

 Date : 30/04/2014

Issue : 1 Rev : 0
Page : 1 of 44

QB50

FP7-284427

WP250: Satellite Control
Software

Recommendation for
Flight Software
implementation

Issue 1 – version 0

Prepared by:

Louis Masson

Checked by:

Stéphane Billeter

Yann Voumard

Florian George

Approved by:

Muriel Richard

Swiss Space Center EPFL

Lausanne

Switzerland

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 2 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

RECORD OF REVISIONS

ISS/REV Date Modifications Created/modified by

0/0 23rd January 2014 First issue L. Masson

0/1 3rd February 2014 Added service handling descriptions,
flowcharts, and details to the
generation and decoding of CCSDS
packets.

L. Masson

0/2 27th March 2014 Modification of the document to
propose an on-board implementation
the ECSS standard tailored to QB50
rather than SwissCube.

L. Masson

1/0 30th April 2014 Various updates taking into account
requests for clarifications. Added
Florian George as a contributor.

L. Masson

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 3 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

RECORD OF REVISIONS ... 2

TERMS AND ABBREVIATIONS ... 4

INTRODUCTION .. 5

1 TOP-LEVEL SOFTWARE DESCRIPTION ... 6

1.1 DEFINITION HEADERS ... 6
1.2 LIBRARIES .. 7
1.3 EPS SOURCE CODE.. 8

2 FUNCTIONAL OVERVIEW .. 9

2.1 MAIN LOOP ... 9
2.2 SOFTWARE INTERRUPTIONS .. 10

3 TM/TC HANDLING .. 12

3.1 TM/TC STRUCTURE DEFINITIONS ... 12
3.2 TELEMETRY SOURCE PACKET GENERATION .. 15
3.3 TELECOMMAND RETRIEVAL AND INTERPRETATION .. 16
3.4 SERVICE HANDLING .. 18

3.4.1 Service type 1 : Telecommand verification service .. 19
3.4.2 Service type 3 : Housekeeping & diagnostic data reporting service .. 19
3.4.3 Service type 8 : Function management service .. 20
3.4.4 Service type 11 : On-board operations scheduling service .. 22
3.4.5 Service type 15 : On-board storage and retrieval service .. 22
3.4.6 Service type 128 : SwissCube payload service (Example) ... 23

CONCLUSION .. 25

APPENDIX A DOWNLINKMINMAX() – EPS.C .. 26

APPENDIX B GENERATEHOUSEKEEPING() – EPS.C ... 27

APPENDIX C GENERATESENDHKPACKET() – EPS.C ... 30

APPENDIX D CCSDS_GENERATETELEMETRYPACKET() – CCSDS.C 32

APPENDIX E CCSDS_GENERATETELEMETRYPACKETWITHTIME() – CCSDS.C 33

APPENDIX F RETRIEVETELECOMMAND() – EPS.C .. 36

APPENDIX G DECODECCSDSTELECOMMAND() – EPS.C .. 38

APPENDIX H DECODESERVICE8() – EPS.C .. 39

APPENDIX I SENDTELECOMMANDREPORT_SUCCESS() – EPS.C ... 41

APPENDIX J SENDTELECOMMANDREPORT_FAILURE() – EPS.C ... 43

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 4 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

TERMS AND ABBREVIATIONS

Ack Acknowledgement

ADCS Attitude Determination and Control Subsystem

ADS Antenna Deployment Subsystem

APID Application Process ID

CCSDS Consultative Committee for Space Data Systems

CDMS Command and Data Management Subsystem

COM Communication [subsystem]

CRC Cyclic Redundancy Code

CUC CCSDS Unsegmented Code

ECSS-PUS European Cooperation on Space Standardization – Packet Utilisation Services

EPS Electrical Power Subsystem

GS Ground Station

GS Manager Ground Station Manager

HK House-Keeping

MCU MicroController Unit

PL PayLoad [subsystem]

SID Structure Identification

TC Telecommand

TM Telemetry

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 5 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

INTRODUCTION

SwissCube was a successful satellite project in that it was capable of assuming its technical
functionalities and was capable of successfully interacting with the GS by receiving telecommands
from the ground and replying with the appropriate telemetry. SwissCube has been operational for
more than 4 years, and has still not been subject to a software related fault. To this day, it is still
possible to interact with the flight software on board of SwissCube. This goes to show that the
software that has been developed for SwissCube is a good example of how to implement some of the
services defined in the ECSS-E-70-41A standard, as well as a good starting point for the development
of the flight software of a new CubeSat.

The flight software of SwissCube was written to run on the MSP430 family of microcontrollers by
Texas Instruments, and more specifically on the MSP430F1611. All of the subsystems are using this
MCU, thus it is easy to share code for all of the subsystems. The CDMS was initially intended to
handle commands sent from the GS as well as take care of the housekeeping for the whole satellite.
However, due to complications, this subsystem was left offline on-board the flight model of
SwissCube and couldn’t exercise its role. This specific role was taken on by the EPS subsystem, in
addition to its other responsibilities.

The goal of this document is to explain how the ECSS standard should be implemented on a
CubeSat, by using the flight software of SwissCube as an example. The flight software of SwissCube
was initially intended to support service types 1, 3, 4, 8 and 15 on top of the custom service 128. This
document will exclusively describe the software of the EPS of SwissCube. The reason for this is
because all of the top-level behavioural decisions are undertaken by this subsystem exclusively,
including CCSDS packet decoding and generation, since the CDMS is unused in the final design of
SwissCube. From this point on, we may consider the other subsystems (i.e. COM, ADCS, PL and
ADS) as “black boxes” that respond to basic commands sent from the EPS through the I2C bus.

Please note that it is advised to have read the ECSS-E-70-41A standard document before proceeding
with this document, as a basic knowledge of the ECSS-PUS is required to understand some of the
concepts explained. Furthermore, this document is only an overview of the flight software of
SwissCube, thus details will be left out for the sake of readability and simplicity.

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 6 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

1 TOP-LEVEL SOFTWARE DESCRIPTION

This chapter covers the main characteristics of SwissCube’s EPS flight software. The following
sections will offer a basic overview of the source files and their roles within the project.

Please note that all of the source code for all of the subsystems is in the same folder. The root of
SwissCube’s flight software folder contains all of the source and header files that are common
amongst all of the subsystems of the satellite, and that the source and header files containing the main
loop and the main functionalities of each subsystem are saved in folders on the root named after the
concerned subsystem (e.g. /eps or /adcs).

1.1 Definition headers

The following files simply contain macro and constant definitions that are used throughout the whole
flight software, and withhold no function prototypes. These header files are common to the flight
software of all of the subsystems (i.e. they can be included in any of the subsystems’ source code), so
the same definitions and macros are used throughout the whole flight software of SwissCube.

These files will not be analysed in detail in the following chapters, but they should be consulted by the
reader for a better understanding of the main source code of the EPS flight software.

apids.h
Defines the APIDs (Application Process ID) used in the ECSS-PUS defined
telecommand and telemetry packets for the SwissCube mission. Each subsystem is
attributed one APID.

errors.h
Defines all the possible error codes that functions, or telecommands, may
encounter during their execution.

functions.h
Defines the service type 8 function IDs for each of the subsystems of SwissCube.
These IDs are used in order to identify functions with telecommand and telemetry
packets.

hk.h

Defines the housekeeping database structure types and their characteristics (e.g.
size), as well as some miscellaneous macros and structures to allow easy
manipulation of these databases from any point of the flight software. Each
subsystem has their own database, and the EPS has access to one additional
database : the statistics database containing the minimum and maximal values
since last statistics reset of several housekeeping parameters.

modes.h
Defines the different modes of the satellite. On the flight model of SwissCube,
only two modes are defined : a nominal mode and a safe mode.

sids.h

Defines the SIDs (Structure IDs) that are used by the service type 3 functionalities
(i.e. housekeeping parameter reports). Each SID identifies the contents of a given
housekeeping report telemetry packet, so that it can be correctly interpreted from
the GS.

storeids.h

Defines the Store IDs (not to be confused with SID) in which packets are stored
for an indefinite amount of time before the GS sends a telecommand requesting
the downlink of the packet store contents. There are two packet storages : the
Acknowledgement storage (not used in the final version of SwissCube) and the

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 7 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Housekeeping archiving storage. This pertains to the On-board storage and
retrieval service (service type 15).

subsystems.h

Several parameters in the housekeeping database describe the status of several
subsystems on a single byte, with each subsystem being represented by a specific
bit (e.g. enable/disable status of the subsystems). This header file defines the
position, in the form of a bitmask, of each of the subsystem’s bit for easy
manipulation of these variables

types.h
Defines the custom types used throughout the software for coding convention
consistency. Also contains macros for big endian to little endian (and vice versa)
conversions and manipulations.

vc.h
Defines the IDs of the virtual channels used within AX.25 transfer frames, and are
coded on 3 bits. This allows for up to eight virtual channels to run on a particular
physical data channel.

