Fitting data: an introduction

Frank Verbunt
MSSL meeting on high-resolution X-ray spectroscopy
17 March 2009
Outline
Parent distributions: concept and examples

Central limit theorem, Gaussian errors and y?
Methods for Gaussian errors: linear, non-linear
General methods: amoebe, genetic algorithms

Binning

Excerpted from full notes:
Wwww.astro.uu.nl/ verbunt/onderwijs/observe/lnotes.pdf
based a.o. on Bevington
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Parent distribution: concept

How not to. .. How to. ..
@ what is the probability that Determine
during this lecture we are hit @ possible outcomes

by a meteorite?

@ there are two possibilities:
yes/no

@ their (relative) probabilities

The combination is the parent

distribution. It is never know

approximately
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Parent distribution: binomial

@ expected: u photons in time T, divide T in n slots
@ each slot has probability p = u/n to receive photon

@ with n trials the probability of k hits and thus n — k empty is

Pg(k, n,p) = ( Z )pk(1 _p)k

Pg(x,10,.16667)

T

T

T T T

P5(x,10,.50000)
0.1

Frank Verbunt (Astronomical Institute Utrecht)

Fitting data

March 17, 2009 3/26



Parent distribution: Poisson

@ expected: u photons in time T, divide T in n slots
@ each slot has probability p = u/n to receive photon
@ to avoid 2 photons in 1 trial, take limit n — oo with np constant

k

Pe(k.u) = e

1.67)

PP(X,
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Parent distribution: Binomial to Poisson

Pg(x,10,.16667)

P5(x,10,.50000)

0.2

0.1

1.67)

Pe(x,
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Parent distribution: Gauss

@ expected value u photons in time T

o for large u the Poisson distribution is well approximated with the
Gauss distribution
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Parent distribution: Poisson to Gauss

1.67)

Pp<><y

Po(x, 10.00)

0.1

0.05
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Parent distribution: when to use which one

Gauss and normal

G(X,ﬂ, O’) = e—(x—lu)2/2o-2

o Var

coordinate transformation:
z = (x —u)/o gives normal
distribution:

1

Ps(x) = E exp

1
2

when to use

@ binomial: each trial has
outcome yes or no

@ Poisson: each trial has range
of possible outcomes

@ Gauss: replaces Poisson for
large expectation value

@ for photon counts Gauss is
never exact: in particular
large deviations are more
likely in Poisson
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Central limit theorem

Concatenation of uncertainties

@ The central limit theorem
states that a sequence of
various distributions applied
consecutively will
approximate a Gaussian

@ For this reason and for its
computational simplicity, the
assumption of Gaussian
error distributions is often
used

How do we know?

@ once we have a fit, we can
plot distribution of the errors
and check whether it looks
Gaussian

@ in general the errors are
NOT Gaussian

@ but the fit obtained by
assuming they are is often
not far wrong. . .

@ how far is too far?
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Gaussian errors and y? minimalization (Press et al.)

@ measurements y; with associated Gaussian errors o
@ i.e. each drawn from a Gaussian around model value y,
@ probability for one measurement y;, in an interval Ay, is

—(¥yi=ym)?
PiAy = e " Ay
2no;
The overall probability of a series is:
N 2
1 1 (Vi = Ym) N
P(Ay)N = [ |(PAY) = ——5——exp|-= A
( y) ’l:[( I y) (271_),\[/2 H,‘U_i pl: 2 pa O','Z y

The highest probability P is that for which

N N 2
Yi = Ym)
=) xb=), ( —7

i=1 i=1 !
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Gaussian errors and y? minimalization

the observed y? xy>-distribution
@ N measurements y; at @ Simulate a measurement by
measurement points x; randomly choosing a set of v
@ each y; is drawn from a values y; at x;
Gaussian @ this is called a realization
@ i.e.each yi = (yi— ym)/oiis @ compute for many
a draw from the normal realizations the y2, to obtain
distribution the y2-distribution for v
@ square all y;’s and add: @ for a Gaussian, this can be
x2= 3N A2 done semianalytically
In a fit with N measurements and ® v=N-Mis called ‘degrees
M fit parameters we have of freedom’ or d.o.f. )
v = N — M independent draws
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Gaussian errors and y? minimalization

