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Abstract

A novel technique for multi-scale representation and recognition of three-
dimensional (3-D) surfaces is presented. This is achieved by iteratively convolving
local parametrizations of the surface with two-dimensional (2-D) Gaussian filters.
In this technique, semigeodesic coordinates are constructed such that each vertex of
a mesh becomes a local origin. A geodesic line from the origin is first constructed
in an arbitrary direction such as the direction of one of the incident edges. The
smoothing process eliminates surface noise and small surface detail gradually, and
results in simplification of the object shape. Using this technique the surface
Gaussian curvature (K) and mean curvature (H) values are estimated accurately
at multiple scales together with curvature zero crossing contours. Furthermore,
local maxima of absolute values of K and H as well as the torsion local maxima of
absolute values of the zero crossing contours of K and H are located on the surface.
These features are utilized by geometric hashing and global verification processes
for robust object recognition. The matching algorithm uses a hash table prepared
in the off-line stage. Given a scene of feature points, the measurements taken at
scene points are matched to those stored in the hash table. Recognition results are
demonstrated for rotated and scaled as well as partially occluded objects. In order
to verify matches, 3-D translation, rotation and scaling parameters are calculated
and results indicate that the technique is invariant to those transformations.
Another advantage is that it is applicable to both incomplete surfaces which arise

during occlusion and to surfaces with holes.
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Khalili.

Key words: Multi-Scale Representation, Open and Closed 3-D Free-form Surfaces,

Smoothed 3-D meshes, Curvature and Torsion Estimation, Object Recognition.



v

Acknowledgements

I would like to thank my supervisors Dr. Farzin Mokhtarian and Professor John
[llingworth for the help which they have given me during the research. I would
also like to thank Dr. Adrian Hilton for his advice on the ModelMaker 3-D laser
scanner. This research was supported by the Engineering and Physical Sciences

Research Council (EPSRC).

Further information:

http://www.ee.surrey.ac.uk/Research/VSSP /demos/css3d /index.html/

Email pcyuen@iee.org



Contents

Summary

Acknowledgements

List of Figures

List of Tables

1 Introduction

2 Background and Motivation

3 Related Work and Literature Survey

3.1 3-D Surfaces Construction and Representation . . ... ... .. ..

3.1.1
3.1.2

Automatic Registration . . . . . ... ... ... 0L

Deformable Surfaces . . . . . . . . . . ... .. ..

3.2 Object Recognition . . . . . .. ... .. o oo

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9

Aspect Matching . . . . . .. ... L.
Curvedness Orientation Shape Map . . . .. ... ... ...
Edge Map Recognition . . . . . . ... ... ... ... .. ..
Extended Gaussian Image . . . . . .. ... .. ... ... ..
Genetic Algorithm . . . . .. . ... ... oL 0oL,
Level Set Methods . . . . .. ... ... ... ........
Multi-view Methods . . . . . . . ... .. ... 0L,
Neural Networks . . . . . .. .. ... ... .. ... ... .

Weighted Average Smoothing . . . . . .. ... ... ... ..

3.3 Overview . . . . . e e e e,

iii

iv

ix

xiii



vi Contents
4 Theory and Design Analysis 25
4.1 Parametrization . . . . . .. ... Lo oL L 26
4.1.1 Geodesic Lines . . . . . . .. ..o oo 27

4.1.2 Semigeodesic Coordinates . . . . . . ... ... ... ..... 29

4.1.3 Geodesic Polar Coordinates . . . . .. ... ... ... .... 30

4.2 Surface Smoothing . . . . . . . ... oL oL L 31
4.2.1 Evolution Properties . . . . . . ... ... .o 31

4.3 Curvature Estimation . . . . . ... ... L 0 oo 36
4.4 Torsion Estimation . . . . . . ... .. oo oL 38
4.5 Geometric Hashing . . . . . . .. .. .. L L o o 40
451 HashTable . . . ... ... ... .. 40

4.5.2 Matching . . .. .. ... Lo 41

4.6 Global Verification . . . . . . .. ... o oo 43

5 Implementation 47
5.1 Surface Structure . . . . . . . ..o oL L 48
5.2 Construction of Geodesic Line . . . . . . .. ... ... L. 51
5.2.1 Arbitrary Direction of Geodesic Line . . . . . . . .. .. ... 52

5.2.2 Geodesic Line Extension . . . . . .. ... ... L. 53

5.2.3 Adjustment of Arbitrary Geodesic Line . . . . ... ... .. 55

5.2.4 'To Generate the Perpendicular Direction . .. ... ... .. 56

5.3 Semigeodesic Coordinates . . . . . . . ... ... ... ... ... 60
5.4 Geodesic Polar Coordinates . . . . .. ... .. .. ... ....... 61
5.5 Multi-Scale Gaussian Convolution . . . . ... ... ... .. .... 62
5.6 Surface Curvature . . . ... ... .. ... ... ... 64
5.6.1 Local Maxima of Absolute Values of Curvature . . . . . . . . 64

5.7 Curvature Zero Crossing Contours and Torsion . . . . ... ... .. 66
58 Optimal Scale . . . . . . ... .. L L 67
5.9 Geometric Hashing . . . . . . ... ... ... L0 . 68

5.10 Global Verification . . . . . . . . . . . . . e 70



Contents vil

6 Results and Discussion 73

6.1 Diffusion. . . . . . . ... 73

6.1.1 Segmentation . . . . . ... ... oL 7

6.1.2 Open or Incomplete Surface . . . . .. .. ... ... ... .. 7

6.1.3 General View of Diffusion . . . . . .. ... ... ... .. .. 80

6.2 Curvature Estimation . . . ... .. ... oL 80

6.2.1 Curvature Error . . . . ... ... Lo 83

6.2.2 Curvature Zero Crossing Contours . . . . . ... ... . ... 95

6.2.3 Local Maxima of Absolute Values of Curvature . . . . . . .. 100

6.3 Local Maxima of Absolute Values of Torsion. . . . . ... ... ... 100

6.4 Object Recognition . . . . . . . ... ... L o oo 101

7 Conclusions and Future Work 111

7.1 Conclusions . . . . . . . . .. Lo e 111

7.2 Future Work and Applications . . . . . ... ... ... ... 112
Appendix

A Differential Geometry 115

A1l Space Curves . . . . . . . ... 115

A2 Surface Patches . . . . . . . . ... 116

A.2.1 Principal Directions . . . . . . . ... ..o 117

A.2.2 Principal Curvatures . . . . . .. ... ... ... ... ... 117

Bibliography 119

Index

135






List of Figures

2.1

2.2

3.1

3.2

4.1
4.2

4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

A contour during smoothing and its CSS image. o is the width of a
1-D Gaussian kernel and u is the normalized arc length parameter. .

A space curve during smoothing and its TSS image. o is the scale
and u is the arc length measured along the space curve. . . . . ...

A cuboid object and its aspect graph. Each node in the aspect graph
represents a stable view. The branches show how one can go from
one stable view to other stable views. . . . . . . . ... ... ... ..

The image of a point on the surface under the Gaussian map is the
point on the unit sphere that has the same surface orientation and
normal vector . . . . . . . . . e e e e e e e e e e e

The geodesic curvature . . . . . . . . . ... oo

Two families of geodesic lines C and L at point P on an arbitrary
surface S. . . . . L L e e

Geodesic polar coordinates . . . . . . . ... ..
Cross-section of the surface . . . . . . . ... ... ... ...,

Triplet of non-collinear points A, Band C . . . . . ... ... .. ..

