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Multi-messenger astronomy is the natural extension of
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LISA will observe more CWDBs than any optical telescope

Hubble limits for white dwarf
observations

# LISA resolvable compact binaries

Type Resolved | With df/dt
(wd, wd) |>10% ~600

AM CVn |>10% ~50
(ns,wd) 21 3

Other 2 0

3 Nelemans 2003




Knowing the period, inclination angle, and sky location of a
CWDB enables a targeted search for an optical counterpart

Gravitational wave observations:
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Joint optical, gw observations will enable census
of white dwarf masses and improve calibration of
the first rung of the cosmic distance ladder




Gravitational wave observations can distinguish between
proposed GRB progenitors

Collapsar

~10% Mo in 10 — 100 ms linearly
polarized burst

NS, NS/BH merger:

~20s inspiral plus 3 — 10% Moc?
merger burst; circularly polarized

Credit NASA
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Gravitational wave observations can test emission
mechanism models

GW polarization measures angle
between J, line-of-sight

Interval between gravitational
wave, gamma-ray arrival

distinguishes between internal
shock, external shock emission

Credit NASA




Even credible absence of GW emission may be significant

GRB070201 can’t be local




Coincident gw, X-ray flares accompanying tidal disruption of
stars by 102 — 10° Mo black holes diagnose bh spin

Laguna, Rasio, Rantsiou, Kobayashi

Disruption by Schwarzschild black Disruption by maximal Kerr black
hole hole




Multi-messenger signals disruption distinguish between
deep, shallow disruptions

“shallow” impact

parameter Kobayashi, Laguna,

Phinney, Mészaros
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Prompt multi-channel signals from white
dwarf disruption by 10° Mo black hole
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X-ray emission following SMBH coalescence in merged
galaxies may provide optical counterpart to gw burst

Binary sweeps the central region free
of gas, dust & stars, truncating
accretion disk, reducing X-ray emission

Unequal Mass Head-On Waveforms

gw from inspiral
] . localizes host galaxy

| detector at 10M

Milosavljevic & Phinney

time (M) T
Post-merger accretion disk is restored on f
timescale of ~7(1+z)(M/10°Mo)*32 yr, with = §
thermal emission tracing accretion disk . .
formation . ;
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Optical counterpart with redshift of binary inspiral allows
absolute calibration of cosmological parameters

Polarization ratio measures
inclination

Rate of f measures 72, T

h+, hxy amplitudes measure d._
Optical counterpart gives z
Result: di(2)!
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