Semi-analytic

@ consider the incomplete
Gamma function:

1 OO0
Q(a,x) = —f t2 e tdt
X

M(a)

e the fraction of y2 > x2 is
given by Q with
a=0.5(N-M)and
x = 0.5x2

@ the probability of obtaining a
x? as observed or bigger is
given hereby
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Rule of thumb
@ if v=N - Mis large, then we
expect roughly
@ x2 = N-M;x? =1

@ with a spread /2(N — M)

if ¥® high, Q very small
@ the model is wrong
@ o under-estimated
@ errors not Gaussian
or a combination of these. ..

hence: tolerance of ‘low’ Q,
e.g. 0.05 or 0.01
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Gaussian errors and y? minimalization

Effect of non-reporting
@ aperson has guessed a 6
digit number correctly
@ the probability is 1 in 108
@ so that person is special!
@ unless she/he is one of a

million persons who
guessed. ..

If only significant results are
published, the significance of
published results will be
over-estimated

A good fit
consists of three parts
@ the best value parameters

@ the uncertainties on these
parameters

and d.o.f. or Q)

@ the probability that the model
describes the data (either y?
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See what is wrong, without knowing details. ..

Number of days/yr Number of systems vs. My
o M. Gieles et al.: The luminosity function of young star clusters
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x? minimalization with linear dependence on model

parameter: example weighted average

model y,, = a. Minimize y? with respect to a:

N : 2 N Z I
0 -a j—a 1
— (yi . ) —0> Yi 2 0= a— i= 0':
ali= i i i Siint a2
a is a function of the variables y1, y», .. .. If the measurements y; are not

correlated, we find the variance for a from

2 v o2 Y 1
o :;l ay' Z[ Z;’:'1(1/0k2)”22,'-v1(1/m2)

In general: if y, is a linear function of model parameters ax (k = 1, M) the
summations can be done without knowing ax, and the solution is found
directly
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Gaussian errors and y? minimalization

linear: straight line Nonlinear example: sine
Ym(Xi, @, b) = a + bx; Ym = sin(ax) Minimize y?:
minimize y2: n® _
N 2 o)
0 %isq[(vi—a-bx)/oi]
da 5 Z [yi — sin(ax;)]x; cos(ax;)
- oi?
yi — a — bx; =
= Z —0’_2 =0= One cannot do the sums without
=1 a value for a. Hence the solution
X; must be found iteratively

again: sums can be done without
knowing a, b: direct solution

Frank Verbunt (Astronomical Institute Utrecht) Fitting data March 17, 2009 16/26



¥? minimalization with Levenberg-Marquardt

one dimension
far from minimum use

Close to minimum approximate
x*(a)
dx?/0a = 2q(a — amin)

Py ?1da® = 2q

?/da
32y2/0a?

=p+qw—&mf

= a— amin =

/4 thus Bk = Aakkdak or Bk = Z;\i1 ak0a

more dimensions y,(x, &)
Xz(a)zp—a.ﬂ%aﬁ-a

_22 lvi = Ym] a}/m = _28k

o2

1 0y?
2 aakaa,

=an =
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¥? minimalization with Levenberg-Marquardt

matrix equation Problems
M @ requires reasonably close
Bk = aKoa first estimate
I=1 @ may converge to local
with minimum: try different
N starting solutions
an = Z iz [%%] @ when number of parameters
— oi* | 92k da big: matrix very large

iterate computation of da; until
minimum of y? is reached. If a;
not correlated, then

First derivative
@ when not analytic

. @ then compute numerically
oy =08-d- 08 = apdax’® ) (with small step in a;)
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Poisson errors and maximume-likelihood (Cash)

Example: a rosat image frame, with 0, 1, 2

counts per pixel

smoothed + optical
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clearly, Gaussian statistics don’t apf)ly. what to do?
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Poisson errors and maximum-likelihood

n; photons when m; expected

B min,- e—m,-
n;!

