Emission- & Absorption-Measure Distributions

High Resolution X-Ray Spectroscopy: Towards XEUS and Con-X MSSL, March 2006

Ehud Behar Department of Physics, Technion, ISRAEL

COLLABORATORS

 Raanan Nordon, Tomer Holczer (Graduate Students)

· Manuel Güdel

Outline

- Emission Spectra
 - EMD and why we want it
 - Fundamental Limitations
 - Results from coronal flares
- Absorption Spectra
 - Measured quantities
 - Absorption Measure Distribution (AMD)
 - Results for AGN outflows
- Conclusions

Emission Line Spectra

Line Flux: Reminder

- Fundamental plasma quantity: photons emitted per second per cm³: n_iA_{ii}
- In the steady state coronal approximation: What comes up must come down: n_iA_{ji}=n_en_iQ_{ij}(T_e), n_i=n_q, plus cascades
- In astrophysical terms:

atomic plasma physics physics chemistr

5

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

since $(n_j/n_q) \sim n_e$, the $F_{jj} \sim n_e n_H \sim n^2$ For observed line flux F_{jj} now divide by $4\pi d^2$ and integrate over volume

Emission Measure

· Now,

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

For an isothermal, isochemical plasma,

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

 However, steady state coronal plasma CANNOT in reality be isothermal, so

> QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

The EM Distribution

So, what we are seeking is:

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

- In general, the derivation of the EMD is subject to confusion due to the entanglement of thermal and chemical contributions ($F_{ii} \sim A_z EMD$)
- The X-ray band is unique in its richness: Fe-L comes to the rescue providing an abundance-free distribution (also, line ratios between ions)
- Once the EMD profile is known, normalizations for different elements yield the ABUNDANCES

Finding the EMD: The Inversion Problem

- Degeneracy is inherent even for high-accuracy measurements
 - Solution is non-unique
 - No physics to hint at the EMD shape
 - No escape from width of line emissivity curves
 - EMD variations on small temperature scales produce indistinguishable spectra
- Solution: fit for average EMD in T-bins
 - Produces meaningful, well localized errors
 - Limited temperature resolution
 - Dependent on ionization balance (e.g., Gu 2003)

Different EMD Shapes

The Desire for EMD Confidence Dictates Low T-Resolution

How far can one go from T_1 to T_2 to compensate for $\delta EMD(T_1)$ with $\delta EMD(T_2)$ (to within $\Delta X^2 < 1$)?

Some Results: Giant Flare on σ Gem

A THE REPORT FRAME PARTY A LOW WORK A PROPERTY CONTINUES IN A REPORT OF THE REPORT OF THE PARTY AND A REPORT OF THE PARTY AND A

Abundances Flare vs. Quiescence

A TE WERE SHERE SHERE SLOPER TO HOURS IN THE PARTY STORE TO AN AN ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDR

Atomic Data? Sanity Check

A TENANCIMAN SAME SLOW STATES THAT IS NOT

and Fe-L, e.g. Fe⁺¹⁹

What about Absorption?

CHENNER SHE STORE STORE A MORE THE CONTRACT OF THE REAL PROPERTY OF THE

Absorption: The Same, but Slightly Different

- Measured quantity: Equivalent width and optical depth of (several) lines & edges (partial covering can complicate things considerably).
- Fundamental plasma quantity: Optical depth and ionic column density $\tau_{ij} = N_{ion}\sigma_{ij}$

$$N_{ion} = \int_{r} n_q dr$$

• Again, all ions are essentially in their ground state and in astrophysical terms: $(n_a) (n_z)$

$$n_q = \left(\frac{n_q}{n_Z}\right) \left(\frac{n_Z}{n_H}\right) n_H = f_q(\xi) A_Z n_H$$

- Ionization parameter replaces T_e
- Thus: for isochemical, isothermal (iso- ξ) absorber: one obtains an Equivalent $N_H = N_{ion} / f_a A_Z$

17

In Fact, N_H is Distributed

- An isothermal plasma near an intense ionization source (quasar) is even less likely than an isothermal coronal plasma.
- There must be an Absorption Measure Distribution (AMD):

$$N_H = \int \frac{dN_H}{d\xi}(\xi)d\xi \equiv \int AMD(\xi)d\xi$$

- SRON group (Steenbrugge, Costantini) has explored power-law AMDs (for NGC 5548, Mrk 279), but see talk by Goncalves
- Again, in the AMD derivation there can be confusion due to the entanglement of thermal and chemical contributions ($N_{ion} \sim A_Z AMD$)
- In absorption, the X-ray band is even more all-inclusive
- Inner-shell absorption reveals ALL CHARGE STATES (barring bare)
- Particularly, 26 ions of Fe allow for an abundance-free AMD analysis relying on T and $f_a(\xi)$ (XSTAR by T. Kallman)

Individual Ionic Column Densities

A TE MARCH SHE STORE STORE & MORE STORE ST

Abundances (more reliable than emission)

Conclusions

- Astrophysical X-ray plasmas are generally NOT isothermal
- There always is a distribution: EMD or AMD
- The EMD and AMD play a role in comparative studies
- · Essential for reliable abundance determination
- The EMDs/AMDs happen to be rather broad, thus few-T models do not usually represent the EMD/AMD correctly
- In the absence of a physical model for the EMD or AMD, the best representation is a step function, which allows for local well-constrained error estimates
- L-shells provide powerful diagnostics, but T- or ξ resolution is limited by fundamental physics; the ionic distributions
- To that end, the ionization balance (atomic data) is key

THANK YOU FOR YOUR ATTENTION

