X-ray spectroscopy of low-mass X-ray binaries

Laurence Boirin

Observatoire astronomique de Strasbourg

(Handout version)

Artistic impression of a low-mass X-ray binary

An X-ray binary spectrum (from the past)

ASCA, Asai et al. 2000

- continuum emission (bb+powerlaw)
- modified by absorption from elements in the ISM and possibly in the system

Often, an emission line near 6.4 keV

ASCA, Asai et al. 2000

- Fe K fluorescence
- radiative stabilization following inner-shell photoionization by hard X-ray continuum in a relatively cool and dense medium
- "X-ray reflection"
- often broad
- » Compton scattering, range of ionization states

Often, an emission line near 6.4 keV

ASCA, Miller et al. 2005

- broad and asymmetric (red wing) in some BH binaries
- » relativistically broadened disk-line

What's new in Chandra, XMM and Suzaku spectra?

- imprints from the ISM detected in great detail
 - absorption lines from the hot component of the ISM
 - X-ray absorption fine structures

X-ray aborption fine structures

Ueda et al. 2005

- HEG and MEG spectra from a bright X-ray binary showing narrow and broad absorption peaks in the Si K band
- accounted for by X-ray absorption fine structures due to Si in the form of silicates (thick line model)
- rather than a simple absorption edge due to atomic Si (dashed line)
- » Constrain the composition of the ISM

What's new in Chandra, XMM and Suzaku spectra?

- imprints from the ISM detected in great detail
 - absorption lines from the hot component of the ISM
 - X-ray absorption fine structures
- broad Fe emission lines still common
- relativistic red wings now reported in NS binaries

Relativistic Fe emission lines in NS binaries

- Suzaku spectral residuals showing asymmetric Fe emission lines fit with a relativistic disk-line model
- » inner radius of the accretion disk and upper-limits on the NS radius

Cackett et al. 2008

What's new in Chandra, XMM and Suzaku spectra?

- imprints from the ISM detected in great detail
 - absorption lines from the hot component of the ISM
 - X-ray absorption fine structures
- broad Fe emission lines still common
- relativistic red wings now reported in NS binaries
- gravitationaly redshifted absorption lines during bursts from EXO 0748-676, attributed to the NS photosphere
- narrow lines from ionized material located in the X-ray binary

Absorption lines in an XMM pn spectrum

Boirin et al. 2004

Absorption lines in a Suzaku XIS spectrum

4U 1630-47, Kubota et al. 2007

Absorption lines in a Chandra HEG spectrum

GRS 1915+105, Ueda et al. 2009

Emission lines in a Chandra MEG spectrum

Her X-1, Jimenez-Garate et al. 2005

Similar detections in about 25 LMXBs

[1] Kubota et al 2007 [2] Di Salvo et al 2005 [3] D'Aí et al 2006 [4] Miller et al 2006b [5] Blum et al 2008 [6] Schulz et al 2001 [7] Krauss et al 2007 [8] Boirin et al 2004 [9] Juett and Chakrabarty 2006 [10] Iaria et al 2006 [11] Díaz Trigo et al 2006 [12] Hakala et al 2005 [13] Paizis et al 2005 [14] Church et al 2005 [15] Boirin et al 2005 [16] Cottam et al 2001a [17] Bonnet-Bidaud et al 2001 [18] Homan et al 2003 [19] Jimenez-Garate et al 2003 [20] van Peet et al 2009 [21] Boirin and Parmar 2003 [22] Iaria et al 2007a [23] Cottam et al 2001b [24] Sidoli et al 2001 [25] Miller et al 2004 [26] Lavagetto et al 2008 [27] Hyodo et al 2008 [28] Parmar et al 2002 [29] Iaria et al 2007b [30] Jimenez-Garate et al 2002 [31] Jimenez-Garate et al 2005 [32] Zane et al 2004 [33] Ueda et al 1998 [34] Yamaoka et al 2001 [35] Bałucińska-Church and Church 2000 [36] Miller et al 2006a [37] Netzer 2006 [38] Miller et al 2008 [39] Díaz Trigo et al 2007 [40] Sala et al 2007 [41] Takahashi et al 2008 [42] Kallman et al 2003 [43] Schulz et al 2009 [44] Brandt and Schulz 2000 [45] Schulz and Brandt 2002 [46] Iaria et al 2001a [47] Iaria et al 2001b [48] D'Aí et al 2007 [49] Schulz et al 2008 [50] Schulz et al 2008 [51] Ueda et al 2001 [52] Sidoli et al 2002 [53] Ueda et al 2004 [54] Kotani et al 2000 [55] Lee et al 2002 [56] Martocchia et al 2006 [57] Ueda et al 2009 [58] Tiengo et al 2005 [59] Paul et al 2005