A free-form 3-D surface and its triangulated mesh . . . . . . . . ..
A phone with two small holes . . . . . . ... ... ..........
Decimation of a 3-D surface . . . . . . . .. ...
The first segment of the arbitrary geodesic line . . . . . ... .. ..
Geodesic line on a triangulated mesh . . . . . . . . ... ... .. ..
The adjustment of the arbitrary geodesic line and the sample points
A perpendicular direction of an arbitrary geodesic line . . . . . . . .

Creation of a perpendicular direction of the arbitrary geodesic line
when a sample point resides on the edge of a triangle . . . . . . . . .

X

13

16

27

29
30
34
41

48
49
50
52
54
56
57

58



List of Figures

5.9

5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

Creation of perpendicular direction from the segment of the arbitrary

geodesicline. . . . . . . . ... Lo Lo e 59
A completed semigeodesic coordinates on a triangulated mesh . . . . 60
2-D Gaussian filter with size 9x9 . . . . . . . .. ..o L. 62
Partial derivatives of the Gaussian function . . . . ... ... . ... 65
Derivatives of 1-D Gaussian function . . . . . . . . .. ... ... .. 66
Optimal smoothing scale . . . . . . . . . .. ... ... ... ..... 68
Geometric hashing technique using linked lists and linked stacks [85]

onad-Dsurface. . . . . . ... L e 69
Diffusion of the cube . . . . . . . . .. ... Lo 73
Diffusion of the foot . . . . . . . . .. ... ... .. 0. 74
Diffusion of the bull . . . . . . . .. . ... ... ... ... 74
Diffusion of the dinosaur . . . . . . . . . . . .. ... ... 76
Diffusion of the rabbit . . . . . . . .. ... ... .. ... 76
Diffusion and segmentation of the phone . . . . . . . ... ... ... 78
Diffusion and segmentation of the chair . . . . ... ... ... ... 78
Diftusion of the partial foot . . . . . . .. ... .. ... .. ... .. 78
Diffusion of the partial phone . . . . . . . . ... ... ... ..., 79
Diffusion, segmentation and decimation of the partial chair . . . . . 79
Diffusion of the rabbit head . . . . . . . .. ... ... ........ 79
red=high, blue=low . . . . . ... ... ... .. .. 80
Gaussian and mean curvatures on the foot . . . . . . . . .. ... .. 81
Curvatures on therabbit . . . . . . . . . ... ... ... ... ..., 81
Curvatures on the dinosaur . . . . . . . . . ... . .. ... .. 81
Curvatures on the bull . . . . . . . . . ... ... ... ... 82
Curvatures on the phone . . . . . . . . . .. ... ... ... ... 82
Curvatures on the chair . . . . . . . . .. ... ... ... ...... 82
The Gaussian and mean curvatures of a sphere . . . . . .. ... .. 84
Gaussian curvature error distribution of the foot . . . . ... . ... 85
Mean curvature error distribution of the foot . . . . . ... ... .. 86
Gaussian curvature error distribution of the rabbit . . . . . . .. .. 88
Mean curvature error distribution of the rabbit . . . . . . . . .. .. 89



List of Figures xi

6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37

6.38
6.39
6.40

Gaussian curvature error distribution of the dinosaur . . . . . . . . . 91
Mean curvature error distribution of the dinosaur . . . . . . . . . .. 92
Gaussian curvature error distribution of the bull . . . . . .. .. .. 93
Mean curvature error distribution of the bull . . . . . .. ... ... 94
Curvature zero crossing contours on the phone . . . .. ... .. .. 96
Curvature zero crossing contours on the chair . . . . . . ... .. .. 96
Curvature zero crossing contours on the rabbit . . . . . ... .. .. 96
Curvature zero crossing contours on the dinosaur . . . . . . . .. .. 97
Curvature zero crossing contours on the bull . . . . . . . ... .. .. 97
Local maxima of absolute values of curvature . . . . . .. ... ... 97
Local maxima of absolute values of curvature on the rabbit . . . . . 98
Local maxima of absolute values of curvature on the bull . . . . . . . 98
Local maxima of absolute values of curvature on the dinosaur . . . . 98
Torsion of curvature zero crossing contours and the local maxima of

absolute values . . . . . . . . . . .. e 99
Partial scene objects . . . . . . . . . . ... e 105
Scenes for object recognition . . . . . .. .. ... 108

3-D object models in database . . . . . ... ... .. ... ..... 109






List of Tables

6.1
6.2

6.3

6.4

6.5
6.6

Scale factors and rotation angles of scene objects. . . . . . . ... .. 101

Matching result of rotated and scaled object from the scenes against
the models within the database. At the end of this geometric hashing
stage, object models M bull, cube and rabbit are correctly recognized.102

The verification results of complete objects from table 6.2. . . . . . . 103

Matching results of partial objects from the scenes against the models
from database. . . . . . . ... L oL 104

The verification results of partial objects from table 6.4. . . . . . . . 106

Recognition results. . . . . . . . . .. ..o o 110

xiii






Chapter 1

Introduction

“Vision is the process of discovering from images what is present in the world, and
where it is” [106]. Discovering “what and where” are the problems of object recog-
nition and location, and are major tasks in computer vision. Representation and
recognition of 3-D objects have been an important and active area of research in
computer vision for many years [36, 48]. Applications range from industrial au-
tomation to mobile robot navigation. Much work has been carried out on recovering
geometric features from 2.5D range images [10, 12] as well as extending the scale
space representation to 2-D signals [100, 95, 76]. However, a proper representational

framework does not yet exist for 3-D surfaces.

The aim of this research is to develop a multi-scale representation for 3-D surfaces
with arbitrary shapes through the use of geometric invariants [187, 138], and to
utilize the representations for recognition of the underlying objects from arbitrary
viewpoints. A novel feature of the envisaged representation is the combination of
multi-scale characteristics with inherent geometric primitives extracted from the un-
derlying surfaces. This gives rise to representations robust with respect to noise and
local distortions of shape as well as invariant with respect to the shape-preserving
transformations (i.e. uniform scaling, translation and rotation) of the underlying

objects.

Another novel feature of the representation in this research is the ability to deal

with objects of any shape without having to make simplifying assumptions about the
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shape of those objects. As physical objects often do not look like the mathematically
defined objects that are commonly used in computer vision, attempts to describe
them using these mathematical primitives do not result in robust representations

since the approximations obtained are quite poor.

The main goal of the research is to be able to recognize any 3-D object from an
arbitrary viewpoint. As a result, each object model must be as complete as possible.
However, depth data obtained from a single viewpoint is not sufficient to cover every
part of the object surface. In the past, detailed and complete object models were
constructed manually [40], but this is a very time-consuming process. Instead, depth
data is now commonly obtained from multiple viewpoints and fused together to build

a single complete model of the object [58].

With recent major improvement in imaging technology, it is now possible to ob-
tain reliable data quickly using relatively inexpensive equipment. FEffective tech-
niques for processing that data open up potential applications in industrial automa-
tion/inspection [24] and mobile robot navigation [64]. Various methods such as
depth from focus, stereo matching and laser range scanning are used for the recov-
ery of depth values from 3-D objects [189, 101, 109]. Of these techniques, laser range
scanning is believed to have the capability to provide the most reliable depth data

at reasonable cost and speed.

