X-ray flare on the single giant HR 9024

Paola Testa (MIT)

David	Da
Garcia-Alvarez	Huene
(CfA)	(M

Jeremy Drake (CfA)

High resolution spectroscopy workshop - MSSL, UK, March 28 2006

OUTLINE

• geometry of stellar coronae:

 \rightarrow is L > or $< R_{\rho}$?

> does it depend on activity level, evolutionary stage, stellar parameters (R_{ρ} , gravity, rotation, ...)?

• flare modelling as diagnostics for coronal geometry

 \succ generally yields L < R_{ρ} in late-type dwarfs

• the case of HR 9024:

single evolved star (G1 III); giants seem to show evidence for larger L (e.g. Ayres et al. 2003)

high resolution spectra HETG observation

GEOMETRY DIAGNOSTICS from FLARE MODELING

- stellar flares lightcurves analogous to solar flares
- size of flaring structures inferred from light curve, in particular the efolding decay time (e.g. Kopp & Poletto 1984, White et al. 1986, van den Oord & Mewe 1989, Reale et al.1997)

• thermodynamic decay time (van den Oord & Mewe 1989, Serio et al.1991; impulsive heating): $\tau \sim 120 L_9 (T_7)^{-1/2}$

• Reale et al. (1997) take into account possible continuous heating \Rightarrow more realistic estimates of L (information of the trajectory of the flare in the temperature-density diagram; $L_9 = \frac{\tau_k \sqrt{T_7}}{120 f(\zeta)}$; $f(\zeta) \ge 1$)

GEOMETRY DIAGNOSTICS from **FLARE MODELING**

two recent examples:

• Proxima Centauri (Reale et al. 2004)

• T Tauri stars (Favata et al. 2005; COUP data)

HR 9024

sp. type	d [pc]	$oldsymbol{R}_{*}\left[\mathrm{R}_{oldsymbol{\otimes}} ight]$	$\pmb{M}_{*}\left[\mathrm{M}_{igodot} ight]$	L _{bol} [erg/s]	P _{rot}	L _X [erg/s]	t _{exp} [ks]
G1 III	135	13.6	2.9	$2.7 \cdot 10^{35}$	23.25	6 · 10 ³¹	95.7

- single evolved star (G1 III)
- HETG observation (96 ks)

SPECTRUM

SPECTRUM

LIGHTCURVE

ANALYSIS

- DEM and abundances analysis
- derived evolution of T and EM during the flare

Fit of continuum emission, selecting line-free spectral regions : T, EM (normalization parameter)

RESULTS

HYDRODYNAMIC MODEL

- coronal plasma confined by the B field: plasma motion and energy transport only along B field lines
- 1D hydrodynamic model solving time-dependent plasma equations (density, momentum, energy) with detailed energy balance
- a time-dependent heating function defines the energy release triggering the flare

MODEL PARAMETERS

loop semi-length L = 10¹² cm (first estimate derived from the decay time τ~120 L₉ (T₇)^{-1/2} [Serio et al. 1991,Reale et al. 1997])

 initial atmosphere: hydrostatic, T=2×10⁷ K ; however initial conditions do not affect the plasma evolution after a very short time

RESULTS

RESULTS

- loop semi-length $L = 10^{12}$ cm
- heating:
 - impulsive (20ks), shifted by 15ks preceding the beginning of the observation
 - Iocated at footpoints
 - > no sustained heating (i.e. pure cooling)
 - volumetric heating ~10 erg/cm³/s; heating rate ~8×10³² erg/s
- cross-section radius $r \sim 2.3 \times 10^{10}$ cm, i.e. aspect ratio $\alpha \sim 0.023$ (from the normalization of the model lightcurve)

CONCLUSIONS

- large flare, unusual in single evolved stars
- very hot corona, even in quiescence
- loop semi-length comparable with R_P

• we can compare model and observation with high spectral resolution

 fluorescent emission — approved Suzaku observation (independent geometry diagnostics)

• recurrent pattern of lightcurve with two flares (HR9024, Prox Cen, Algol, the Sun,..) may represent a general characteristics of solar and stellar flares (as suggested by Reale et al. 2004)

DEM and ABUNDANCES

FLUORESCENT EMISSION - Lightcurve

FLUORESCENT LINES?

 <u>Fe Kα line</u> (1.93-1.94Å [6.4keV]) observed in solar flares (e.g. Parmar et al. 1984, and several others), in YSO (e.g. Tsujimoto et al. 2005, Favata et al. 2005), in X-ray binaries (e.g. Goldstein et al. 2004, van der Meer et al. 2005, Boroson et al. 2003,...)

NEVER BEEN OBSERVED IN LATE-TYPE EVOLVED STARS

FLUORESCENT LINES?

FLUORESCENT LINES? - Algol

104

cts

5000

2.00

2.00

FLUORESCENT LINES? - Algol

FLUORESCENT LINES?