Table 1: Definition headers of the general SwissCube flight software

1.2 Libraries

The following header and source files are functional libraries that allow the flight software to drive
several hardware components, or manipulate abstracts concepts (such as CCSDS TM/TC packets,
databases, checksums, etc.). As in the case of the previously presented header files, these libraries are
common to all of the subsystems’ flight software.

In the following chapters of this document, only the CCSDS library (ccsds.c and ccsds.h) will be
looked into, as the main focus of this document is to explain the inner workings of the TM/TC and
data management of SwissCube.

adc12_s3.c This library holds the functions that allow the flight software to manipulate the
MSP430F1611’s 12-bit A/D converter channels, such as initialisation functions or
conversion functions. adc12_s3.h

ccsds.c The actual CCSDS packet handling is done by this library. It contains the type
definitions for telemetry and telecommand structures, macros for packet
manipulations, as well as functions for generating telemetry source packets. ccsds.h

crc.c Cyclic redundancy checks (CRC) are used in order to ensure that the various
communication packets flowing through the satellite aren’t corrupted during their
transmission. This library offers functions for initialising the CRC polynomial look-
up table as well as functions for generating a CRC code from a given buffer. crc.h

i2c.c
The internal communication of the satellite is done through the I2C bus. The master
(EPS) is able to communicate with and coordinate the other subsystems of
SwissCube through this bus. This library handles the low level functions necessary to
initialise and drive the I2C transceiver of the MSP430F1611 (common to all
subsystems).

i2c.h

time.c This library handles the on-board clock of each subsystem, and offers basic function
for initialising the MSP430F1611’s timers, and for getting the current time.

time.h

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 8 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

watchdog.c
This library contains functionalities for handling the MSP430F1611’s watchdog timer.
Its most important feature is a function for determining whether or not the watchdog
timer has been triggered (used during the start up of a subsystem in order to know if
it has been shut down due to a critical error), as well as macros for resetting the
watchdog timer.

watchdog.h

Table 2: Functionality libraries of the general SwissCube flight software

1.3 EPS source code

These last files are exclusive to the EPS, and contain the core source code of this subsystem. The
main() function, taking care of all the initialisations and in which the main software loop takes place is
contained in the eps.c source file.

Please note that the software that will be analysed in the following chapters of this document will
pertain mostly to these source files.

eps_beacon.c This source file handles the generation of the beacon signal, and includes the eps.h
header file. It’s the part of the EPS’ flight software pertaining exclusively to the
beacon.

eps_payload.c This source file handles the control of the PL subsystem from the EPS, and contains
the main function for payload image service handling to be called periodically in the
program’s mainloop. Same as eps_beacon.c, it includes the eps.h header file.

eps.c This library is the main source code for the EPS subsystem. The main loop of the
EPS is executed within the eps.c source file, and it effectively constitutes the central
decision making process of the satellite. Service types 3, 8 and 15 are handled here. eps.h

Table 3: Source code of the EPS flight software

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 9 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

2 FUNCTIONAL OVERVIEW

This chapter will go over the main details of the software’s operations. It will describe in particular the
actions taken, grouped in steps, by the software’s main loop. A look will then be cast on the software
interruptions and their roles.

2.1 Main loop

Figure 1 is a flowchart of the main() function of the EPS flight software, in which the hardware and
library initialisations are made and the main loop of the function is executed. A summary of the role
of each of these major steps can be found further.

Between each major step of the main loop, the CLRWDT_EPS macro (defined in watchdog.h) is
inserted in order to clear the watchdog timer and to avoid any system reset. It goes without saying
that if the software is stuck for any reason in one of the major steps of the main loop, the watchdog
timer will not be cleared in time and the EPS will be reset.

Measurements: handled by the makeAllMeasures() function (eps.c), this step handles the on-board
measurements of voltages, currents and temperatures with the help of the 12-bit A/D converter of
the MSP430F1611 and updates the housekeeping database of the EPS accordingly.

Scheduling: handled by the timedEvents() function (eps.c), this step handles pre-programmed
scheduled events that take place a certain time after the deployment of the satellite in orbit. These
scheduled events pertain mainly to the antenna deployment (see next step) and the initialisation of the
on-board beacon.

Antenna deployment: handled by the antennaDeployment() function (eps.c), this step starts by checking
if an antennaDeployment is under way (3 attempts of antenna deployment are pre-programmed in the
previous scheduling step). If that is the case, it will check if the length of time the antenna deployment
has been running has exceeded a pre-defined interval, in which case the antenna deployment mode is
set to inactive and the ADS subsystem is turned off.

Time diffusion: handled by the timeDiffusion() function (eps.c), this step communicates to all of the
active subsystems the current on-board time of the EPS, which is the master of the I2C bus.

Telecommand retrieval: handled by retrieveTelecommand() (eps.c), this step retrieves a telecommand
packet from the COM subsystem (if such a packet has been received), decodes it, takes the necessary
actions associated with the telecommand, and then generates a telemetry source packet to the COM
subsystem so that it can be downlinked to the GS. This step is only brought up if there is no
measurement currently taking place on-board the PL subsystem. For more details, see chapter 3.

Payload service: handled by handleImageService() (eps_payload.c), this step handles the management of
the PL subsystem by the EPS through the I2C bus.

Watchdog handler: handled by watchdog() (eps.c), this step takes care of the watchdog functionality of
the EPS. All of the subsystems are periodically polled (each time this step is brought up) by the EPS
through the I2C bus. If one of the subsystems cannot reply within a pre-defined length of time, the
EPS will power cycle this subsystem.

Beacon update: handled by Beacon_Update() (eps_beacon.c), this step takes care of the beacon signal
generation, and is only called in the case where the beacon signal needs to be updated.

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 10 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

The multiple tasks are for all intents and purposes run concurrently, in the sense that each of the tasks
in the loop aren’t time consuming and do not block the software ; the main loop keeps running
rapidly and frequently. The housekeeping measurement task, the antenna deployment task, and the
payload handling task are all asynchronous. Each call of these functions checks if the feature they are
handling needs starting, is in progress, or needs processing of completion. For example, the
housekeeping task when first called will initiate the conversions on the AD converter. The subsequent
calls will check if the data is ready by checking if the AD converter is still busy and will immediately
return if it isn’t the case. As soon as the data is ready, the task will log the new housekeeping
parameters into the housekeeping structures in the memory. The next call of the function will
reinitiate the conversions on the AD converter. Thus the tasks are run concurrently, as housekeeping
measurements can be made all the while a picture is being taken for example.

2.2 Software interruptions

In addition to the normal flow of the EPS flight software, a few interrupt routines are also used in
order to respond to exterior asynchronous events. Most of the interrupt enabled pins (P1.0 through
P1.5) are connected to the overcurrent signal lines of each subsystem’s current limitation: this will
notify the EPS of a latch-up event, and will allow it to know that the subsystem has been shutdown
(the housekeeping database is updated accordingly).

The interrupt service routine which handles all of the software interrupts is Port1_ISR(). The software
execution enters this function only when one of the pins of Port 1 detect a rising edge. Which pin has
provoked the interrupt is determined within the function, and proper action is taken in consequence.

The interrupt pins of Port 1 are configured as follows :

 Port 1 / Pin 0: Beacon current limiter

 Port 1 / Pin 1: COM current limiter

 Port 1 / Pin 2: CDMS current limiter

 Port 1 / Pin 3: PL current limiter

 Port 1 / Pin 4: ADCS current limiter

 Port 1 / Pin 5: ADS current limiter

 Port 1 / Pin 6: EPS emergency SAFE line

Additionally, an interrupt service routine triggered by a timer is used to generate the Morse message
of the satellite’s beacon.