Pi

Maximize overall probability
D.np; =
i

Zn,-lnm,-—Zm,-—Zlnn,-!
i i i

or equivalently minimize

InL E—Z(Znilnmi—
i

InL’ =

Comparing models
@ models A and B

@ number of fitted parameters
Na, N

@ likelihoods InL4, InLpg
AL = InLA —InLB

is 2 distribution with ns — ng
d.o.f. (for a sufficient number of
photons)

@ probability of best solution
from simulations
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General fitting methods: amoebe

When? Amoebe in 2-d

@ when number of parameters
of x? too big

@ when errors not Gaussian

az

General
@ do not use derivative: easier
to programme, esp. for
complicated derivative

@ find worst poi}wt and move it

@ repeat (also with other
@ errors must be computed ! S
points) until minimum

explicitly by changing reached
parameter of best solutions ‘

v

@ no fast convergence
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General fitting methods: genetic algorithm

x? or L varies erratically

f(x,y) =
[16x(1 — x)y(1 — y) sin(nzx) sin(nry)]?

@ varies smoothly for n = 1 (top)
@ varies wildly for n = 9 (bottom)
@ Levenberg-Marquardt fails miserably. . .

@ surprisingly, amoebe works well

Charbonneau )
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General fitting methods: genetic algorithm

PR(P1)  x=0.14429628 y=0.72317247
Encoding: Ph(P2)  x=0.71281369 y=0.83459991
4 4
71281369 83459991
_— —
Gn(P2) 7128136983459991
Breeding: Gn(P1) 1442962872317247
Gn(P2) 7128136983459991
(a) Crossover (gene=4):
144 |2962B7Z317247
712
144
712 [Z96EB72317247
Gn(01) 1448136983459991
Gn(02) 7122962872317247
(b) Mutation (Offspring=02, gene=10):
Gn(02) 7122962872317247
7122962687[2]317247
7122962687[8] 317247
Gn(02) 7122962878317247
Decoding: Gn(02) 7122962678317247
e ———
71229628 78317247
i .
Ph(02)  x=0.71229628 y=0.78317247
Ph(01)  x=0.14481369 y=0.83459991

[01]
[02]

f03]
[04]

[08]
[o6]

[07]

[08]
[09]
[10]
[11]
(12]

[13]
[14]
[15]
[186]

[17]
[18]

[19]
[20]
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@ two parameters: X,y

paste digits together to
make ‘animal’

make generation of
e.g. 100 animals

compute goodness of
fit 2 or L for each
animal

assign breeding
probability according
to goodness of fit

breed with changeover
and mutation
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General fitting methods: genetic algorithm

(A) Initial random population (B) 10" generation Propertles
Max=0.898931 -

1Ol Yax<b.437661 -

@ fitness (i.e. breeding
probability) on ranking
(e.g. rank n has
probability oc 1/n)

@ elitism: keep best

08/* B @@‘@@0
‘6o

(C) 20" generation (D) 40" generation SOIUtlon(S)
10 ax=0.9164%2 - Max~0.978322 . tati t tt
Wl 000OO0®O0 o mualon I’?.enO. 09
@0 é@:@» high, esp. in beginning
0.6 L
~ e .C@O@ @- @ final convergence slow
0.4 ©00 -
@ elcIlof) © ©0 @ fun variant: bad sheep
2 0PO0@O®O O0PO@O®Oo <
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Some remarks on binning

One should not bin too much
Rue-of-thumb: 3 bins per FWHM resolution of instrument

Gaussian

N /N = M2
X = Z (;) @ the Fourier transform is also
£ g .
i=1 Gaussian
with oj = +/N;. Split each binin p @ small bins are high spatial
bins: N/ = Ni/p, M; = Mp, frequencies
o-lf = +/Ni/p = oi/ \/p hence @ but with small number of
) photons we have no info on
X2 =xXIp high spatial variability
with smaller y? and larger N, the ° =FT components at high
: . . ; frequencies are spurious
quality of fit Q will be bigger. = by ;
. , (noise)
oversampling an unacceptable fit )
may be made acceptable
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Fitting data: an introduction

Frank Verbunt
MSSL meeting on high-resolution X-ray spectroscopy
17 March 2009

Conclusion

Statistics is not all that difficult
Combine some basic knowledge with common sense

More explanation and references in Lecture Notes:
Www.astro.uu.nl/ verbunt/onderwijs/observe/lnotes.pdf
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