As a result of recent advances in laser development, there are a number of 3-D
laser range scanners (e.g. ModelMaker, Minolta VI-300) available for the automatic
construction of complete object models. These 3-D laser scanner systems are based
upon the measurement principle of triangulation. A low-intensity laser beam scans
over an object whose surface may be treated with a removable white matt spray.
The laser beam is reflected from the object surface towards the sensor, then passed
through an auto focus lens, and finally recorded by a charge coupled device. This
captured data is transferred as a point-cloud (raw-data) for further processing, such

as surface registration [178] and surface fusion, to become a complete object model.

Once an object model and scene are obtained either in polygon mesh or some other

format, then multi-scale representations of both model and the scene are computed



so that the surfaces from the scene can be compared to the object model. These
multi-scale representations are based upon geometric invariants, therefore, robust-
ness with respect to noise and local distortions of shape as well as invariance with

respect to shape-preserving transformations are achieved.

In order to obtain descriptions of a 3-D surface at multiple scales, a smoothing filter
(such as a 2-D Gaussian kernel) is convolved with a parametric representation at
each point of the surface. In the case of a 2-D contour, arc length is utilized as the
natural parametrization of the contour [67, 13]. However, there are no such natural
parametrizations available for an arbitrary 3-D surface. Instead, it is necessary to
rely on local curvilinear coordinates that are defined at the neighbourhood of each
point of the surface. It follows that the entire surface must be covered with these
local coordinate systems. Successively, filtered versions of the surface are computed
by repeating this process using the previously smoothed surface as the input to the

next stage.

Local coordinate systems can be defined in various ways on 3-D surfaces. The use of
semigeodesic coordinates [44] and polar coordinates will be studied in this research.
Furthermore, different types of geometric invariants which can be employed in multi-
scale representations of 3-D surfaces are carefully examined. In general, contours of
zero Gaussian curvature and zero mean curvature on a 3-D surface are space curves
[30, 2]. These curves are in turn represented by the local maxima of absolute values
of torsion. Together with the local maxima of absolute values of Gaussian and mean

curvature, a rich set of features can be obtained for object recognition.

A common industrial vision problem is to determine the location and pose of objects
in a scene. In order to apply this research to solve such problems, robust matching
strategies have been developed to find the best match for the object model and
the scene. As features taken from multiple scales of representations are used, the
matching process is robust with respect to noise that can give rise to spurious features
at the fine scales of the representation. Since the matching process must be able
to accommodate occlusion [197], all possible local matches must be considered. In

order to achieve this efficiently, geometric hashing is utilized to quickly eliminate
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very unlikely candidates. Finally, global transformation parameters are used in a
verification stage to determine the goodness of fit of the scene data to each model

and to choose the best-matching candidate.

The results from this research are tested using objects viewed from arbitrary direc-
tions. The experiments are designed so that general conclusions are drawn about the
investigated shape representations and object recognition system. The suitability
of the system to handle objects with, not only different shapes but also belonging
to different categories of shape, is also studied (i.e. examples of categories of shape

include polyhedral versus curved objects or man-made versus natural objects).

The thesis is organized into seven major chapters that include the current introduc-
tory chapter. Chapter 2 discusses the background and motivation of this research.
Chapter 3 reviews related work and survey the literature. Chapter 4 describes rele-
vant theory from differential geometry, filtering and evolution properties of free-form
3-D surfaces. It explains how a multi-scale shape description can be computed for a
surface. This chapter also covers the computation of Gaussian and mean curvatures
as well as their zero crossing contours and local maxima of absolute values, torsion,
geometric hashing and global verification. Chapter 5 discusses the implementation
that includes parametrization of arbitrary 3-D surfaces, surface smoothing, curva-
ture estimation, object recognition and verification. Chapter 6 presents experimen-
tal results. Chapter 7 reviews the work and discusses some interesting avenues for

possible future work.



Chapter 2

Background and Motivation

In the early 1980’s, the concept of scale space representations for one-dimensional
(1-D) signals was introduced [198, 171]. These representations combined invariant
features of the underlying signal extracted from a continuum of scale levels. They
therefore achieved robustness with respect to considerable noise on the signal as well

as invariance with respect to its shape-preserving transformations.

s

IS
e

—

fills
0=10 o0=15 0=18 0=25 -
(a) fish (b) CSSI

Figure 2.1: A contour during smoothing and its CSS image. o is the width of a 1-D

Gaussian kernel and u is the normalized arc length parameter.

2-D contours [116, 117, 1, 31, 37] or planar curves [3] have been studied extensively
in computer vision since the bounding contours of projections of 3-D objects are
planar curves I' = {(z (u),y (u)) |u € [0,1]} (see Figure 2.1(a)) [119]. If each co-

ordinate function of T' is convolved with the width of a 1-D Gaussian kernel o (o

5
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is also referred to as scale), the resulting curve T, will be smoother than I'. The
locations of curvature zero crossings of I' can then be found. As ¢ increases, [,
becomes smoother and the number of zero crossings on it decreases. When o be-
comes sufficiently high, I', will be convex curve with no curvature zero crossings
(see Figure 2.1(a), o = 25). The process can be terminated at this stage and the
resulting points can be mapped to the (u,o) plane. The result of this process will

be a binary image called curvature scale space image (CSSI) (see Figure 2.1(b)).

This scale space concept was generalized and applied to 2-D contours [104, 127, 126].
Arc length was used to obtain a global parametrization of the contour. Curvature
zero crossing points from multiple scales were used as feature points since they had
the desired invariance properties. The CSSI was applied successfully to the problem
of matching a Landsat satellite image [127, 35] to a map of the lower mainland of

British Columbia, Canada.

Alternative ways of computing the representation were investigated in [105, 128]. As
a result, two new variations (renormalize and resample) of the CSSI were discovered
which offered more stability under conditions of non-homogeneous noise or local
differences in shape. The existing representation types were thought of as being

applicable to differing conditions of noise and local shape differences.

In order to properly evaluate the usefulness of the new representations for recog-
nition tasks, the theoretical properties of those representations were investigated.
Hence, global as well as local properties were studied. For example, it was shown
that the underlying contour could be reconstructed from its CSSI representation
(which showed that the CSSI was information-preserving) and that the computa-
tion of the CSSI converged to a stable solution. It was also shown that the physical
interpretation of 2-D contours as object boundaries was not altered during CSSI
computation. The results demonstrated that the CSSI possessed properties which
were widely considered desirable for a shape representation technique in computer

vision [105, 112, 128, 130].

Further experiments were carried out to determine the utility of the CSSI for object

recognition tasks [119]. An industrially oriented isolated object recognition system



based on the CSSI was developed which shown to be very robust and fast. No
restriction was placed on object shapes or types. The system distinguished between
objects with small differences in shapes [129, 115]. That system was followed up
with another that was also industrially oriented but allowed occluding objects. The
second system was reliable and fast (considering the complexity of the task). No
modification to the system or its parameters was required in order for it to produce

the correct interpretation on several complex scenes [116, 117].

Mokhtarian [119] showed the application of CSSI to the task of image database re-
trieval by shape content. There were approximately 1100 images of marine creatures
in the chosen database. Each image showed one distinct fish species on a uniform
background. Each image was processed to recover the boundary contour, which was
then represented by three global shape parameters and the maxima of the curvature

zero crossing contours in its CSSI.