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 11 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Figure 1: Flowchart of the main function of the EPS flight softwar

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 12 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

3 TM/TC HANDLING

This chapter will serve as an overview of the TM/TC packet handling. The first section will describe
how the telecommand and telemetry source packets are represented in memory. The following
sections will describe how TC packets are retrieved and how TM packets are generated, as well as
how the different services supported by SwissCube are handled within the EPS flight software.

3.1 TM/TC structure definitions

This first section covers how the TC and TM packets are represented within the code of SwissCube.
As a reminder, the structure of the telecommand and telemetry source packets from the ECSS
standard can be found below.

Packet Header (48 Bits) Packet Data Field (Variable)

Packet ID Packet Sequence
Control

Packet
Length

Telecommand
Data Field

Header

Application
Data

Packet
Error

Control

Version
Number

Type Data
Field

Header
Flag

APID Sequence
Flags

Sequence
Count

3 1 1 11 2 14

16 16 16 24 Variable 16

Table 4: Telecommand packet structure

CCSDS
Secondary

Header Flag

TC Packet PUS
Version Number

Ack Service Type Service Subtype

Boolean
(1 bit)

Enumerated
(3 bits)

Enumerated
(4 bits)

Enumerated
(8 bits)

Enumerated
(8 bits)

Table 5: Telecommand packet data field structure

Packet Header (48 Bits) Packet Data Field (Variable)

Packet ID Packet Sequence
Control

Packet
Length

Telemetry
Data Field

Header

Source
Data

Packet
Error

Control

Version
Number

Type Data
Field

Header
Flag

APID Grouping
Flags

Source
Sequence

Count

3 1 1 11 2 14

16 16 16 64 Variable 16

Table 6: Telemetry source packet structure

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 13 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Spare TM Source Packet
PUS Version Number

Spare Service Type Service
Subtype

Time

Fixed
BitString

(1 bit)

Enumerated
(3 bits)

Fixed
BitString
(4 bits)

Enumerated
(8 bits)

Enumerated
(8 bits)

Absolute
Time

(40 bits)

Table 7: Telemetry source packet data field structure

Structures containing the different parts of the packets are defined as types, and are used to constitute
the packets themselves which represented as structures defined as types. These definitions are held
with the ccsds.h header file. Please note that the custom types (INT8U, INT16U, etc.) are defined
with the types.h header file.

The CCSDS packet header is the same for both telemetry source packets and telecommand packets.
The structure type withholding all of the information that is contained within this packet header is
defined as follows :

CcsdsPacketHeader:

 Packet ID (INT16U)

 PacketSequenceControl (INT16U)

 PacketLength (INT16U)

The data field header of the telecommand packet is defined in figure 3. The structure type containing
the complete information of this data field header can be found below. Please note that
FlagVersionAck contains the first 3 entries of the data field header, which makes up for 8 bits :
CCSDS Secondary Header Flag (1 bit), TC PUS Version Number (3 bit), and the Acknowledgment
parameters (4 bit).

TelecommandDataFieldHeader:

 FlagVersionAck (INT8U)

 ServiceType (INT8U)

 ServiceSubtype (INT8U)

Thus the structure type for a complete telecommand packet is as follows :

Telecommand:

 Header (CcsdsPacketHeader)

 DataFieldHeader (TelecommandDataFieldHeader)

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 14 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

The data field header of the telemetry source packet is defined in figure 5. The structure type
containing the complete information of this data field header can be found below. The
SpareVersionSpare corresponds to the 3 first entries of the data field header, which makes up for 8
bits : 1 spare bit, TM Source Packet PUS Version Number (3 bit), 4 spare bits.

TelemetryDataFieldHeader:

 SpareVersionSpare (INT8U)

 ServiceType (INT8U)

 ServiceSubtype (INT8U)

 C1 (INT8U)

 C2 (INT8U)

 C3 (INT8U)

 C4 (INT8U)

 F1 (INT8U)

The C1, C2, C3, C4 and F1 variables are the bytes of the CCSDS Unsegmented Code (CUC) time
representation format, as defined in the ECSS standard. The representation of time can be found by
multiplying each of these values by there corresponding scale, and adding this length of time to the
reference time aboard the spacecraft (usually the launch date or the time of system boot in-orbit) :

 Time = Reference Time + C1 * 224 + C2 * 216 + C3 * 28 + C4 * 20 + F1 * 2-8

C1 C2 C3 C4 F1

224 216 28 20 2-8

Table 8: CCSDS Unsegmented Code (CUC) time representation format

Thus the structure type for a complete telemetry source packet is as follows :

Telemetry:

 Header (CcsdsPacketHeader)

 DataFieldHeader (TelemetryDataFieldHeader)

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 15 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

3.2 Telemetry source packet generation

Two functions defined in the ccsds.c source file allow the software to create telemetry source packets :

CCSDS_GenerateTelemetryPacket()

CCSDS_GenerateTelemetryPacketWithTime()

These functions take as argument the telemetry buffer array and its size, in which the telemetry source
packet will be written. As the length of telemetry source packet is variable depending on its content,
the pointer of the size of the telemetry is passed as argument, so that its value can be written by the
function. Note that the telemetry buffer is initialised with a size corresponding to the maximum size
of a telemetry source packet and the telemetry buffer size is initialised to this maximum size before
calling the packet generation function. The arguments relevant to the creation of the telemetry source
packet are the APID, the service type and subtype, and the telemetry data buffer with its size.

It is important to note that the CCSDS_GenerateTelemetryPacketWithTime() creates a packet in which the
user can specify a custom timestamp for the packet, and is mainly used by archive downlink telemetry
source packets in which the time of the first entry of the archive is relevant, and not the time of the
creation of the packet.

In contrast, CCSDS_GenerateTelemetryPacket() creates a packet with the timestamp automatically set to
the time of the generation of the telemetry source packet. In effect, this function calls the
CCSDS_GenerateTelemetryPacketWithTime() function by passing the current time as argument, after
having determined the current on-board time of the satellite through the Time_Get() function of the
time.c source file.

Before actually writing on the telemetry buffer, these functions make the following checks on the
contents of the telemetry source packet :

- Verifies if the sourceData pointer on the telemetry data buffer is not NULL.
- Verifies if the telemetryBuffer pointer on the buffer intended to be written with the telemetry

source packet is not NULL.
- Verifies if the telemetryBufferSize pointer on the variable containing the telemetry buffer size is

not NULL.
- Verifies if the total length of the sourceData buffer (stored in sourceDataLength) does not exceed

the maximum size of telemetry data defined for the SwissCube mission.
- Verifies if the total length of the telemetryBuffer buffer (stored in telemetryBufferSize) is high

enough to contain the data and the CCSDS telemetry source packet header.

If any of these verifications fail, the function returns an error code and doesn’t generate a telemetry
source packet.

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 16 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

3.3 Telecommand retrieval and interpretation

Telecommand retrieval on the side of the EPS subsystem is done periodically. The retrieveTelecommand()
function is called in the main loop of the software as long as there is no image capture in process (as
to avoid sending telecommands to the payload while it is currently busy). A time of last telecommand
retrieval is stored as a static variable in the function, and if the time since the last retrieval is higher
than a certain threshold (defined by the INTERVAL_REQUEST_COM_TELECOMMAND
macro), the EPS will proceed with the request through the I2C bus of the oldest telecommand packet
that has been received by the COM subsystem. If the reply of the COM contains a telecommand
packet, the decodeCCSDSTelecommand() function is called.

Figure 2: Flowchart of the retrieveTelecommand() function - Red processes imply the use of the I2C bus, blue
processes imply the downlink of data

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 17 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

The decodeCCSDSTelecommand() function is called in order to interpret the service to which the received
telecommand belongs to. Depending on the service of the telecommand packet, the appropriate
function is called in order to decode the telecommand packet. The following flowchart illustrates how
this was implemented on SwissCube. Keep in mind that decoding functions for service type 3, 11, and
15 should also implemented, which isn’t the case in this flowchart since SwissCube had a reduced
TM/TC dictionary due to development time and hardware constraints.

