

The Warm-Hot Intergalactic Medium Past, Present and BRIGHT Future

Fabrizio Nicastro (CfA) & the *Pharos* Collaboration

• The Missing Baryons problem

• First Ω_b^{WHIM} estimate

Con-X, Estremo (New, Dios), Pharos & the WHIM

(Nicastro et al., 2005, Nature, 433, 495)

Problem: Missing Baryons

Table 1 Census of baryons in the high-and low-redshift Universe		
Inferred from*	$arOmega_{ m b}$ (%) for $h_{70}=1$	% of b
BBN + D/H	(4.4 ± 0.4)	
CMB anisotropy	(4.6 ± 0.2)	
Observed at $z > 2$ in \dagger		
Lyman- α forest	>3.5	>76
Observed at $z < 2$ in‡		
Stars	(0.26 ± 0.08)	5.7
$Hi + He_1 + H_2$	(0.080 ± 0.016)	1.7
X-ray gas in clusters	(0.21 ± 0.06)	4.6
Lyman-α forest	(1.34 ± 0.23)	29
Warm + warm-hot Ovi	(0.22 ± 0.03)	4.8
Total (at $z < 2$)§	(2.1 ± 0.3)	46
Missing baryons (at $z < 2$)§	(2.5 ± 0.4)	54

Why Should we Care?

(54 \pm 9) % of Baryons are missing!

- Find the 'Missing Baryons' and verify theory
- Ecology of the Universe (Metal Pollution)
 - Absolute (needs UV) and Relative Metallicities.
 - Galaxy Superwinds (SN) vs AGN winds, jets
 - Nucleosynthesis
- Heating History of the Universe
- Cosmological parameters from density fluctuations of WHIM filaments (1-10 Mpc at z=0-2): > 10³ systems needed
 - LG-WHIM is a biased measure Need z>0 WHIM absorbers to measure Ω_b
- Local Group WHIM and Galaxy formation

- Size: $\Delta R \sim 1 \text{ Mpc}$
- Density: $n_b \sim 10^{-6} 10^{-5} \text{ cm}^{-3}$
- Temperature: T ~ 10⁶ K ; ξ_{OVII} ~ 1
- Metallicity: Z ~ 0.1 Z_{\odot}

=> OVII-Forest Column Density: $N_{OVII} \sim n_b \xi_{OVII} Z_0 \Delta R \sim 2.6x(10^{14}-10^{15}) \text{ cm}^{-2}$

Detectability (with Gratings)

 Exceptionally high quality X-ray spectra of background AGN are needed.

15000 CPREs! ~ 2.5 x LETG

- 1. 20-60 % of ∆z blocked by instrumental features
- 2. Resolution > 2 x poorer in the line wings
- 3. Fixed-pattern noise at λ >29 A

(Williams, Mathur, Nicastro & Elvis, 2006, ApJ, submitted)

Chandra-LETG: 149 ks $F_{0.3-2} = 0.8 \text{ mCrab}$ LETG 0.02 0.015 လူ Ű υ 2 | | โ 0.01 G Ct 0.005 n 20 30 40 50 10 $\lambda(\text{Å})$ Sensitive to CV-Forest: $\lambda \sim 44-52 => \Delta z = 0.2$ CPRE(20-24;30-36)=45; CPRE(24-30)=75 CPRE(20-30;44-52)=60

XMM-Newton RGS: 195 ks $F_{0.3-2} = 0.5 \text{ mCrab}$

LETG & RGS Resolutions

1ES 1028+511 The Best Sightline with the Best Spectrometer

Number Density and Cosmological Mass Density of WHIM

(Nicastro et al., 2005, Nature, 433, 495; Nicastro et al., 2006, in prep.)

Long-Term Prospects

- Long Term: mapping the WHIM up to z~1: needs high throughput and spectral resolution.
- Tens to hundreds systems would enable:
 - $\Omega_{\rm b}$ (R) and d///dz to better than few/tens %
 - WHIM density in galaxy voids vs galaxy overdensities
 - Multi-phase studies (R) (R) (R)
- Hundreds to Thousands of Systems would enable:
 - $\Omega_{\rm b}$ (R) and d///dz to better than few tenth of %
 - Cosmological Parameters (density fluctuations)
 - Dark-Matter Maps
 - Metallicity History: dZ/dz (Ecology of the Universe) (needs UV) (R)
 - IGM/galaxy/AGN Feedback
 - Heating History of the Universe (dT/dz) (R)

Best Observational strategy

$$\left(N_{He-like}^{Thres}\right)_{Pharos} \approx 3.3 \times 10^{14} \left(\frac{N_{\sigma}}{3}\right) \left(\frac{\lambda(A)}{25}\right)^2 \left(\frac{f_{ion}}{0.7}\right)^{-1} \sqrt{\frac{\Delta\lambda(mA)}{4}} \sqrt{\frac{10^{-6}}{F(erg\,cm^{-2})}} \sqrt{\frac{600}{A_{Eff}(cm^2)}}$$

Chandra-LETG: ~ 10 systems in ~ 1 Ms Constellation-X: 100-120 los in 5 yr ==> 600-700 sys

Estremo: ~ 1500 sys in 5 yr (only 10-15 % for $\Omega_{\rm b}$)