Based on its properties, the CSSI based shape descriptor has been adopted as part
of the MPEG-7 standard in September 2001 [201]. This illustrates the importance
of CSSI. Many of the results obtained concerning the CSSI representation for 2-D
contours have been further generalized to 3-D contours or space curves [111]. Space
curves are important since they can be used to represent 3-D objects compactly and
efficiently. In general, curvature zero crossing contours and orientation discontinu-
ities on 3-D surfaces are invariant space curves. Figure 2.2(a) shows an original view
of a space curve depicting an armchair. It also shows the armchair during evolution
at 0 = 10, 0 = 30 and 0 = 50. As a space curve evolves, more and more high-
level descriptions of its shape are obtained. Thus the evolution process results in a
continuous fine-to-coarse description of the shape of a space curve. These resulting

representations are referred to as the torsion scale space image (TSSI) (see Figure

2.2(b)).

The theoretical properties of the TSSI representations have also been investigated
in a systematic way. Two additional variants (renormalize and resample) have been
developed, which were appropriate for varying conditions of noise and local distor-

tions of shape [113]. The results were closely comparable to the properties of the
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Original 0=10 /\ W/\
o =30 0=50 |\ W\mm(\m I 1 ol A
(a) Armchair (b) TSSI

Figure 2.2: A space curve during smoothing and its TSS image. o is the scale and

u is the arc length measured along the space curve.

CSSI representations and showed that TSSIs have properties generally considered
useful for shape representation methods in computer vision [110, 112, 130, 114]. The
TSSIs were also studied in order to determine their suitability for object recognition
tasks. It was determined that the TSSIs were in fact very suitable for recognition

of arbitrarily shaped space curves affected by significant noise [113].

Effective shape representation schemes are crucial to reliable and robust object recog-
nition that in turn is a central issue in computer vision. Much work has been carried
out on shape representation schemes for 3-D objects but frequently simplifying as-
sumptions are made about the shape of objects. This gives rise to two types of
problem. Firstly, the class of objects which are acceptable to the system became
severely restricted since the shapes of many objects do not satisfy the simplifying
assumptions. Secondly, when the class of acceptable objects is enlarged, the system
became unreliable since the shapes of some objects do not conform to the built-in

mathematical object models.

This research was timely since projective invariants [152, 102] and multi-scale rep-

resentations based on geometric invariants have recently become the focus of much



attention. However, multi-scale representations have so far been developed only for
1-D and 2-D signals as well as 2-D and 3-D contours. The full generalization of the
concept to 3-D surfaces was not yet accomplished. Equally, there was very little use
of inherent geometric invariants of 3-D surfaces. Mostly the properties of artificially
constructed models or primitives are used but these may not fit the 3-D free-form
real data well. Since geometric invariants result in representations reflecting the
properties of the data from which it is computed, so the type of representation used
in this research will be invariant with respect to the transformations that do not
alter the shape of the underlying object. Furthermore, the multi-scale structure of
the representation promotes stability with respect to noise and local deformations
of shape that are always present in real data. Noises as well as very small features of
the surface are represented on the fine scales of the representation whereas the main
structural elements of the surface exist on the coarser scales. This agrees well with
biological vision systems [45] that organize visual data at multiple levels of scale or

detail. In summary, the prime motivations for this research are:

e Generalizing the existing scale space representations to arbitrarily shaped 3-D

surfaces.

¢ Studying the properties of these representations, developing methodology for
multi-scale representations of 3-D surfaces and complex objects based on in-

trinsic geometric invariants.

e Using the above representations for pose estimation and recognition of 3-D
objects from arbitrary viewpoints, and demonstrating their usefulness for chal-

lenging object recognition tasks.

Finally, its results should have a considerable impact on other researchers in the

field and it should also benefit the computer vision community in general.






Chapter 3

Related Work and Literature

Survey

Many object representation and recognition systems rely on restrictions imposed on
the geometry of the object. However, complex free-form objects may not be modelled
easily using such restrictions. On a free-form object, the surface normal is defined
and continuous everywhere, except at sharp corners and edges. Discontinuities in
the surface normal or curvature may also be present anywhere on the object. The
curves that connect these points of discontinuity may meet or diverge. Therefore,
representation and recognition of such an object can be difficult, especially for a
free-form object where inspection of arbitrary curved surfaces and path planning for
robot navigation is essential. Nevertheless, the following sections highlight related
work that attempts to solve these problems in object representation and recognition
[8]. At the end of this chapter, a general overview summarizing the related work

and literature survey is given.

11
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3.1 3-D Surfaces Construction and Representation

3.1.1 Automatic Registration

Neurosurgeons need reliable and accurate 3-D image recognition. Many surgical
procedures require Magnetic Resonance Imaging (MRI) and Computed Tomography
(CT) data to be matched while patients are on the operating table. The common
approach is to use a 3-D laser range scanner for obtaining depth data [103] from
the patient’s skin surface where the surgery is performed. When the landmark [54]
features are obtained, the surgeon can see inside the patient with MRI or CT regis-
tration. Therefore, an automatic registration method [47] is introduced which must
match and reconstruct a live view of a patient. This enables a surgeon to visual-
ize the internal structure of the patient before executing the guided neurosurgical
procedures. Other applications for automatic registration are image guided biop-
sies and focused therapeutic procedures. These applications use a multi-stage and
multi-resolution [177, 176, 170] algorithm. Its accuracy ranges from 10 microns to

1.5 millimetres.

3.1.2 Deformable Surfaces

Deformable surfaces [156, 135] can be used to fit the smooth varying objects effi-
ciently. It reconstructs a surface model of an object from range data. Parametriza-
tion of surface is often achieved using B-splines. However, they have limitations
when modelling general closed surfaces or teacup like surfaces with handles. These
surfaces with a fixed mesh topology are similar to the flexible plates or membranes.
They may deform but they cannot restructure their topology. In fact it is im-
possible to use B-splines to describe arbitrary topology surfaces because B-splines
maintain C! (first order) continuity. Since triangulated meshes are used to represent
3-D objects, these representations are not efficient when describing curved surfaces.
However, the meshes based on B-spline deformable surfaces are more efficient. The
only drawback is that they connect control points in a predefined way, i.e. they

cannot describe surfaces of arbitrary topology. Therefore, generalized biquadratic
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B-splines or slime based on geometric continuity G! (i.e. the directions of two seg-
ments’ tangent vectors are equal at a join point of a curve), the drag force, the

elastic force and the data force, can be chosen to represent an arbitrary topology.

3.2 Object Recognition

3.2.1 Aspect Matching

Figure 3.1: A cuboid object and its aspect graph. Each node in the aspect graph
represents a stable view. The branches show how one can go from one stable view

to other stable views.

A 3-D object can be represented using its aspect graph. An aspect graph represents
all stable views of an object. An aspect graph is obtained by partitioning the view-
space into areas in which the object has stable views. The aspect graph for an object
represents a relationship among all the stable view. A cuboid object and its aspect

graph are shown in Figure 3.1.
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Since 3-D shapes can be recognized using aspect graphs, Dickinson [29, 28] applies
this approach to develop an object recognition system. 3-D object are represented
using several views obtained either from regularly spaced viewpoints in space or
from some strategically selected viewpoints [75]. For a limited set of objects, we
may consider many views of the object and then represent each view in an observer-

centred representation.

On the other hand, 3-D shape recovery using distributed aspect matching [29] is
an approach to the recognition of 3-D objects. It can either be described by the
mathematical object representation [136, 20] or represented by the image structure
graph [32]. The result of object recognition is based on the small and compact non-
occluded image database [157]. For partial objects, an aspect hierarchical approach
is made to overcome the problems of occlusion. Given an image of an input scene
with multiple occluded objects, this image can be segmented into regions. Then the
aspect hierarchy can be analysed for local matching. If there is an exact match, a
hypothesis will be generated [43]. These aspect hypotheses can be ranked and used

for verification [49].