Figure 3: Flowchart of the decodeCCSDSTelecommand() function - Blue processes imply the downlink of data

The following macros are used in order to interpret and decode CCSDS telecommand packets on the
EPS (ccsds.h), by allowing the user to extract the specific fields of a packet. :

PACKET_LENGTH(packet)

PACKET_ID(packet)

PACKET_PEC(packet)

PACKET_APID(packet)

PACKET_SEQUENCE_CONTROL(packe)

PACKET_SEQUENCE_COUNT(packet)

PACKET_SERVICE_TYPE(packet)

PACKET_SERVICE_SUBTYPE(packet)

TC_ACK(packet)

TC_DATA(packet)

TC_DATA_LENGTH(packet)

TM_TIME(packet)

TM_DATA(packet)

TM_DATA_LENGTH(packet)

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 18 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

3.4 Service handling

The following subsections will go over the handling of the services intended to be offered by
SwissCube, and of how they should be implemented in a cubesat using the same simplified TM/TC
dictionary. Note that service types 11 and 15, were not implemented as such in SwissCube due to time
and hardware constraints, but the examples that follow will illustrate how they should be implemented
on the functional level.

Service 1 : Telecommand verification service

 1 Acceptance success report

 2 Acceptance failure report

 3 Execution started success report

 4 Execution started failure report

 7 Completion success report

 8 Completion failure report

Service 3 : Housekeeping & diagnostic data reporting service

 25 Housekeeping parameter report

Service 8 : Perform management service

1 Perform function

Service 11 : On-board operations scheduling

1 Enable release of telecommands

2 Disable release of telecommands

3 Reset telecommand schedule

4 Insert telecommand in schedule

5 Delete telecommands

6 Delete telecommands over time period

7 Time-shift selected telecommands

15 Time-shift all telecommands

17 Report command schedule as summary 13 Summary schedule report

Service 15 : On-board storage and retrieval service

1 Enable storage in packet stores

2 Disable storage in packet stores

 8 Packet Store contents report

Service 128 – 255 : Custom services

Table 9: Complete SwissCube TM/TC dictionary (right side: TM packets / left side: TC packets)

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 19 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

3.4.1 Service type 1 : Telecommand verification service

The telecommand verification service is handled during the decoding and execution of incoming
telecommand packets in the scope of other services. Two functions defined in the eps.c file, as
evidenced below, are used to either create a success report or a failure report.

INT8U sendTelecommandReport_Success(INT8U* telecommand, INT8U reportType)

INT8U sendTelecommandReport_Failure(INT8U* telecommand, INT8U reportType, INT8U err)

The reportType parameter of these functions define whether the report concerns the acceptance of the
telecommand, the start of its execution, or its completion. A pointer to the telecommand is passed as
argument, since the report needs to include the header of the concerned telecommand. Finally, the err
parameter in the failure report function is used by the satellite to report the nature of the error (illegal
service type or subtype, illegal APID, I2C error, etc.).

3.4.2 Service type 3 : Housekeeping & diagnostic data reporting service

The only subservice implemented in this service is the housekeeping parameter report subservice.
This telemetry source packet contains housekeeping parameters that are defined by the SID given at
the beginning of the packet’s data field. It is important to note that this telemetry source packet is
intended to be sent in a periodic or filtered manner, as described in the ECSS standard, and thus does
not require a request from the ground segment to be transmitted (unless service type 15 is used to
store the telemetry source packets of this service).

The function that allows the software of SwissCube to generate service 3 / subservice 25 telemetry
source packets is the following :

static INT8U generateSendHkPacket (INT8U* messageBuffer,

 INT8U messageBufferLength,

 INT8U* hkBuffer,

 INT8U hkBufferLength,

 INT8U sid)

The messageBuffer array and the corresponding messageBufferLength size of the array are the parameters in
which the message containing the telemetry source packet will be sent to the COM subsystem
through the I2C bus. The hkBuffer array and the corresponding hkBufferLength size of the array contain
the housekeeping parameters that need to be downlinked. The sid parameter simply states the SID
that will be downlinked to the ground station.

As service type 15 wasn’t implemented on SwissCube due to time and hardware constraints, the
downlink of archives of data was taken care of by functions in service type 3, where arrays of data
would be downlinked in a defined SID. For an illustration on how this should have been
implemented instead of in service type 3, please refer to section 3.4.5.

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 20 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

The following figure contains a description of the function dependencies pertaining to the generation
of service 3 telemetry source packets.

Figure 4: Function dependencies for housekeeping parameters report generation

Note that minimum and maximum values in the case of SwissCube are part of the housekeeping data,
and not the statistics data which should’ve been handled by service type 4 intended for statistics
parameters such as min/max, mean and standard deviation values. The reason for this is because the
minimum and maximum values of the temperature, voltage and current alone do not justify the need
for a whole service for their handling. They were therefore put together with the rest of the
housekeeping data (functions for resetting the statistics are accessed through service type 8). If a more
complex statistics generation is required by the mission, the implementation of service type 4 is
strongly recommended.

3.4.3 Service type 8 : Function management service

The flowchart presented in figure 6 depicts how service 8 telecommand packets are handled by
SwissCube’s EPS, in the decodeService8() function. The processes highlighted in red are the tasks making
use of the I2C bus, and the processes highlighted in blue imply the downlink of data and thus the use
of the I2C bus as well in order to relay the packet to the COM subsystem. Two parameters are
important for the handling of the incoming telecommand packet by the function.

The acceptanceError parameter (initialised at ERR_SUCCESS) is an error flag containing the status of
the acceptance of the telecommand packet. If an error is detected in the packets format (e.g. illegal
parameters), this error flag is set to a value describing the nature of the error. It is otherwise left
untouched.

The completionError parameter (initialised at ERR_SUCCESS) is an error flag containing the status of
the completion of the request contained within the telecommand packet. If an error has occurred

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 21 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

during the execution of the request (e.g. error on the I2C bus), this error flag is set to a value
describing the nature of the error. It is otherwise left untouched.

Figure 6: Flowchart of the decodeService8() function - Blue processes imply downlink of data and red processes
imply use of I2C bus

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 22 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

The list of functions that can be accessed through the function management service is listed in a
header file by the name of functions.h for convenience. The FunctionCallCallback() function handles the
service 8 requests by communicating the request to the targeted subsystem through the I2C bus and
generating telemetry source packets as reply.

3.4.4 Service type 11 : On-board operations scheduling service

The implementation of this service is straightforward : scheduled telecommands need to be stored in
the memory of the controller supporting this service (such as a Command and Data Management
Subsystem) along their proper time tags. On the basis of an interruption, or of a simple poll initiated
by a timer, scheduled telecommands that are due are released to the proper subsystem.

The use of a linked list or of a fixed size array are both possible solutions for the storage of the
scheduled telecommands, however the use of dynamic allocations (in the case of a linked list) is
greatly discouraged for software robustness reasons. However, some Real Time Operating Systems
such as µC-OS/II by Micrium offer robust alternatives to the standard dynamic allocation operated
through the malloc() function.

3.4.5 Service type 15 : On-board storage and retrieval service

If the number of ground stations used to interact with the satellite are few and don’t allow for a high
coverage of the satellite, the use of service type 15 should be considered. There are two reasons why
this would be useful :

- For the downlink of data archives : service type 3 housekeeping reports could be periodically
logged into multiple entry packet stores that act as circular buffers (older entries are
overwritten by newer entries).

- For lowering satellite power consumption : instead of having the APIDs supporting service
type 3 constantly downlink housekeeping reports, the newly generated telemetry source packets
could be stored in a single entry packet store (thus overwriting the previous entry) for retrieval
on request of a ground station.

Service type 15 implies rerouting telemetry source packets to packet stores (data placeholders in the
on-board computer’s memory, such as arrays) of a given SID1, dedicated to this given type of
telemetry source packet, when storage in packet stores is enabled. This can be enabled or disabled
through the (15,1) and (15,2) telecommands individually for each packet store; when disabled,
telemetry source packets would not be rerouted to their designated packet store and would be
downlinked as soon as they are generated.