• more frequently in absorption: warm absorbers

Identification

- lines associated with electronic transitions (mostly 1s–2p Lyα) in H-like and He-like ions
- Indicate the presence of a highly-ionized plasma in the system

Ion	-like	Term	Energy (keV)	Wavelength (Å)		
O VII	He	$^{1}P_{1}$	0.57395	21.602		
O VIII	H	${}^{2}P_{1/2}$	0.65349	18.972		
		$^{2}P_{3/2}$	0.65368	18.967		
Ne IX	He	$^{1}P_{1}$	0.92201	13.447		
Ne X	H	$^{2}P_{1/2}$	1.0215	12.137		
		2P3/2	1.0220	12.132		
Mg XI	He	$^{1}P_{1}$	1.3522	9.1688		
Mg XII	H	${}^{2}P_{1/2}$	1.4717	8.4246		
		2P3/2	1.4726	8.4192		
Al XII	He	$^{1}P_{1}$	1.5983	7.7573		
Al XIII	H	$^{2}P_{1/2}$	1.7277	7.1763		
		${}^{2}P_{3/2}$	1.7290	7.1709		
Si XIII	He	¹ P ₁	1.8650	6.6480		
Si XIV	H	${}^{2}P_{1/2}$	2.0043	6.1858		
		2P3/2	2.0061	6.1804		
SXV	He	$^{1}P_{1}$	2.4606	5.0387		
S XVI	H	${}^{2}P_{1/2}$	2.6197	4.7328		
		2P3/2	2.6227	4.7274		
Ar XVII	He	$^{1}P_{1}$	3.1398	3.9488		
Ar XVIII	H	${}^{2}P_{1/2}$	3.3182	3.7365		
		$^{2}P_{3/2}$	3.3230	3.7311		
Ca XIX	He	$^{1}P_{1}$	3.9023	3.1772		
Ca XX	H	$^{2}P_{1/2}$	4.1001	3.0239		
		P3/2	4.1075	3.0185		
Fe XXV	He	1P1	6.7004	1.8504		
Fe XXVI	H	$^{2}P_{1/2}$	6.9517	1.7835		
		2P3/2	6.9732	1.7780		
Ni XXVII	He	$^{1}P_{1}$	7.8051	1.5885		
Ni XXVIII	H	$^{2}P_{1/2}$	8.0729	1.5358		
		$^{2}P_{3/2}$	8.1014	1.5304		

H-like

- resonance line in absorption or emission
- (The 2 components of the resonance line are unresolved.)

He-like

- in absorption: the resonance line
- in emission:
 - the "triplet"
 - resonance
 - intercombination
 - forbidden
 - line ratios depend on the physical conditions of the plasma
 - collisional or photo-ionization
 - density
 - temperature

see e.g. Porquet & Dubau 2000

Ionization mechanism in LMXBs?

Ne IX triplet in 2A 1822-371, Cottam et al. 2001

- detected He-like triplets tend to show:
 - a bright intercombination line
 - a weak resonance line
 - no forbidden line
- indicative of a recombining (photoionized) plasma

Radiative recombination continua (RRC)

- a feature characteristic of photoionized plasmas
- its width is a direct measurement of the plasma temperature
- detected from 3 LMXBs
- » $kT \lesssim 20 \text{ eV}$
- » Photoionization is the dominant ionization mechanism

Other supports for photoionization

Suzaku spectra of 4U1630-47 during an outburst decay

Kubota et al. 2007

- presence of a strong ionizing source (the X-ray continuum!)
- evidence for a decrease of the ionization state associated with a decrease of the X-ray luminosity
- See however the talk by E. Costantini: collisionally ionized plasma in EXO 0748-676
- Hybrid plasmas