3.2.2 Curvedness Orientation Shape Map

Curvedness orientation shape map on sphere (COSMOS) is a system of automated
3-D free-form rigid object representation and recognition [73]. It uses dense surface
range data to recognize arbitrarily curved 3-D objects from different views. Its

viewpoint can be arbitrary. The object may vary in shape and complexity.

COSMOS has a multi-level matching strategy which includes at the first level model
selection and at the second level model feature identification. In the first level,
the collection of views obtained from each object is used for a shape spectrum
based model selection scheme [38]. This stores the object label and its pose vector.
A moment-based shape spectrum can be calculated and compared with a feature
histogram. A typical example of the COSMOS first level experiment includes 6400
views of 20 free-form objects. The test result with 2000 independent views shows

on average 20% of the database was correctly classified.
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For the second level COSMOS based view matching, the constant shape maximal
patch (CSMP) method uses spherical convex shape cylinders to construct and rep-
resent a local area of a 3-D object. From the selected model view hypotheses, CSMP
can match the scene object reasonably. The whole object recognition system, in-
cluding the first and second levels, is tested using 50 range images obtained from
ten different free-form objects, and COSMOS is able to identify 82% of objects with

high matching score.

3.2.3 Edge Map Recognition

3-D free-form surface recognition by using an edge map [17] illustrates how to use
a 2-D view approach to recognize free-form 3-D surfaces. This includes the basic
modelling, indexing and matching of a 3-D surface. The prime objective of modelling
is to construct the edge map of 3-D surfaces from any viewpoint. This edge map can
be indexed and stored in a database. Then hypotheses are generated by matching

the 3-D surface to the database.

At first, 2.5D models are used to construct the overlapped 2-D images from 5 different
viewpoints. At each view, an edge map is presented by approximating the edges.
Then the estimated edges are segmented according to the edge contour extrema
[55, 33, 192, 7, 23]. Now these newly generated invariant segment features are
encoded and indexed by using hash table. Afterwards, the models are used for pose
clustering. The correct candidates are ranked. Then the most likely hypotheses are

verified at coarse, middle and fine sampling levels.

3.2.4 Extended Gaussian Image

The extended Gaussian image (EGI) [63] represents the shapes of surfaces. It can
be computed from needle maps and depth maps. It is useful for the task of 3-D
surface recognition because no two convex objects have the same extended Gaussian
image G(&,7), where (£,7) is a point on the Gaussian sphere, which has the same
normal as the point (u,v) on the original surface. ¢ is the longitude and 7 is the

latitude on the Gaussian sphere. An orientation histogram is used to approximate
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Figure 3.2: The image of a point on the surface under the Gaussian map is the point

on the unit sphere that has the same surface orientation and normal vector f.

the extended Gaussian image. The applications of extended Gaussian images include

object recognition, and to find the attitude in space of an object.

However, when part of the object is occluded, EGI cannot reliably extract the rep-
resentation. Hence, an alternative approach, simplex angle image (SAI) [26], base
on the idea of fitting a bounded algebraic surface of fixed degree of a set of data
points can be used. It is a combination of the point set matching and of the original
EGI approach. As mesh deformation is applied to produce two important proper-
ties, these firstly include the mesh nodes that must be close to the original surface.
Secondly, the mesh nodes must satisfy the normal constraints. Therefore, the up-
date rule can be obtained. A SAI image is then retrieved from this mesh. The next
step is to compute the full transformation and to match the objects that include
the partial views and occlusion. SAI can be used as representation for 3-D object
recognition. It has invariant and coarse-to-fine properties. It can also be used to

measure curvature.
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3.2.5 Genetic Algorithm

To recognize a scene object from an image database requires some knowledge of ob-
ject features [191]. Genetic algorithm (GA) represents an approach to optimization
that uses natural evolution mechanisms to search for the maximum of an objective
function [167]. As with any optimization technique, they can be used in recognition

and machine learning. GA is defined as follows:

1. Create a starting population of code strings, and find the value of their objec-

tive functions.

2. Probabilistically reproduce high fitness strings in the new population, remove

poor fitness strings. It is called reproduction.

3. Construct new strings combining reproduced code strings from the previous

population (crossover).
4. From time to time change one character of some string at random (mutation).

5. Order code strings of the current population according to the value of their

objective functions (fitness).

6. If the maximum achieved string fitness does not increase over several steps,
stop. The desired optimum is represented by the current string of maximum

fitness. Otherwise, repeat the sequence of steps starting at 2.

This technique is useful for object recognition [134]. For example, using a GA to
perform a heuristic search of the Hough transform parameter space [5, 72, 164],
rather than an exhaustive search, it overcomes the problems of computation time

and memory requirements.

3.2.6 Level Set Methods

The application of level set methods in shape detection and recognition is shown in

[162]. For example, a medical scan is given with the goal of isolating and identifying
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tumours. It might isolate these shapes by propagating a front to the boundary with
criteria built from the image I gradient. The studies of this moving front depend
on geometric properties such as normal direction and curvature. Its speed function
F is specified, in term of the curvature x [153, 154]. The image I(z,y) is convolved
with a Gaussian smoothing filter G, whose characteristic width is o. The term
VG, ® I(z,y) is essentially zero except where the image gradient changes rapidly,
in which case the value becomes large. Thus, the filter k;(z,y) = m is
close to unity away from boundaries, and drops to zero near sharp changes in the
image gradient. This information can be used for shape detection and recognition.

There are several desirable aspects of this approach:

e The initial front can consist of many fronts; due to the topological capabilities
of the level set method, these fronts will merge into a single front as it grows

into a particular shape.
e The front can follow intricate twists and turns in the desired boundary.

e The technique can be used to extract 3-D shapes as well by initializing as a

ball inside the desired region.

e Small isolated spots of noise where the image gradient changes substantially
are ignored; the front propagates around these points and closes back in on

itself and then disappears.

3.2.7 Multi-view Methods

By just looking at the planar surfaces of a 3-D model, a set of linear invariant fea-
tures can be extracted from these flat surfaces using the orthogonal transformation.
This technique allows the occluded 3-D surface to be recognized [133, 50, 88]. As
the planar surfaces of a 3-D model are examined using the 2-D views, the affine
transformation parameters can be determined from three feature points. They de-
fine the scaling factor, translation and rotation for object recognition. In addition,
it also satisfies the definition of linear transformation. Furthermore, the centroid of

its projection can be transformed by the same transformation.
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Since affine parameters are determined from three points, a group of such features
clustered in a small concentrated area can be applied to a partial occluded surface.
Therefore, the following algorithm is defined. Firstly, from a feature set of 2-D
views of a 3-D model, at least three clusters are generated. For each cluster, its
centroid is computed off-line. Secondly, the affine transformation for each of the
possible combinations of triples of the cluster centroids in the original model and
input object from the scene are computed. Finally, the best-fit affine transformation

is applied to align the original coordinates from 3-D model to the scene.

The experiment shows that this algorithm recovers 3-D objects with more than 50%
of its surface occluded. It takes 100ms for recognizing an object with more than 300

features on a Sun Sparc workstation.

3.2.8 Neural Networks

Recently, neural networks have become popular in image processing [196, 207]. This
state machine technique can be used in image coding, object recognition, motion, etc
[6]. A neural network using constructive solid geometry based 3-D object recognition
[18] is applied to recognize input scene in term of primitives such as block, spheres,
cylinders, cones and tori. Each primitive is described by concavity and convexity.
Then precedence graphs are used to define the order according to subtracting arc,

appending arc, gluing arc and adjacency arc [60].