In order to retrieve these telemetry source packets, a (15,9) request for the downlink of a given packet
store must be sent to the satellite from the ground station. Note that the downlinked packets don’t
necessarily need to be encapsulated in a (15,8) packet and can be downlinked as is, with the type and
subtype they were generated with.

Whether or not a telemetry source packet is rerouted to a packet store, the number of entries of a
packet store, and the size of an entry in the packet store (normally the maximum size of the telemetry

 1 Store ID, not to be confused with the Structure IDs used in service type 3

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 23 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

source packet intended to be stored in it), are entirely up to the developer. However an ICD
containing a rigorous description of the Store IDs and their corresponding Structure IDs needs to be
created.

The following figure is an illustration of how this service is intended to be implemented for the
downlink and archiving of certain housekeeping parameters (such as quaternions, battery voltages and
temperatures) on CubETH, another satellite being developed by the Swiss Space Center in
collaboration with other Swiss universities.

Figure 5: Example of how service type 15 is used for housekeeping telemetry source packets in CubETH

3.4.6 Service type 128 : SwissCube payload service (Example)

The following flowchart is an example of how the handling of service type 128 telecommands could
be handled. This example depicts how service 128 telecommand packets are handled by SwissCube’s
EPS, in the decodeCcsds128() function. The processes highlighted in blue imply the downlinking of data,
and thus the use of the I2C bus in order to send packets to the COM subsystem.

Since this custom service is specifically tailored for SwissCube, not much detail will be put into the
sub-processes that relate to each specific telecommand of the service. However, it is important to
note that all of these sub-processes handle by themselves the generation of failure or success
acknowledgement reports, as well as the downlink of other telemetry source packets.

Telecommand packets

Telemetry source packets

Rerouted telemetry source packets
(not directly downlinked)

HK and diagnostic data reporting service - 3

On-board storage and retrieval service - 15

(3
,2

5
)

Currents

S
tr

u
c
tu

re
 I

D
 1

Temperatures
ADCS

parameters

1

S
to

re
 I

D
 1

1

N

(t=Ns)

...

2

(t=1s)

1

(t=0s)

(3
,2

5
)

(3
,2

5
)

S
to

re
 I

D
 2

S
to

re
 I

D
 3

S
tr

u
c
tu

re
 I
D

 2

S
tr

u
c
tu

re
 I
D

 3

This service is centralised in the CDMS
application process in the case of CubETH.
Several categories of housekeeping parameters
are stored in structures, after having been
collected by the CDMS through the I2C bus.

Reporting of these structures is done on a
periodic basis through TM 3.25 (Housekeeping
Parameter Report).

P
a
c
k
e
t s

to
re

 c
o
n
te

n
ts

 re
p
o
rt (1

5
,8

)

D
o

w
n

lin
k
 p

a
c
k
e
t s

to
re

 c
o
n
te

n
ts

 (1
5
,9

)

(1
5
,8

)

(1
5
,9

)

 Enable HK parameter report generation (3,5)

P
a
c
k
e
t s

to
re

 c
o
n
te

n
ts

 re
p
o
rt (1

5
,8

)

D
o

w
n

lin
k
 p

a
c
k
e
t s

to
re

 c
o
n
te

n
ts

 (1
5
,9

)

 Disable HK parameter report generation (3,6)

CDMS APPLICATION PROCESS

Enable storage in packet stores (15,1)

Disable storage in packet stores (15,2)

This service allows storage of TM packets in
dedicated packet stores instead of downlinking
them directly, which is useful when only a few
ground stations are available. This means that it
is possible to request a downlink of all the HK
parameter reports (TM 3.25) that have been
generated since last pass, if the size of the
packet store allows it.

A packet store may have from one entry to
several entries. Depending on the needs of the
mission, some HK parameter reports can be
logged (such as calculated attitude, gyro
measurements, or other ADCS parameters that
could be used for validation purposes) in packet
stores with a large number of entries.

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 24 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Figure 7: Flowchart of the decodeCcsds128() function - Blue processes imply downlink of data

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 25 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

CONCLUSION

This document gives the reader a first hand example of the implementation of the ECSS standard
with the example of SwissCube’s flight software, and should help the reader get started on the
development of the software architecture of a new cubesat.

However, even though lessons can be taken from of the flight software of SwissCube, the source
code of this cubesat must be taken with a grain of salt : some of the ECSS standard services are not
implemented explicitly in the source code, and are implemented implicitly instead.

- The On-board storage and retrieval service (type 15) is implicitly supported by SwissCube
through the downlink of housekeeping archives, the downlink of archives is done through a
service type 8 function call and not the proper service type 15 telecommand.

- The statistics reporting (min/max values), which is normally handled in the Parameter statistics
reporting service (service type 4), but is handled in the Housekeeping & diagnostic data
reporting service (service type 3) in the case of SwissCube.

- The way the housekeeping parameter reports are downlinked is not compliant with the ECSS
standard. These reports (service 3, subservice 25) are usually generated either periodically or in
a filtered manner (for instance, if the parameter change exceeds a threshold), while in the case
of SwissCube they are downlinked after a service type 8 telecommand with a specific function.

It must be noted however that the reasons for these differences with the pure ECSS standard are due
to time and technical constraints. Initially, a CDMS (Command & Data Management Subsystem) was
intended to handle the services tied to housekeeping and statistics (service types 3 and 4), as well as
packet storage and retrieval (service type 15). Towards the end of the development of SwissCube, the
decision was taken to remove this subsystem from the final design because of flaws in its design. The
EPS was intended to take on the responsibilities of the CDMS but, because of its lack of memory and
processing power, it was decided to use these shortcuts in the standard and to use service type 8 as a
risk-reduction measure.

This document illustrates how the ECSS standard should be implemented on a CubeSat’s flight
software. However, the shortcuts to the standard in SwissCube mentioned in the document must
remain at the process level (i.e. how the packets are handled within the satellite), and not at the data
level (i.e. format of the data contained in the packets). Despite these shortcuts, SwissCube could be
controlled and monitored with a fully ECSS-compliant MCS, since no modifications to the data
format of the packets of the ECSS standard were modified.

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 26 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix A downlinkMinMax() – eps.c

/*---

* downlinkMinMax()

* ---

* Input :

* none

*

* Output :

* error : ERR_SUCCESS when no error has occured, and error ID otherwise

*

* Description:

* This function makes use of generateSendHkPacket() in order to prepare a

* housekeeping packet containing the statistic min / max values.

*

* NB: This function is exclusively accessed from the ground segment.

*

* ---*/

static INT8U downlinkMinMax(void)
{
 INT8U messageBuffer[sizeof(minMaxHK)+32]; // HK + CCSDS + I2C with margin
 return generateSendHkPacket(messageBuffer, sizeof(messageBuffer), (INT8U*)&minMaxHK,
sizeof(minMaxHK), SID_EPS_MM_RT);
}

static INT8U generateAndSendArchiveHk(INT8U *dataBuffer, INT8U dataBufferLength, INT32U time)
{
 INT8U messageBuffer[254]; // HK + CCSDS + I2C with margin
 INT8U packetLength = sizeof(messageBuffer)-6; // Max packet size in I2C message (+FCS)
 INT8U err;

 // Generate packet with custom time
 err = CCSDS_GenerateTelemetryPacketWithTime(&messageBuffer[4], &packetLength, APID_EPS,
CCSDS_T3_HK_DIAGNOSTIC_REPORTING, CCSDS_ST_S3_HK_REPORT, dataBuffer, dataBufferLength, time);
 if(err == ERR_SUCCESS)
 {
 // Send packet to COM
 messageBuffer[0] = I2C_TYPE_FUNC_CALL_REQUEST;
 messageBuffer[1] = FCT_COM_SEND_PKT;
 messageBuffer[2] = SC_VC_HK_RT;
 messageBuffer[3] = 0; // Spare

 packetLength = 4 + packetLength; // I2C bytes
 err = i2cWriteAndCheckError(I2C_ADDR_COM, messageBuffer, &packetLength);
 }

 return err;
}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 27 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix B generateHousekeeping() – eps.c

/*---

* generateHousekeeping()

* ---

* Input :

* none

*

* Output :

* error : ERR_SUCCESS when no error has occured, and error ID otherwise

*

* Description:

* This function serves the purpose of downlinking the housekeeping of each

* subsystem at a time. The CCSDS packets are built then sent to the COM sub-

* system by using the generateSendHkPacket() function.