LMXBs with spectral signatures of a warm absorber/emitter

Source	P _{orb}	Properties	Dips, Eclipses	i (°)	Emission		Absorption
		as in Liu et al. 2007	Acc. Disk Corona		lines	RRC	lines
• 4U 1630-47		T, R	D				\checkmark
o 4U 1705-44	1–10 h ^a	B, A, R	Ь	55–84 ^c	$\lesssim 3\sigma$		
o 4U 1728-34		B, A, R		\sim 50			(edges)
• H1743-322		T, M, R	D^d				\checkmark
o 4U 1626-67	0.69 h	Р		≤ 33	\checkmark		
o 4U 1916-05	0.83 h	B, A	D	60-79			\checkmark
o 1E 1603.6+2600	1.85 h	В	ADC		\checkmark		
o IGR J00291+5934	2.45 h	T, msP, R			\lesssim 3 σ		
o 4U 1323-62	2.9 h	В	D				\checkmark
o EXO 0748-676	3.82 h	T, B	D, E	75–82	\checkmark	\checkmark	\checkmark
o 4U 1254-69	3.93 h	В	D	68-73			\checkmark
o 4U 1746-37	5.16 h	G, B, A	D				\lesssim 3 σ
o 2A 1822-371	5.57 h	Р	E (ADC)	81-84	\checkmark	\checkmark	
o MXB 1659-298	7.11 h	T, B	D, E				\checkmark
• XTE J1650-500	7.63 h	T, R		>50±3			\checkmark
o LMC X-2	8.16 h	Z			\checkmark		
o AX J1745.6-2901	8.4 h	T, B	D ^e				\checkmark
o 4U 1624-49	20.89 h		D				\checkmark
∘ Her X-1	1.70 d	Р	D, E		\checkmark	\checkmark	
• GX 339-4	1.76 d ^f	T, M, R		15 ^f			\checkmark
• GRO J1655-40	2.62 d	T, M, R	D	70.2			\checkmark
o 2S 0921-630	9.01 d		D, E (ADC)		\checkmark		
∘ Cyg X-2	9.84 d	B, Z, R	D^g		\checkmark		
∘ Cir X-1	16.6 d	T, B, A(Z), M, R	D		\checkmark		\checkmark
o GX 13+1	24.06 d	B, A(Z), R					\checkmark
• GRS 1915+105	33.5 d	T, M, R	D	66			\checkmark

X-ray orbital variability as a function of inclination

Dips, eclipes, ADC » sources viewed (relatively) edge-on

Where is the ionized plasma located?

Jimenez-Garate et al. 2002

- in a flat geometry above the disk
- Distance from the ionizing source estimated from the ionization parameter, consistent with being ≤ the disk size.
- Other properties of the plasma
 - $\log \xi \sim 3-4$
 - two values of $\log \xi$ required in some cases
 - range of ionization?
 - indications for the more ionized species being closer to the compact object
 - vertical stratification also proposed Jimenez-Garate et al. 2002

Phase dependence in an ADC source

2A 1822-371, Cottam et al. 2001

Recombining emitting region: the irradiated side of the bulge

Phase dependence in dippers

- the properties of the warm absorber do not change as a function of phase during persistent emission
- but do during dipping
 - ionization stage decreases
 - column density increases

Spectral changes during dips (lines and continuum)

Boirin et al. 2005, Diaz Trigo et al. 2006.

Spectral changes during dips (lines and continuum)

Boirin et al. 2005, Diaz Trigo et al. 2006.

Spectral changes during dips (lines and continuum)

can be explained by

- the changes in the properties of the warm absorber
- combined with an increase of the column density of a neutral absorber

Boirin et al. 2005, Diaz Trigo et al. 2006.

Winds

- the absorption lines appear:
- not shifted (or not in a systematic way) in some cases (e.g. 4U 1916-05)
- blue-shifted by \sim 400 km s⁻¹ in some BH binaries and, e.g., the NS binary GX 13+1 indicating that the ionized material is outflowing
- mass outflow rate ≤ mass accretion rate
- This component certainly plays an important role in the overall properties of the system and in its evolution.

Disk wind models

Proga et al. 2000

Simulated IXO spectrum

Summary

- A highly ionized atmosphere or wind is present above the accretion disk in LMXBs.
- It is detected as a warm emitter and/or absorber in many LMXBs seen relatively close to edge-on.
- Photoionization is the dominant ionization mechanism.
- The bulge where the accretion stream impacts the disk is seen as a less strongly ionized absorber in dippers.
- Its irradiated surface is seen as a recombining emitting region in the ADC source 2A 1822-371.

Warnings

- An ionized absorber with $\log \xi \sim 4$ mainly produces absorption lines at 6.7–7 keV
- An ionized absorber with $\log \xi \sim 3$ also produces many lines and edges near 1 keV, that may appear as a broad depression (or a broad excess elsewhere) in low-resolution or low-statistics spectra.
- Ionized absorption should be properly accounted for to correctly model the continuum emission, any broad Fe emission line and any soft excess in LMXBs.