After the input objects are represented, mean field annealing neural networks are
used for object recognition. A 2-D array of neurones is applied to index the model
primitives and the scene primitives. An energy constraints function is used to cal-
culate the matching support of primitives. A final network output is produced for

matching with optimization and eliminating the undeterminants.

When the optimal match between the scene and the model objects has been found,
3-D transformation and quaternion [173, 194, 97, 25] technique for rotation angle
estimation are applied to remove the difference between the scene and the model ob-
jects. Finally, a models database with six objects is tested and successfully produces

a network state symmetric matrices for object recognition.
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3.2.9 Weighted Average Smoothing

A million vertices are not unusual in 3-D meshes [131]. Normally, such a surface is
smoothed by Fourier Transform [144, 99]. A large surface may be simplified during
the smoothing process, and re-meshed using far fewer faces. However, its curvature
value must be maintained at the same time. Hence, a surface subdivision approach
is required [185]. As the surfaces are represented by the vertices and polygonal faces
[151], the surface subdivision causes the next face in the sequence to be constructed
from the previous face by a refinement/decimation process [62, 61, 19]. Once the
faces are smaller than the necessary resolution, this process stops and a new surface
is created. However, complications may occur when the iterative process is applied.
Therefore, a simple surface signal low-pass filter algorithm is introduced in here
[183], which uses the weighted average method with neighbouring vertices, positive
scale factors A and negative scale factor p. This method smoothes the large 3-D
surface without shrinkage. The smoothing process is done in terms of the discrete
surface signal. For object recognition, Taubin [184] extends the use of polyhedral

approximation to estimate the curvature of surfaces.

3.3 Overview

This section presents a summary of previous work in representation and recognition
of 3-D surfaces. As Sinha and Jain [165] provide an overview of geometry based
representations derived from range data of objects, comprehensive surveys of 3-D
object recognition systems are presented by Besl and Jain [9], Chin and Dyer [21] and
Suetens [180]. Some representation schemes for 3-D objects have adopted some form
of volumetric or surface parametric models to characterize the shape of the objects.
Current volumetric representations rely on representing objects in terms of general
cylinders, superquadrics, set-theoretical combinations of volume primitives as in
constructive solid geometry or spatial occupancy [14, 143, 166, 18, 155]. However,
it may not be possible to express objects with free-form surfaces using for example,

superquadric primitives. Surface-based representations describe an object in terms
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of the surfaces bounding the object and their properties [36, 74, 34, 38], and are
employed for recognition. Although there are several methods available to model
a surface, the common type is polygonal mesh that includes the triangulated mesh
[59, 58] and the four sided spline patches. Since triangulated meshes are the simplest
and most effective form of polygons for covering a free-form surface, they will be

used in this research.

Polyhedral approximations [36] fit a polyhedral object with vertices and relatively
large flat faces to a 3-D object. Their disadvantage is that the choice of vertices
can be quite arbitrary which renders the representation not robust. It is important
to have a robust representation with minimum noise. Noise can affect the result of
object recognition. Smoothed 3-D splines [175] can also be fitted to 3-D objects.
Their shortcomings are that the choice of knot points is again arbitrary and that
the spline parameters are not invariant. Generalized cones or cylinders [168] as well
as geons [145] approximate a 3-D object using globally parametrized mathematical
models [182], but they are not applicable to detailed free-form objects. Multi-view
representations [161] are based on a large number of views of a 3-D object obtained
from different viewpoints, but difficulties can arise when a non-standard view is
encountered. In volumetric diffusion [86] or level set methods [162], an object is
treated as a filled area or volume. The object is then blurred by subjecting it to
the diffusion equation. The boundary of each blurred object can then be defined
by applying the Laplacian operator to the smoothed area or volume. The major
shortcoming of these approaches is a lack of local support. In other words, the
entire object data must be available. This problem makes them unsuitable for
object recognition in the presence of occlusion. A form of 3-D surface smoothing
has been carried out in [183, 186] but this method has drawbacks since it is based
on weighted averaging using neighbouring vertices and is therefore dependent on the
underlying triangulated mesh. Now for other areas of research, the smoothing of 3-D
surfaces is a result of the diffusion process [187] that has been examined carefully.
For parametrization of a 3-D surface, other methods have also been studied, such as
the asymptotic coordinates [90], isothermic coordinates [44] and global coordinates

[13] used for closed, simply connected objects.



22 Chapter 3. Related Work and Literature Survey

Global representations such as the extended Gaussian images [63, 80, 98] describe
3-D objects in terms of their surface normal distributions on the unit sphere with
appropriate support functions. However, arbitrary curved objects have to be ei-
ther approximated by planar patches or divided into regions based on the Gaussian
curvature. Another approach for specifying a 3-D object is the view-centred repre-
sentation. The graph approach [87] attempts to group a set of infinite 2-D views
of a 3-D object into a set of meaningful cluster of appearances. Murase and Nayar
[132] and Swets [181] also exploit photometric information to describe and recognize
objects. A major drawback of view-centred representations is a lack of complete
information. Part based representations capture structure in object descriptions
[150, 29], but there is a lack of agreement in deciding the general set of part prim-
itives that need to be used in order to be sufficient and appropriate. Furthermore
computation of parts from a single view of an object is difficult. Recent approaches
using point set based registration [11], splash and super polygonal segments [172]
and algebraic polynomials [81, 147] have addressed the issue of representing com-
plex curved free-form surfaces. However, there are limitations relating to object
segmentation issues, surface fitting convergence, restricting objects to be topologi-
cally equivalent to a sphere and sensitivity to noise when low-level surface features
are used. For curvature estimation on 3-D surfaces, [27] shows an implicit fairing
of irregular meshes using diffusion and curvature flow. Problem with this approach
is that it creates a so-called chicken and egg issue. Since curvature estimation on a
noisy mesh is unreliable, to improve the estimates, the data must be smoothed first.
However, Deshrun’s method requires curvature estimates before smoothing can be
carried out. In contrast, the technique used in this research avoids such problem by

combining smoothing and curvature estimation in a unified framework.

A number of matching topics have been acknowledged by researchers as important in
3-D object recognition [107, 193, 39]. These are related to object shape complexity,
rigid and flexible objects and occlusion. The success of existing object recognition
system results from the restrictions they impose on the classes of geometric ob-
jects. However, few systems can handle arbitrary surfaces with very few restrictive

assumptions about their geometric shapes. Object recognition is achieved by match-
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ing features derived from the scene with stored object model representations. From
the related work in the previous sections, they show that an efficient algorithm has
been developed for the recognition of 2-D views or flat rigid objects based on the
geometric hashing technique in [199, 190, 51, 91, 93]. This technique is also extended
to the recognition of arbitrary rigid 3-D objects from single 2-D images [92]. Stein
and Medioni [172] and Flynn and Jain [39] have also employed geometric hashing
for 3-D object recognition. In a geometric hashing technique the model informa-
tion is indexed into a hash table using minimal transformation feature points. This
technique determines a minimal feature set from a given scene and a corresponding
feature set on one of the models, by considering only the scene features that vote
for the correct interpretation. Although other model based object recognition tech-
niques such as Hough (pose) clustering [5, 164, 174, 142], the alignment technique
[70, 71], relational structures [14, 34, 200], superquadrics [53, 166, 52] with local
and global 3-D deformations are available, the advantages of the geometric hashing
technique over the others is the independent processing of the model and scene infor-
mation as well as its quick recognition time, and its ability to process all the model
objects simultaneously and to allow occlusion. Recent patch-based techniques in-
cluding point signatures [22] and spin images [79] perform well on scenes containing
clutter and occlusion. However, these systems have been designed for single range
images, and do not generalize to more general 3-D surfaces that can be obtained by
merging two or more range images. In other words, their effectiveness is limited by

the use of information in only one range image.