*

* The first housekeeping SID to be downlinked is the EPS housekeeping. Once

* it has been transferred, the function creates and downlinks another house-

* keeping report packet for each subsystem that is online. In order to do so,

* it sends a housekeeping report request on the I2C bus to the enabled and

* powered up subsystems, then builds and sends the packet by using the

* generateSendHkPacket() function. The subsystems that are prompted for HK

* and for which their SID is downlinked are the COM, ADCS, and PL subsystems.

*

* NB: This function is exclusively accessed from the ground segment.

*

* ---*/

static INT8U generateHousekeeping(void)

{

 INT8U err = ERR_SUCCESS;

 INT8U dataRead = 0;

 INT16U i;

 // I2C Messages with COM (Message type : Function call request)

 // Sizes : 1 = message type (I2C_TYPE_FUNC_CALL_REQUEST)

 // 1 = function ID (FCT_COM_SEND_PKT)

 // 1 = virtual channel

 // * = size of the CCSDS packet that is sent

 // CCSDS fields, 1 SID, HK size

 INT8U messageBuffer[255]; // Maximum size

 INT8U ssHk[128];

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 28 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 // Update the housekeeping

 // Copy housekeeping

 {

 INT16U *sourcePtr = (INT16U*)&housekeeping;

 INT16U *destPtr = (INT16U*)ssHk;

 INT32U *dwordPtr = (INT32U*)ssHk;

 _DINT();

 for(i=0 ; i<((sizeof(housekeeping)+1)/2) ; i++)

 *(destPtr++) = *(sourcePtr++);

 _EINT();

 // Last report times, little-endian -> big-endian

 dwordPtr[0] = INT32U_LE2BE(dwordPtr[0]);

 dwordPtr[1] = INT32U_LE2BE(dwordPtr[1]);

 dwordPtr[2] = INT32U_LE2BE(dwordPtr[2]);

 dwordPtr[3] = INT32U_LE2BE(dwordPtr[3]);

 }

 // Generate and send EPS HK

 generateSendHkPacket(messageBuffer, sizeof(messageBuffer), ssHk, HK_EPS_SIZE, SID_EPS_COMPLETE_RT);

 // Generate COM' housekeeping packet if COM is powered up

 if(ST_COM(housekeeping))

 {

 // HACK: Small wait for COM flushing

 for(i=0 ; i<0x3FFF ; i++)

 P5OUT &= ~BIT0;

 CLRWDT_EPS;

 // Retrieve HK from Subsystem

 messageBuffer[0] = I2C_TYPE_HK_REQUEST;

 // Request the HK

 err = I2C_MasterWrite(I2C_ADDR_COM, messageBuffer, 1);

 if(err == ERR_SUCCESS)

 {

 // Read the HK

 err = I2C_MasterRead(I2C_ADDR_COM, ssHk, &dataRead);

 if(err==ERR_SUCCESS && ssHk[0]==I2C_TYPE_HK_REPORT)

 generateSendHkPacket(messageBuffer, sizeof(messageBuffer), ssHk+2, dataRead-4,
SID_COM_RT);

 }

 }

 // Generate ADCS' housekeeping packet if ADCS is powered up

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 29 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 if(ST_ADCS(housekeeping))

 {

 // HACK: Small wait for COM flushing

 for(i=0 ; i<0x3FFF ; i++)

 P5OUT &= ~BIT0;

 CLRWDT_EPS;

 // Retrieve HK from Subsystem

 messageBuffer[0] = I2C_TYPE_HK_REQUEST;

 // Request the HK

 err = I2C_MasterWrite(I2C_ADDR_ADCS, messageBuffer, 1);

 if(err == ERR_SUCCESS)

 {

 // Read the HK

 err = I2C_MasterRead(I2C_ADDR_ADCS, ssHk, &dataRead);

 if(err==ERR_SUCCESS && ssHk[0]==I2C_TYPE_HK_REPORT)

 generateSendHkPacket(messageBuffer, sizeof(messageBuffer), ssHk+2, dataRead-4,
SID_ADCS_RT);

 }

 }

 // Generate Payload's housekeeping packet if Payload is powered up

 if(ST_PL(housekeeping))

 {

 // HACK: Small wait for COM flushing

 for(i=0 ; i<0x3FFF ; i++)

 P5OUT &= ~BIT0;

 CLRWDT_EPS;

 // Retrieve HK from Subsystem

 messageBuffer[0] = I2C_TYPE_HK_REQUEST;

 // Request the HK

 err = I2C_MasterWrite(I2C_ADDR_PAYLOAD, messageBuffer, 1);

 if(err == ERR_SUCCESS)

 {

 // Read the HK

 err = I2C_MasterRead(I2C_ADDR_PAYLOAD, ssHk, &dataRead);

 if(err==ERR_SUCCESS && ssHk[0]==I2C_TYPE_HK_REPORT)

 generateSendHkPacket(messageBuffer, sizeof(messageBuffer), ssHk+2, dataRead-4,
SID_PL_RT);

 }

 }

 return err;

}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 30 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix C generateSendHkPacket() – eps.c

/*---

* generateSendHkPacket()

* ---

* Input :

* *messageBuffer : I2C message to be sent to the COM subsystem

* messageBufferLength : length of the I2C message buffer.

* *hkBuffer : buffer containing the housekeeping parameters to be downlinked

* hkBufferLength : length of the downlinked housekeeping parameters

* sid : structure ID corresponding to the downlinked housekeeping data

*

* Output :

* error : ERR_SUCCESS when no error has occured, and error ID otherwise

*

* Description:

* This function is used in order to generate a housekeeping packet from a

* given housekeeping buffer identified by an SID. The packet is created by

* using the CCSDS_GenerateTelemetryPacket() function of the ccsds library.

* Once the packet created, it is sent to the COM by using the

* i2cWriteAndCheckError() function.

*

* ---*/

static INT8U generateSendHkPacket(INT8U* messageBuffer, INT8U messageBufferLength,

 INT8U* hkBuffer,

 INT8U hkBufferLength,

 INT8U sid)

{

 INT8U err;

 INT8U packetLength;

 INT16U i;

 // HACK: Copy HK to add SID

 INT8U hackBuffer[128];

 hackBuffer[0] = sid;

 for(i = 0; i < hkBufferLength; i++)

 hackBuffer[i + 1] = *(hkBuffer++);

 // Packet at offset 4, Type + Func ID + VC + Spare before

 packetLength = messageBufferLength-6; // Max packet size in I2C message (+FCS)

 // Warning SID before housekeeping!

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 31 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 err = CCSDS_GenerateTelemetryPacket(&messageBuffer[4], &packetLength, APID_EPS,
CCSDS_T3_HK_DIAGNOSTIC_REPORTING, CCSDS_ST_S3_HK_REPORT, hackBuffer, hkBufferLength+1);

 if(err == ERR_SUCCESS)

 {

 // Send packet to COM

 messageBuffer[0] = I2C_TYPE_FUNC_CALL_REQUEST;

 messageBuffer[1] = FCT_COM_SEND_PKT;

 messageBuffer[2] = SC_VC_HK_RT;

 messageBuffer[3] = 0; // Spare

 packetLength = 4 + packetLength; // I2C bytes

 err = i2cWriteAndCheckError(I2C_ADDR_COM, messageBuffer, &packetLength);

 }

 return err;

}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 32 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix D CCSDS_GenerateTelemetryPacket() – ccsds.c

// Generates a complete telemetry packet with the values and data specified

INT8U CCSDS_GenerateTelemetryPacket(INT8U *telemetryBuffer, INT8U *telemetryBufferSize, INT16U apid, INT8U
serviceType, INT8U serviceSubtype, INT8U* sourceData, INT8U sourceDataLength)

{

 INT32U time;

 Time_Get(&time);

 return CCSDS_GenerateTelemetryPacketWithTime(telemetryBuffer, telemetryBufferSize, apid, serviceType,
serviceSubtype, sourceData, sourceDataLength, time);

}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 33 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix E CCSDS_GenerateTelemetryPacketWithTime() –
ccsds.c

