Past, present and future prospects of high resolution X-ray spectroscopy of clusters of galaxies

> Jelle S. Kaastra SRON

Overview

- High-resolution X-ray spectroscopy and clusters of galaxies
- Initial XMM-Newton RGS results
- Recent highlights: abundance determinations
- Future prospects

High-resolution X-ray spectroscopy and clusters of galaxies

"Classical" Fe-line diagnostics

Temperature diagnostics

- T hard to measure for E<kT from continuum
- Multi-T plasma: need lines to resolve Tstructure

De Plaa et al. 2005

Abundance diagnostics

Hotous m² s⁻¹ k⁻¹ K⁺¹ K⁺¹

T = 1 keV

Measuring ion temperatures

- With high resolution (~ eV) possible to measure line broadening due to finite ion temperature
- Important for shocks etc.

Optical depths / turbulence

- Several Fe-L lines (red in figure) sensitive to optical depth, others (blue in figure) not
- For known distance, this gives turbulent velocity

Measuring turbulence

- Important pressure component: turbulence
- Dynamics (Doppler shifts) important for testing e.g. merger models
- Needs high resolution (1 eV at 1 keV)

2. Initial XMM-Newton RGS results

- RGS optimal for point sources
- But still (unfortunately, Suzaku XRS) the best for moderately extended sources:
- $\Delta\lambda$ (Å) = 0.138 $\Delta\theta$ (arcmin)

Predictions and observations of cooling flows C2311-43 (A S 1101, Ser 159-3) RCS frist order of Medicing Set Version 2 00 Techer 11 16:16:

- Spectrum shows predicted Fe XXIII/XXIV and O VIII from kT=2.5 keV plasma
- But almost no Fe XVII/XVIII lines!

Other cases: A 1835 (Peterson et al. 2001)

Cooling Flow problem: universal? (Peterson et al. 2002)

Differential Emission Measure

- In general, too little cool gas
- Most popular models: additional heating occurs (for example AGN, heat conduction, mixing, ...)

Multiphase gas: EPIC

- Single T fits good
 first approximation
- But often χ² enhanced in central shells:
- Example: A 2052
- Need multi-T plasma
- Needs high-res
 confirmation

3. Recent highlights: abundance determinations

Nucleosynthesis in action: EPIC spectra ...

- Current best case: deep XMM-Newton observation of one of brightest clusters
- First evidence of traces of Cr
- Needs higher spectral resolution and sensitivity

2A 0335+096, Werner et al. 2005

... and of course RGS!

- Strong point of RGS: abundances of CNO
- Example: 2A
 0335+096 (same data set as EPIC spectrum previous slide)

Type Ia, Type II and Solar abundances

- 2A 0335+096 (top) and Sersic 159-03 (bottom)
- Light elements (O, Ne, Mg) from high mass SN (type II)
- Heavy elements (Fe, Ni) from WD collapse (type la)
- Ratio II/Ia is 2-3
- Few 10⁹ sn la per cluster

Decomposition in SN types

 If sufficient # elements measured with high S/N, decomposition in type Ia, II and pop III stars possible

Another case: M 87 (Werner et al. 2006)

- Total exposure time: 169 ks
- Clear lines from O, N, and C seen
- C/Fe: 1.17±0.14
- N/Fe: 1.63±0.18
- O/Fe: 0.66±0.04
- Ne/Fe: 1.31±0.09
- Mg/Fe: 1.33±0.09
- → AGB stars for CN!

Continuum-subtracted RGS spectrum

4. Future prospects

What if we could resolve this...

- Plots show T-map and Fe-map in 2A0335+096 (Werner et al. 2006)
- Important to do this also for more elements: CNO, Ne, Mg, Si, etc.
- Need high spectral resolution and grasp

What if we could resolve this: Temperature profiles

(Kaastra et al. 2004)

- T-profiles well
 resolved by EPIC
- But need to find spatially resolved temperature structure (i.e., more T components at same location)
- Only possible with new (non-grating) instrumentation

X-ray background: need for high spectral resolution

- X-ray background rich in structure
- Affects all observations of dim sources (in particular extended sources)
- Need to understand it
- Useful for study of diffuse Galactic abundances

Example: weak features in cluster outskirts: XMM-Newton O VII detection

- O VII lines are characteristic for 0.2 keV plasma
- Evidence for O VII emission in 5/21 clusters
- Emission has redshift of cluster
- But all unresolved...

Resolving diffuse O VII

- Example: MBE
- 4 eV resolution
- 6x6 pixels TES detector, 1ºx1º FOV
- Simulation: A 2052 at 5 arcmin off-axis

XEUS: Abundances of Fe, Si, O in clusters

XEUS: Abundances of Fe, Si, O in

More chemistry: rare elements

- Plots: maximum EW (as function of T) of lines for CIE plasma; solar abundances
- Lines with low EW need good:
- 1. Eff. area calibration
- 2. plasma diagnostics
- 3. atomic physics
- 4. bright sources

Example: Na in coronal spectrum

- Needs to find weak lines in crowded spectral area
- High spectral resolution not only required for sensitivity debut also for de-blending

Grasp versus spectral resolution

Weak lines

NEW: expected spectra

NEW: Signal to noise ratio in cluster detections

 Broad-band S/N for radius where S/(S+B)^{0.5} maximum (S=source counts, B=background counts)

Minimum integration time

- Hot clusters are seen wherever they are
- For high T clusters at very high z better visible!
- For cool clusters, longer exposure times really help: 10⁶ s exposure is great!

Redshift distribution

- For low T, cut-off due to S/N: simply too low luminosity
- For high T, strong evolution effects
- Above ~2 keV, we see all clusters at any redshift
- Sample dominated by 1-4 keV clusters

How many clusters do we see?

	7ºx7º	7º x7º	70º x70º
	10 ⁶ s	All clusters	10 ⁴ s
0.25-0.5 keV	89	6776	0
0.5 -1	255	4584	129
1-2	1105	2330	2348
2-4	799	801	24032
4-8	143	143	14312
8-16	10	10	991
TOTAL	2400	14644	41813

And of course:

- With the high spectral resolution foreseen for NEW (or XEUS, Con-X, etc...) we will have for bright clusters:
- Spatially resolved, high quality spectra containing in each pixel information on:
- T-structure, abundances, turbulence, velocity fields, ion temperature, etc.

Conclusions

- High-resolution X-ray spectroscopy offers best
 opportunity to study detailed cluster physics
- The RGS of XMM-Newton opened this field with its break-through in cooling flow studies
- RGS (and EPIC of course) continue to provide high quality results; but we need to go to deeper exposures
- Excellent (technical) prospects for cluster research with new missions: now the funding!