Chapter 4

Theory and Design Analysis

This chapter introduces a technique for multi-scale representation and recognition
of 3-D surfaces using geometric invariants [205, 122, 124]. The technique considered
here is a generalization of earlier multi-scale representation theories proposed for
2-D contours [128] and space curves [118]. More details of these techniques appear

in [120, 121, 203, 204, 82, 83].

After a 3-D object model is constructed, diffusion smoothing of its surface can be
achieved through convolution of local parametrization of the surface with a 2-D
Gaussian filter. Semigeodesic coordinates [44] are utilized as a natural and effi-
cient way of locally parametrizing surface shape. They have local support and are

therefore applicable to partial data corresponding to surface-segments.

Curvature estimation is one of the important tasks in 3-D object description and
recognition. Surface curvature provides a unique viewpoint invariant description of
local surface shape. Differential geometry [90, 89, 77, 96] gives several measures
of curvature that include Gaussian and mean curvatures. Combination of these

curvature values enables the local surface type to be categorized.

Once surface curvatures are estimated, then curvature zero crossing contours are
recovered on the surface. Local maxima of absolute values of Gaussian and mean
curvatures as well as the local maxima of absolute values of torsion of zero crossing

contours of Gaussian and mean curvatures are also located on the surface. Together

25
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they present sets of interest features for recognition.

At the end of chapter, the recognition of free-form 3-D objects based on using geo-
metric hashing is addressed. This technique is useful for partially occluded objects.
Model information is indexed into a hash-table using minimal transformation invari-
ant features which are local maxima of absolute values of Gaussian curvature, mean
curvature and torsion, so that both the model object and the observed scene can be
matched. The matching result is verified by using the global parameters from the

scene and models to finally accomplish the recognition of the free-form 3-D object.

This chapter includes six major sections that are the theories behind this research.
Section 4.1 describes 3-D parametrization, geodesic lines, semigeodesic coordinates
and geodesic polar coordinates. Section 4.2 details a 3-D free-form surface smoothing
technique and its multi-scale evolution properties. Section 4.3 covers the computa-
tion of Gaussian and mean curvatures. Section 4.4 shows torsion estimation. Section
4.5 presents the geometric hashing algorithm and Section 4.6 describes the global

parameter transformation process for 3-D free-form surfaces verification.

4.1 Parametrization

A crucial property of 2-D contours and space curves (or 3-D contours) is that they
can be parametrized globally using the arc length parameter. However, free-form
3-D surfaces are more complex. As a result, no global coordinate system exists on
a free-form 3-D surface that could yield a natural parametrization of that surface.
Indeed, studies of local properties of 3-D surfaces are carried out in differential
geometry using local coordinate systems called curvilinear coordinates or Gaussian
coordinates. Each system of curvilinear coordinates is introduced on a patch of a
regular surface referred to as a simple sheet. A simple sheet of a surface is obtained
from a rectangle by stretching, squeezing, and bending but without tearing or gluing

together. Given a parametric representation

r =r(u,v) (4.1)
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on a local patch, the values of the parameters v and v determine the position of

each point on that patch.

4.1.1 Geodesic Lines

Tangent plane T(P)

Figure 4.1: The geodesic curvature

Before any forms of curvilinear coordinates or Gaussian coordinates are described,
it is necessary to define geodesic lines on a regular 3-D surface. A geodesic line is
defined as a contour that locally represents the shortest distance on the 3-D surface
between any two points on that contour [46, 139, 16]. Initially a geodesic line is
drawn arbitrarily through the origin at the local area. This geodesic line is then
sampled at equal-sized intervals. The second family of lines are also geodesic lines
and they are drawn orthogonally at each sampled point. All the lines together
produce semigeodesic coordinates that are a form of curvilinear coordinates and its

details will be shown in the next Section 4.1.2. Now the following definitions are
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made:

Definition 1 A geodesic line or a geodesic of a surface is a curve whose geodesic
curvature is zero at every point. Geodesic curvature is the magnitude of the vector

of geodesic curvature K, (see Figure 4.1).

Definition 2 The vector of geodesic curvature K, of a curve C lying on a surface
S at a point P on C is obtained by projecting the curvature vector K of C at P on
the tangent plane T'(P) to S at P.

Definition 3 The vector K,, of normal curvature is obtained by projecting the

curvature vector K on the surface normal vector n.

Definition 4 The curvature vector K of a curve C at point P is of the same direction
as the principal normal vector at P and of length equal to the curvature of the curve

at P.

Definition 5 The plane with the highest possible order of contact with the curve
C at point P is called the osculating plane at P. [44]

NB Let P be a common point of the curve C with a surface S, and let p be a
variable point of the curve such that the signed arc length between P and p is h.
Denote by dj, the distance of p from the surface. We say that the surface and curve

have a contact of order at least n at P if d, = 0(h"™).

Definition 6 The principal normal vector of curve C at point P is perpendicular

to C at P and lies in the osculating plane at P.

The following crucial minimal property of geodesic lines is actually utilized to con-

struct geodesics on 3-D surfaces:

Definition 7 An arc of a geodesic line C passing through point P and lying entirely
in a sufficiently small neighbourhood of point P of surface S of class C? is the shortest

join of P with any other point of C by a curve lying in the neighbourhood.
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4.1.2 Semigeodesic Coordinates

Semigeodesic coordinates are one form of curvilinear coordinates. They consist of
an arbitrary geodesic line C and a second family of geodesic lines £. The second
family of geodesic lines must be perpendicular to the arbitrary geodesic line. They
are constructed in the following way at point P on surface S of class C? (ie. a

manifold or a surface is differentiable of order 2):

e Choose a geodesic line C through point P in an arbitrary direction.

e Denote by u the arc length parameter on C, such that P corresponds to the

value ©u = 0.

e Take further through every point of C, the geodesic line £ which is perpendic-

ular to C at the corresponding point.

e Denote by v the arc length parameter on L.

Arbitrary geodesic line (¢
ye © Second family of geodesic lines() are perpendicular to (¢)

Figure 4.2: Two families of geodesic lines C and L at point P on an arbitrary surface

S.

The two parameters u and v determine the position of each point in the domain
swept out by these geodesic lines. The line (v = 0 with variable ) and the lines
(u = constant with variable v) form two families of lines which give rise to the

semigeodesic coordinates on the surface (see Figure 4.2). It is also shown that
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in a sufficiently small neighbourhood of point P, semigeodesic coordinates always
serve as curvilinear coordinates in a regular parametric representation of S, and
the orthogonal Cartesian coordinates in the plane are a special case of semigeodesic

coordinates on a flat surface.

4.1.3 Geodesic Polar Coordinates

Geodesic polar coordinates are another type of geodesic surface coordinate. They

are constructed at point P on surface S of class C? in the following way:

1. Choose an arbitrary direction w on S at point P.
2. Take all geodesic lines emanating from point P.
3. Denote by v the arc length parameter on each geodesic in previous step.

4. Denote by u the angle between w and the tangent vector of each geodesic in

step 2 at point P.