// Generates a complete telemetry packet with the values and data specified

INT8U CCSDS_GenerateTelemetryPacketWithTime(INT8U *telemetryBuffer, INT8U *telemetryBufferSize, INT16U
apid, INT8U serviceType, INT8U serviceSubtype, INT8U* sourceData, INT8U sourceDataLength, INT32U time)

{

 INT8U i;

 INT16U chk; // CRC syndrome

 INT16U sequenceCount; // Sequence Count of packet

 INT8U packetLength; // Total length of packet

 INT16U packetLengthFieldValue; // Value of Packet Length header field

 INT8U *dataPtr; // For source data copy

 INT8U *dataEndPtr;

 // Get sequence count

 sequenceCount = CCSDS_GetSequenceCount();

 if(sourceData == NULL)

 return ERR_MISSING_PARAMETER; // No data

 if(telemetryBuffer == NULL)

 return ERR_MISSING_PARAMETER; // No telemetry buffer

 if(telemetryBufferSize == NULL)

 return ERR_MISSING_PARAMETER; // No telemetry buffer size

 // Total packet length must be <= than 251 octets (otherwise it cannot be transmitted in a I2C message)

 if(sourceDataLength > (0xFB - TM_NONDATA_SIZE))

 return ERR_CCSDS_TOO_MUCH_DATA; // Data too big

 // Total packet length (not value of packet length field !)

 packetLength = TM_NONDATA_SIZE + sourceDataLength;

 // Test if telemetry buffer big enough

 if(*telemetryBufferSize < packetLength)

 return ERR_CCSDS_BUFFER_TOO_SMALL; // Buffer too small

 // Packet Header (Packet ID, Packet Sequence Control and Packet Length) (48 bits)

 // Packet ID (16 bits)

 telemetryBuffer[0] = 0x08 | ((INT8U)(apid >> 8) & 0x07); // Version number (3 bits) = 0, Type (1
bit) = 0, Data Field Header Flag (1 bit) = 1, APID (11 bits) -> 3 MSB

 telemetryBuffer[1] = (INT8U)(apid); // APID (11 bits) -> 8 LSB

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 34 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 // Packet Sequence Control (16 bits)

 telemetryBuffer[2] = 0xC0 | ((INT8U)(sequenceCount >> 8) & 0x3F); // Grouping Flag (2 bits), Source
Sequence Count (14 bits) -> 6 MSB

 telemetryBuffer[3] = (INT8U)(sequenceCount); // Source Sequence
Count (14 bits) -> 8 LSB

 // Packet Length (16 bits)

 packetLengthFieldValue = packetLength-7;

 telemetryBuffer[4] = (INT8U)(packetLengthFieldValue >> 8); // Packet Length (16 bits) -> 8 MSB

 telemetryBuffer[5] = (INT8U)(packetLengthFieldValue); // -> 8 LSB

 // Packet Data Field (Telemetry Data Field Header, Source Data and Packet Error Control) (Variable)

 // Telemetry Data Field Header (56 bits)

 telemetryBuffer[6] = 0x10; // Spare (1 bit) = 0, PUS Version Number (3 bits) = 1, Spare (4 bits) = 0

 telemetryBuffer[7] = serviceType; // Service Type (8 bits)

 telemetryBuffer[8] = serviceSubtype; // Service Subtype (8 bits)

 // Absolute Time (40 bits, 5 octets)

 // CUC with 4 octets of coarse time and 1 octet of fine time

 telemetryBuffer[9] = (INT8U)(time>>28); // C1

 telemetryBuffer[10] = (INT8U)(time>>20); // C2

 telemetryBuffer[11] = (INT8U)(time>>12); // C3

 telemetryBuffer[12] = (INT8U)(time>>4); // C4

 telemetryBuffer[13] = (INT8U)(time<<4); // F1 // TODO: Seems to be always 0

 // Copy Source Data (variable length)

 dataPtr = (telemetryBuffer+TM_HEADERS_SIZE);

 dataEndPtr = dataPtr+sourceDataLength;

 while(dataPtr < dataEndPtr)

 *(dataPtr++) = *(sourceData++);

 // Packet Error Control (16 bits)

 chk = 0xFFFF; // Init syndrome

 // Compute CRC (all packet data except FCS field)

 for(i=0 ; i<packetLength-2 ; i++)

 chk = CRC_Optimized(telemetryBuffer[i], chk); // Optimized CRC

 // Fill CRC field

 telemetryBuffer[packetLength-2] = (INT8U)(chk >> 8);

 telemetryBuffer[packetLength-1] = (INT8U)(chk);

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 35 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 // Return number of bytes written

 *telemetryBufferSize = packetLength;

 return ERR_SUCCESS;

}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 36 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix F retrieveTelecommand() – eps.c

static void retrieveTelecommand(void)

{

 static INT32U lastTelecommandTime = 0;

 INT32U time;

 INT8U err;

 INT8U message[255];

 INT8U messageLength = 0;

 // Only retrieve telecommands when master

 if(!I2C_IsMaster())

 return;

 // Only retrieve telecommand every interval

 Time_Get(&time);

 if((time-lastTelecommandTime) < INTERVAL_REQUEST_COM_TELECOMMAND)

 return;

 // Prepare Packet that is send to COM

 message[0] = I2C_TYPE_FUNC_CALL_REQUEST;

 message[1] = FCT_COM_GET_TELECOMMAND;

 // Send packet to COM

 err = I2C_MasterWrite(I2C_ADDR_COM, message, 2);

 if(err == ERR_SUCCESS)

 {

 // Read possible errors

 err = I2C_MasterRead(I2C_ADDR_COM, message, &messageLength);

 if(err == ERR_SUCCESS)

 {

 // Update Last Response Time of COM

 _DINT();

 _NOP();

 Time_IntGet(&housekeeping.LR_COM);

 _EINT();

 // Telecommand available

 if(message[0] == I2C_TYPE_FUNC_CALL_REPORT)

 {

 decodeCCSDSTelecommand(message+2);

 }

 }

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 37 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 }

 // HACK: COM overflow test

 /*

 {

 INT16U i;

 for(i=0 ; i<2 ; i++)

 {

 INT8U length = 250;

 err = CCSDS_GenerateTelemetryPacket(message+4, &length, APID_EPS, 128, 7, message, 220);
//5ms

 if(err == ERR_SUCCESS)

 {

 message[0] = I2C_TYPE_FUNC_CALL_REQUEST;

 message[1] = FCT_COM_SEND_PKT;

 message[2] = SC_VC_PL;

 message[3] = 0; // Spare

 err = I2C_MasterWrite(I2C_ADDR_COM, message, length+4);

 if(err == ERR_SUCCESS)

 {

 err = I2C_MasterRead(I2C_ADDR_COM, message, &length);

 P5OUT ^= BIT4; // HACK:

 if(err == ERR_SUCCESS)

 {

 if(message[0] == I2C_TYPE_ERROR_REPORT && message[2] ==
ERR_COM_TX_OVERFLOW)

 P5OUT ^= BIT5; // HACK:

 }

 }

 }

 }

 }

 */

 Time_Get(&lastTelecommandTime);

}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 38 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix G decodeCCSDSTelecommand() – eps.c

static void decodeCCSDSTelecommand(INT8U* telecommand)

{

 INT8U serviceType = PACKET_SERVICE_TYPE((Telecommand*)telecommand);

 switch(serviceType)

 {

 // Function Management Service (8)

 case CCSDS_T8_FUNCTION_MANAGEMENT:

 decodeService8(telecommand);

 break;

 // Payload Image Service (128)

 case CCSDS_T128_IMAGE_SERVICE:

 decodeCcsds128(telecommand);

 break;

 // Illegal Service Type

 default:

 sendTelecommandReport_Failure(telecommand, CCSDS_ST_S1_ACCEPTANCE_FAILURE, CCSDS_ERR_ILLEGAL_TYPE);

 break;

 }

}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 39 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix H decodeService8() – eps.c

static void decodeService8(INT8U* telecommand)

{

 Telecommand* tc = (Telecommand*)telecommand;

 INT16U i;

 INT8U messageBuffer[254]; // Also used for returnBuffer

 INT8U acceptanceError = ERR_SUCCESS;

