Gravitationally Redshifted Absorption Lines in the Burst Spectra of the Neutron Star in EXO 0748-676

J. Cottam *NASA/GSFC*

F. Paerels *Columbia University*

> M. Mendez SRON

24 -25 October 2002 MSSL Workshop on High Resolution Spectroscopy

XMM-Newton Observations of EXO 0748-676

- * EXO 0748-676 was observed during commissioning and calibration phases
 RGS: 335,000 s EPIC: 39,000 s
- * During the frequent X-ray bursts, the neutron star outshines the accretiongenerated light by an order of magnitude, while continuing accretion provides a constant source of heavy elements at the neutron star surface

Excellent opportunity to search for absorption features in the neutron star photosphere

^{24 -25} October 2002 MSSL Workshop on High Resolution Spectroscopy

Averaged Burst Spectra

- * We collected RGS data for 28 bursts (3200 s), and simultaneous EPIC data for 3 bursts (250 s).
- * The EPIC data show evidence of spectral evolution during the bursts. We therefore chose to separate the RGS data into early and late burst phases.

Circumstellar Absorption Spectra

- * In order to identify features associated with the neutron star, we must first account for circumstellar absorption.
 - O VII emission line ratios suggest high density photoionized gas
 - O VII absorption features are blue-shifted by v~5000 km/s suggesting bulk outflow
 - Evolution in the absorption-to-emission ratios indicates changes in geometry from spherical to increasingly flat
- * We can then use the measured O VII parameters to model the global absorption spectra.
 - − The ratio of O VII/O VIII constrains the ionization parameter to $\xi \sim 10$ ⇒ ionization balance for K-shell C, N, O, Ne, Mg, Si & L-shell Fe
 - Assume solar abundances
 - Assuming a constant temperature, the velocity structure for each ion scales from the O VII values

Burst Spectra with Circumstellar Model

24 -25 October 2002 MSSL Workshop of

MSSL Workshop on High Resolution Spectroscopy

Residual Spectral Features

- * There are significant residual spectral features at
 Early: 13.0 Å, (25.3, 26.3, 26.9 Å)
 Late: 13.75 Å, 25.2 Å, 26.4 Å (17.8, 19.7 Å)
- * Excluding Instrumental Explanations
 - The features appear in both RGS instruments
 - The features appear in the early- and late- phase spectra separately
 - There are no similar features in deep exposures of Mkn 421, 3C273, PKS2155-304
- * Excluding Circumstellar Explanations
 - The features are inconsistent with absorption in ions at higher ionization parameters
 - Separate ions present at the same ξ would have random velocities
 - For a given line identification, the higher n-level lines and the associated edges are not observed

\implies Features must be associated with the Neutron Star

Identifying Absorption Features

- * Features are not consistent with simple absorption in Lyman series
- * Evolution of the spectral features is key to their identification.

- Early: Fe XXVI dominates ion balance. Identifying 13.0 Å with Fe XXVI n=2-3 transitions \Rightarrow z=0.35 - Late: Fe XXV dominates ion balance. Identifying 13.75 Å with Fe XXV n=2-3 transitions \Rightarrow z=0.35

 Redshifting O VIII Lyα by z=0.35 would produce a feature between the 25.3, 26.4 Å features – perhaps self-reversed absorption in an extended outflowing atmosphere

Summary & Implications

- * A gravitational redshift of z=0.35 has been observed in the absorption spectra of the neutron star in EXO 0748-676.
- * This imposes quantitative constraints on the equations of state for cold, dense nuclear matter. This redshift is consistent with most models of normal nuclear matter for a mass and radius of

M=1.4-1.8 M_☉, R=9-10 km

Reproduced from Lattimer & Prakash (2001)

* Further high-resolution observations of bursting neutron stars should be performed using XMM-Newton, Chandra, and particularly Constellation X.