Swift Observations of the 2006 Outburst of the Recurrent Nova RS Ophiuchi

M.F. Bode
Astrophysics Research Institute, Liverpool JMU

Central system – high mass WD (1.2-1.4 M_\odot?) + Red Giant (M2III); $p = 455$ d

Outbursts due to TNR on WD surface (cf. Classical Novae)

Prior to 1985, spectroscopic evidence for red giant wind, systematic reduction in velocities post-outburst, and emergence of coronal lines, led to suggestion of ejecta ($v_0 \sim 4000$ km s$^{-1}$) interaction with RG wind ($u = 20$ km s$^{-1}$).
1985 Outburst

- Observed for first time in radio (from $t = 18d$) and X-rays (EXOSAT, from $t = 55d$).
- Bright and rapidly evolving source (Mason et al. 1987)

![Graph showing count rate over time](image)
1985 Outburst

- Observed for first time in radio (from $t = 18d$) and X-rays (EXOSAT, from $t = 55d$). Bright and rapidly evolving source (Mason et al. 1987)
- $d = 1.6 \pm 0.3$ kpc, $N_H = 2.4 \pm 0.6 \times 10^{21}$ cm$^{-2}$
- $M_{ej} = 1.1 \times 10^{-6}$ M$_\odot$, $\dot{M}_{W} = 2 \times 10^{-7}$ M$_\odot$ yr$^{-1}$
- $E = 1.1 \times 10^{43}$ erg
Phases of Remnant Evolution

- **Phase I:** Ejecta still important in supplying energy to shocked wind (+ reverse shock into ejecta)
- **Phase II:** Blast wave driven into wind ($\rho \propto r^{-2}$), not well cooled and effectively adiabatic (*Primakoff Solution*):
 \[r_s \propto t^{2/3} ; \; v_s \propto t^{-1/3} \]
- **Phase III:** Forward shock well-cooled and momentum-conserving (*“Snow Plough”*):
 \[r_s \propto t^{1/2} ; \; v_s \propto t^{-1/2} \]
 (also, for strong shocks, $T_s \propto v_s^2$)

- Bode & Kahn (1985) concluded that in the 1985 outburst, Phase I finished by $t = 6d$ and remnant in transition Phase II-Phase III at $t = 55d$ (first EXOSAT observation)
2006 Outburst

- Discovered Feb 12.83 UT ($t = 0$)
- Very similar optical behaviour to previous outbursts

Within 2 days, ToO’s granted on Swift, XMM, Chandra, RXTE, MERLIN, VLA, VLBA, EVN, LT, UKIRT, plus GMRT, Ryle, Spitzer a few days later, + HST next week
Swift XRT Observations: First 26 days

day
3.17
5.03
8.18
10.99
13.60
15.61
18.17
25.99
Detection with BAT at Outburst

- 14–25 keV
- 25–50 keV

Time in days relative to $t_0 = 2006$ Feb 12.83
UVOT Grism Spectra

First time U-grism deployed “in anger”

Simultaneous with XRT

Still undergoing calibration

Much slower evolution
Comparison with Models

Spectra fitted with single temperature *mekal* model. v_s from kT; interstellar N_H fixed and overlying wind N_H free param. (expect $[N_H]_W \propto r_s^{-1}$ at these times - Bode et al. 2006, ApJ in press)

Appears to settle into stable pattern after \sim6 days (cf. end Phase I) but rapidly evolves to what looks more like Phase III behaviour.
First VLBA image – Day 13.8

Res’n ~ 3 mas

Peak T_b 5×10^7K

Significant contribution from non-thermal synchrotron emission i.e. particles accelerated in shock wave.
First VLBA image – Day 13.8

Res’n ~ 3 mas

Peak T_b 5×10^7K

Significant contribution from non-thermal synchrotron emission i.e. particles accelerated in shock wave.
(O’Brien et al., 2006, Nature, in press)
Day 29: Emergence of a New Component!

The brightest Super-Soft Source Observed To-date
ROSAT Observations of V1974 Cyg

- Most extensive previous observations of nova SSS
- Unveiling of ongoing nuclear burning ($L \sim L_{\text{Edd}}$)
- Turn-off at $t \geq 511$ days (highly dependent on M_{WD})
- Decline due to shrinkage back of extended atmosphere onto WD once nuclear burning ceases

(Krautter et al. 1996, Balman et al. 1998)
SSS Phase in RS Ophiuchi

- Starts at $t \approx 26$ days
- Initially highly variable
- “Plateau” phase, $t = 45 \sim 58$ days
- Linear decline to $t \sim 90$ days when SSS phase ends
- Very much compressed version of V1974 Cyg
 (and other CN) evolution?

Osborne et al. (2006) in prep
Short Period Oscillation and Derived Parameters

- Duration of modulation and short period consistent with ε (nuclear burning) instability on WD?
- $M_{WD} \sim 1.4 \, M_\odot$ from duration of SSS phase and P
- Mass burnt \sim few % of M_{acc}
- $L_{\text{acc}} \sim 10^{36} \, \text{ergs s}^{-1}$ predicted between outbursts

$P \sim 36\,\text{s}$ modulation apparent during SSS phase prior to linear decline
Conclusions

- *Swift* (and other) observations are consistent with the basic shock model for $t < 1$ month, and this has potential applications to SNR.
- The radio source evolves to become bipolar – either the explosion is jet-like or is confined by an equatorially-enhanced red giant wind.
- The emergence of the SSS phase gives us a unique insight into nuclear burning on the WD.
- No conclusive evidence as yet of shock break out from the RG wind.
- The UVOT data will provide a unique dataset of UV-optical spectroscopy throughout the outburst.
- *Swift* will continue to monitor the source to investigate the late phases of remnant evolution and the re-establishment of both accretion and the RG wind.