 INT8U completionError = ERR_SUCCESS;

 if(PACKET_SERVICE_SUBTYPE(tc) == CCSDS_ST_S3_PERFORM_FUNCTION)

 {

 INT8U* tcData = TC_DATA(tc);

 INT8U* params = tcData+1;

 INT16U apid = PACKET_APID(tc);

 INT8U functionID = *tcData;

 INT8U paramsLength = TC_DATA_LENGTH(tc) - 1;

 INT8U returnBufferLength = 0;

 if(apid == APID_EPS)

 {

 // Function for EPS

 // Send acceptance report (needs to be before execution of TC)

 sendTelecommandReport_Success(telecommand, CCSDS_ST_S1_ACCEPTANCE_SUCCESS);

 completionError = FunctionCallCallback(functionID, params, paramsLength, messageBuffer,
&returnBufferLength);

 }

 else if(apid == APID_COM || apid == APID_CDMS || apid == APID_ADCS || apid == APID_PAYLOAD)//test
if valid APID

 {

 // Function for other subsystem

 messageBuffer[0] = I2C_TYPE_FUNC_CALL_REQUEST;

 messageBuffer[1] = functionID;

 for(i=0 ; i<paramsLength ; i++)

 messageBuffer[2+i] = *(params+i);

 acceptanceError = I2C_MasterWrite(apid, messageBuffer, 2+paramsLength);

 if(acceptanceError == ERR_SUCCESS)

 {

 INT8U dataLength = 0;

 // Send acceptance report (needs to be before execution of TC)

 sendTelecommandReport_Success(telecommand, CCSDS_ST_S1_ACCEPTANCE_SUCCESS);

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 40 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 // Read function call result

 completionError = I2C_MasterRead(apid, messageBuffer, &dataLength);

 if(completionError == ERR_SUCCESS)

 completionError = checkI2CReport(messageBuffer);

 }

 }

 else

 {

 acceptanceError = CCSDS_ERR_ILLEGAL_APID;

 }

 }

 else

 {

 acceptanceError = CCSDS_ERR_ILLEGAL_SUBTYPE;

 }

 // Send Telecommand Verification Reports

 if(acceptanceError == ERR_SUCCESS)

 {

 // Acceptance success report already sent (need to be before execution of TC)

 // Completed reports

 if(completionError == ERR_SUCCESS)

 sendTelecommandReport_Success(telecommand, CCSDS_ST_S1_COMPLETED_SUCCESS);

 else

 sendTelecommandReport_Failure(telecommand, CCSDS_ST_S1_COMPLETED_FAILURE, completionError);

 }

 else

 {

 // Acceptance failure report

 sendTelecommandReport_Failure(telecommand, CCSDS_ST_S1_ACCEPTANCE_FAILURE, acceptanceError);

 }

}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 41 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix I sendTelecommandReport_Success() – eps.c

/*---

* sendTelecommandReport_Success()

* ---

* Input :

* *telecommand : buffer containing the concerned telecommand packet

* reportType : contains the success type (received, completed, progress, etc)

*

* Output :

* error : ERR_SUCCESS when no error has occured, and error ID otherwise

*

* Description:

* This function is called by decodeService8() every time a success message

* needs to be downlinked to the ground station in a telemetry packet, after

* a successful step in the execution of a service 8 function.

*

* ---*/

INT8U sendTelecommandReport_Success(INT8U* telecommand, INT8U reportType)

{

 // Only send ack if requested

 INT8U tcAckField = TC_ACK((Telecommand*)telecommand);

 if((reportType == CCSDS_ST_S1_ACCEPTANCE_SUCCESS) && !(tcAckField & BIT3))

 return ERR_SUCCESS;

 if((reportType == CCSDS_ST_S1_STARTED_SUCCESS) && !(tcAckField & BIT2))

 return ERR_SUCCESS;

 if((reportType == CCSDS_ST_S1_COMPLETED_SUCCESS) && !(tcAckField & BIT0))

 return ERR_SUCCESS;

 {

 INT8U err;

 // CCSDS Source Data

 INT8U success[TM_S1_SUCCESS_SIZE];

 // CCSDS Packet length

 INT8U packetLength = TM_NONDATA_SIZE + TM_S1_SUCCESS_SIZE;

 // Packet Sequence Control (direct copy from telecommand)

 success[0] = telecommand[0];

 success[1] = telecommand[1];

 // Telecommand Packet ID (direct copy from telecommand)

 success[2] = telecommand[2];

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 42 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 success[3] = telecommand[3];

 // Send packet to COM with function call

 temporaryBuffer[0] = I2C_TYPE_FUNC_CALL_REQUEST;

 temporaryBuffer[1] = FCT_COM_SEND_PKT;

 temporaryBuffer[2] = SC_VC_ACK_RT;

 temporaryBuffer[3] = 0; // Spare

 // Generate CCSDS telemetry packet

 err = CCSDS_GenerateTelemetryPacket(temporaryBuffer+4, &packetLength, APID_EPS,
CCSDS_T1_TELECOMMAND_VERIFICATION, reportType, success, sizeof(success));

 if(err == ERR_SUCCESS)

 {

 // TODO: Handle error

 err = I2C_MasterWrite(I2C_ADDR_COM, temporaryBuffer, 4+packetLength);

 if(err == ERR_SUCCESS)

 {

 // Read possible errors (TODO: Handle error)

 INT8U dataLength = 0;

 // TODO: Handle error

 err = I2C_MasterRead(I2C_ADDR_COM, temporaryBuffer, &dataLength);

 if(err == ERR_COM_TX_OVERFLOW) {

 comBusy = 1;

 }

 }

 }

 return err;

 }

}

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 43 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

Appendix J sendTelecommandReport_Failure() – eps.c

/*---

* sendTelecommandReport_Failure()

* ---

* Input :

* *telecommand : buffer containing the concerned telecommand packet

* reportType : contains the success type (received, completed, progress, etc)

* err : describes the nature of the failure

*

* Output :

* none

*

* Description:

* This function is called by decodeService8() every time a failure message

* needs to be downlinked to the ground station in a telemetry packet, after

* an unsuccesful step in the execution of a service 8 function.

*

* ---*/

// Sends a telecommand failure report

// Report type can be any failure subtype of service type 1

// Returns encountered errors

INT8U sendTelecommandReport_Failure(INT8U* telecommand, INT8U reportType, INT8U err)

{

 // CCSDS Source Data

 INT8U failure[TM_S1_FAILURE_SIZE];

 // CCSDS Packet length

 INT8U packetLength = TM_NONDATA_SIZE + TM_S1_FAILURE_SIZE;

 // Packet Sequence Control (direct copy from telecommand)

 failure[0] = telecommand[0];

 failure[1] = telecommand[1];

 // Telecommand Packet ID (direct copy from telecommand)

 failure[2] = telecommand[2];

 failure[3] = telecommand[3];

 // Error Code

 failure[4] = 0x00;

 failure[5] = err;

 // Send packet to COM with function call

 Issue : 1 Rev : 0
Date : 30/04/2014
Page : 44 of 44

Ref.: QB50-EPFL-SSC-SCS-ICD-FSW-1-0

 temporaryBuffer[0] = I2C_TYPE_FUNC_CALL_REQUEST;

 temporaryBuffer[1] = FCT_COM_SEND_PKT;

 temporaryBuffer[2] = SC_VC_ACK_RT;

 temporaryBuffer[3] = 0;

 // Generate CCSDS telemetry packet

 err = CCSDS_GenerateTelemetryPacket(temporaryBuffer+4, &packetLength, APID_EPS,
CCSDS_T1_TELECOMMAND_VERIFICATION, reportType, failure, sizeof(failure));

 if(err == ERR_SUCCESS)

 {

 // TODO: Handle error

 err = I2C_MasterWrite(I2C_ADDR_COM, temporaryBuffer, 4+packetLength);

 if(err == ERR_SUCCESS)

 {

 // Read possible errors (TODO: Handle error)

 INT8U dataLength = 0;

 // TODO: Handle error

 err = I2C_MasterRead(I2C_ADDR_COM, temporaryBuffer, &dataLength);

 if(err == ERR_COM_TX_OVERFLOW) {

 comBusy = 1;

 }

 }

 }

 return err;

}

