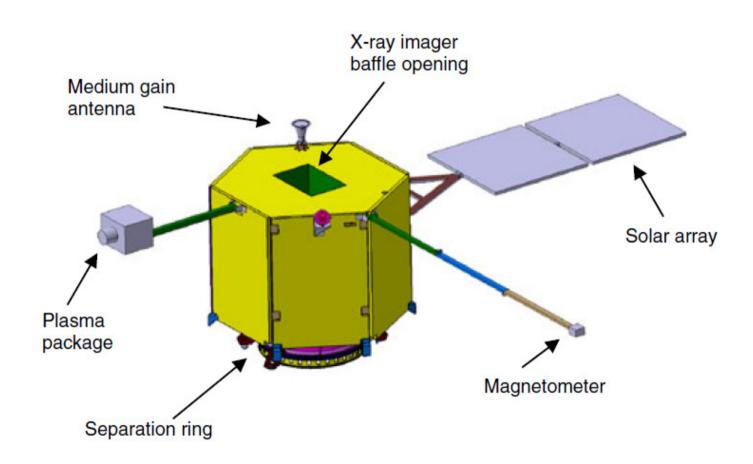

Hemispheric
Electrostatic
Analyser system

Detector
(e.g. MCP, CEM)

Axis of rotational symmetry


Electron
Trajectory

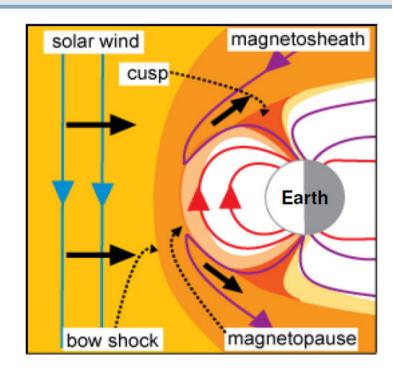
MSSL/UCL



Flux-Gate Magnetometer (MAG): to measure the orientation and strength of the solar wind magnetic field, crucial for understanding the solar wind - magnetosphere interaction.

Imperial College London

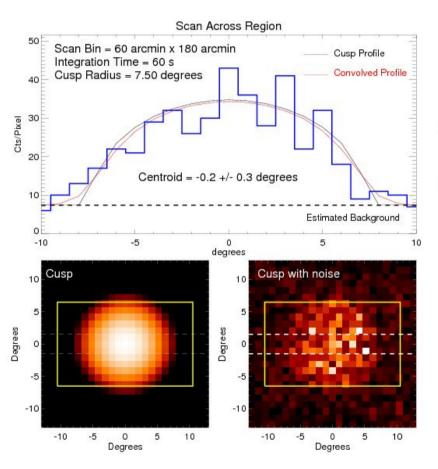
AXIOM satellite design


AXIOM lessons learned

Lessons learned from the M3 competition:

- 1. We tried to save ESA money, coming in well below the cost cap (250/470 M€), by flying a smaller satellite and using a Vega launcher
- 2. We should have used the full cost cap, and flown a larger imager (address questions regarding image accumulation time)
- 3. Science case was considered weaker because there were no in situ measurements coming from where the X-rays are generated
- 4. A larger pan-European team would have been considered an advantage

AXIOM-C: Advanced X-ray Imaging Of the Magnetosphere-Cusps


- ESA S-Class mission proposal (2012), targeted to focus on the magnetospheric cusps
- The cusps play a pivotal role in solar wind magnetosphere coupling. Two key questions:
 - 1. What controls the size and shape of the cusps and their boundaries?
 - 2. Is cusp structure dominated by spatial or temporal effects?
- Brightest regions of emission (easiest to image)


AXIOM-C Mission profile

- Operate in LEO, where we 'look out' to cusps
 - Flying through/below cusps allows (quasi-)simultaneous in situ measurements
 - Link high altitude (AXIOM-C) with low altitude (ground observers) measurements
 - Gain remote + in situ knowledge
- Piggyback VEGA launch, Sun-synchronous, 650 km, 10:30 AN, circular orbit
- Instrumentation:
 - WFI: 21° x 13° FOV, 2.5 arcmin FWHM
 - Dual Electrostatic Sensor for lons and Electrons (DESIE)
 - Magnetometer (MAG)
- Cost at completion ~ 50 M€ (everything including launch)

AXIOM-C payload – X-ray WFI (Sembay, University of Leicester)

Simulated WFI observations of cusp-like structures for a 60 s integration

WFI accommodation in the AXIOM-C spacecraft

Spacecraft bus is SSTL-150

Conclusions

- To fully understand how the magnetosphere works, we need global imaging.
- This can be achieved via Solar Wind Charge Exchange emission
- The AXIOM proposal used the Earth-Moon Lagrange points as a vantage point for observations
- The AXIOM-C proposal was designed to measure the cusps from LEO
- Next opportunity: ESA M4? (2014)