Pharos: ~ 5000 sys in 5 yr (85 % for $\Omega_{\rm b}$)

$$\left(N_{He-like}^{Thres}\right)_{Estremo} \approx 1.5 \times 10^{15} \left(\frac{N_{\sigma}}{3}\right) \left(\frac{\lambda(A)}{25}\right)^{-1} \left(\frac{f_{ion}}{0.7}\right)^{-1} \sqrt{\frac{\Delta E(eV)}{2}} \sqrt{\frac{10^{-6}}{F(erg\,cm^{-2})}} \sqrt{\frac{800}{A_{Eff}(cm^{2})}}$$

Pharos

Pharos: (Elvis, Fiore et al. 2002 SPIE, astro-ph/0303444; F. Nicastro, M. Elvis, F. Fiore, B. Ramsey, S.S. Murray, A.Kenter, R. Kraft, K. Flanagan, E. Costa, M. Feroci, P. Soffitta, et al., 2006, SPIE, in prep.)

The second states of the

Midex concept (CfA, Obs. Rome, MIT, JHU):

R > 3000 @ E<1 keV

 $A = 30 \times LETG$

Coverage: 12-150 Å.

Slew on source in < 1 min: about 1-5 Soft-GRB per year with $F = 10^{-5}$ erg cm⁻² (> 0.5 years on the brightest QSOs at z = 1-2).

Four Themes of 21st Century Astrophysics

The most energetic events in the Universe 1997 1st GRB redshift

GŘB

X-ray

afterglows

The fate of the baryons & Large Scale Structure 1999 1st WHIM simulations 2001 1st WHIM detection

Galaxies in the Age of Star Formation 1997 Hubble Deep Field GRB hosts

The Reionization Epoch 2000 Gunn-Peterson trough @ z~6

PHAROS: Mission Concept

Rapid Response to GRBs ~ 30 seconds

Catch X-ray afterglows while bright after 20min ~ 60 times fainter

Half-sky X-ray coded masks ~1arcmin (SuperAgile technology)

CMOS hybrid 0th-order detectors

•Refine pointing to arcsec

Position telemetered to the ground immediately

•High resolution: R>3000 at E<1 keV (~10 x Chandra, XMM)

- Detect faint absorption lines
- Low column density systems much more common
- Abundances from many lines in same system
- Resolve thermal widths, internal galaxy motions: e.g. spiral arms
- Detect emission lines from z=10-20 sources
- Short focal length (~2 m) X-Ray Replica mirror < 1.5 keV
 - Small moment of inertia: rapid slewing
 - More rigid form: better PSF: HPD=10" (goal 5")
 - More area/kg (A_{eff}=2000 cm², M<200 kg, including supports)
- Out-of-plane grating onto µchannel-plate detectors
 - Higher resolution (R>3000 at E<1 keV), efficiency (30 %)

Pharos: Rapid X-Ray-rich GRB Trigger & Location

- <u>Problem</u>: require <1armin location + acquisition in 0.5-1 minutes *and* require quasi- 4π coverage: *conflicting goals*
- Solution: trigger in the 5-30 keV with 2 1-D Coded Masks

R>1000 at 12 A guarantees detection of > 80 % OVII systems

 $N_{OVII} = 5 \times 10^{15}$; b= [(b_{therm})² + (b_{turb})²]^{0.5} = 48 km/s

R=1000 at 12 A allows N_{ion}-b decoupling only for brightest OVII systems Higher R needed!

Nicastro

Relative Metallicity

Needs R > 3000 at 12.4 A

Multiphase WHIM

 $\Delta\lambda$ =4 mA

2 WHIM phase in pressure eq. Total extension 2.2 Mpc along the line of sight

Start to be resolved at R>3000 at 1 keV

AGN Warm Absorbers with Pharos

Pharos: Summary

- GRB afterglows combine 4 themes of early 21st Century astrophysics:
 - The fate of the baryons & large scale structure 1999
 - The most energetic events in the Universe 1997
 - Galaxies in the age of star formation 1997
 - The recombination epoch 2000
- Pharos, with R>3000 at E<1 keV, opens up all of these new areas of physics and astrophysics
- A small, short, soft X-ray telescope is enough
- Rapid GRB trigger & autonomous slewing essential, but straightforward
- Pharos is a natural MIDEX-class successor to Swift

Conclusions

•First WHIM Filaments Detected with Chandra-LETG (XMM data cannot confirm/rule-out: insufficient quality)

 $\bullet \Omega_{\rm b}$ and dN/dz consistent with predictions and with total number/mass of missing baryons, although with large uncertainties

• Chandra can reduce the uncertainties down to ~ 30 % with $\sim 1-2$ Ms exp

•WHIM future studies rely on high-resolution spectrometers:
•Gratings better than calorimeters for WHIM absorption studies
•R>=3000 @ E< 1 keV (50 km/s <==> 0 thermal velocity) enables:
•Accurate Ion column density measurements for 80 % of H-like and Helike C, N, O and Ne ==> Ionization correction and relative metallicity
==> accurate Ω_b estimates
•Accurate temperature estimates ==> measures of internal turbulence and local bulk motion for C, N and O
•Minimizes of confusion due to overlapping lines from different systems

•Starts resolving phases