Surface S

oot
Nb'\“a‘\‘ o

7
- Second geodesic

Angle u

POInt P =<-+-=>Tangent vector

(a) Angle u (b) Polar coordinates

Figure 4.3: Geodesic polar coordinates

Again the two parameters u and v determine the position of each point in the domain
swept out by these geodesic lines. Figure 4.3 shows the geodesic polar coordinates

in a sufficiently small neighbourhood of point P.
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4.2 Surface Smoothing

The procedures outlined at Section 4.1.2 are followed to construct semigeodesic
coordinates at every point of a 3-D surface S, and local parametrization yields at

each point P

r(u,v) = (z(u,v), y(u,v), z(u,v)) (4.2)

If this surface is now smoothed using a 2-D Gaussian filter, then the new location

of point P is given by
R(u,v,0) = (X(u,v,0), Y(u,v,0), Z(u,v,0)) (4.3)

where

V(u,v,0) = y(u,v) ® G(u,v,0) (4.4)

Z(u,v,0) = z(u,v) ® G(u,v,0)

in which ® denotes convolution and the 2-D Gaussian filter is

1 _@2+?)

e 257 (4.5)

In the case of geodesic polar coordinates, the Gaussian function becomes 1-D. As
a result, each of the 2-D convolutions above can be expressed as a series of 1-D
convolutions. In both cases, semigeodesic and geodesic polar coordinates are valid
locally and the 2-D Gaussian filters always have ¢ = 1. The smoothing process
is repeated at each point of S. The new point positions after filtering R(u,v, o)
become the smoothed surface. Since geodesic polar coordinates can be interpreted
as the semigeodesic coordinates [44, 56, 108, 90, 46, 139], semigeodesic coordinates

are therefore needed for curvature estimation.

4.2.1 Evolution Properties

In order to achieve multi-scale descriptions of a 3-D surface S, it is required to smooth

the surface according to the process described previously. The smoothed surface is
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then considered as the input to the next stage of smoothing. This procedure is
then iterated many times to obtain multi-scale descriptions of S and it is called the
evolution of 3-D surfaces. The following theorems show the fundamental properties

of such an evolution.

Theorem 1 The order of application of evolution and a shape preserving transfor-

mation to a surface does not change the final result.

Proof Suppose surface S is evolved into S,, every point of S, is a weighted average
of a subset of points of S. Therefore, evolution at each point (Q of S can be expressed

as the convolution of a neighbourhood of @) with a 2-D function with unknown values
P(X,)Y,Z) = (z(u,v) ® f(u,v), y(u,v) ® f(u,v), z(u,v) ® f(u,v))
Now applying an affine transform to point P to get P (X1,Y1, Z1) where
Xi=ai X+0Y +eaZ+d

Y1 = as X +bY +¢0Z +doy

Z1 = a3 X +b3Y 4+ c37Z + ds
Alternatively, to apply an affine transform to point @ first; and then evolve
Xo = (a1z(u,v) + bry(u,v) + c1z(u,v) + di) ® f(u,v)
Yo = (agz(u,v) + bay(u,v) + caz(u,v) + d2) ® f(u,v)
Zy = (G’Sw(uv U) + b3y(u7 U) + C3Z(U, U) + d3) ® f(u7 U)

so Xo = X1, Yo =Y; and Zs = Z;. Affine also includes shape preserving transform.

Theorem 2 Let S be a closed surface and let H be its convex hull. S remains

inside H during evolution.

Proof Since H is a convex surface, every plane T" tangent to H contains that surface
in the left (or right) half-space it creates. Since S is inside H, S is also contained
in the same half-space. Now rotate T and S so that T becomes parallel to the zy

plane. T is now described by the equation z = ¢. Since T does not intersect S,
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it follows that @), > ¢ for every point () on S. Let S, be an evolved version of S.
Every point of S, is a weighted average of a subset of points of S. Therefore, R, > ¢
for every point R on S,, and S, is also contained in the same half-space. This result
holds for every plane tangent to H; therefore S, is contained inside the intersection
of all the left (or right) half-spaces created by the tangent planes of H. It follows

that S, is also inside H.

Theorem 3 Iterative Gaussian filtering of a surface converges to the solution of the

heat diffusion equation.

Proof Let € be the maximum error in the location of any point of surface S when the
heat diffusion [138] of S is approximated through Gaussian filtering with standard

deviation Ao. To observe that at a point P of S
€=|(r+ Hn) — (r + Ary)| = |[Hn — Ary|

where H is mean curvature, n is the normal vector at P, r is the position vector
of P and Ar, is the amount of change in the position vector of P after Gaussian

filtering. According to heat diffusion equation

or

where ¢t is time. Let
Ary = Hyng

where n, is a unit vector with the same direction as that of Ar,, and H, is equal
to length of Ar,. Let k; and k» be the principal curvatures at P. Assume that
k1 and ko are constant in a small neighbourhood of P. The following cases can be

distinguished:
e [y and ke are both zero: the surface is locally planar.

e One of k1 and ks is zero: the surface is locally cylindrical.

e k1 and ko are either both positive or both negative: the surface is locally

ellipsoidal.
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e One of k1 and ko is positive and the other is negative: the surface is locally

saddle-shaped.

In each case, it can be confirmed that Gaussian filtering is equivalent to diffusion
smoothing of the surface. It follows that for a small Ao, H; —+ H and n; — n, and
therefore € — 0. After ¢ iterations of smoothing, total error is given by ie which is

also small.

Theorem 4 Let S be a 3-D surface in C2. Let S, be an evolved version of S with a
cusp point at P. There is a § > 0 such that S,_; intersects itself in a neighbourhood

of point P.

Proof It follows from the Equation (4.6) for heat diffusion that for two points with
infinitesimal distance on S [203], application of infinitesimal diffusion will result in
two new points also with infinitesimal distance. This is because at two nearby points

P, and P>, H; = Hs and n; =~ ns so

ory O
ot~ ot

P PP P

(a) (b) (c)

Figure 4.4: Cross-section of the surface

It follows further that the tangent planes T'(P;) and T'(P») will also be at infinitesimal
distance. Now suppose there is a cusp point on S, at point P. This cusp point does
not exist on the original surface. Consider two points P; and P> on S, 4 in a small

neighbourhood of P. The cusp point at P on S, cannot be of the forms shown in
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Figures 4.4(a) and (b), since the difference between the tangent planes at P; and
P, on S, would be large (which is not possible). It follows that only cusp points of
the form shown in Figure 4.4(c) are possible since only in this case, is the difference
between tangent planes at P; and P> near P small. Applying reverse diffusion to
this object in a neighbourhood of P results in a surface that intersects itself near P.

It follows that S, s is self-intersecting in a neighbourhood of the cusp point.

Theorem 5 Simple (not self-intersecting) surfaces remain simple during evolution.

Proof Assume by contradiction that S is a simple surface that intersects itself
during evolution. The location vector of each point of S is a continuous function of
o during evolution; therefore S must touch itself at point P before self-intersection.
Let S;, be such a surface. Consider two neighbourhoods & and Ss of S, that only
have point P in common. Hence &1 and Ss are non-overlapping. Note that S; and Sy
have the same tangent plane at P. Denote this tangent plane by T'(P). The tangent
plane exists since it follows from Theorem 4 that P cannot be a cusp point on either
81 or 8 since S, does not self-intersect for o < gg. Recall that the infinitesimal
movement during arc length evolution of each point of §; and Sy is determined
by the heat diffusion Equation (4.6). Therefore, during arc length evolution, every
point will move in the direction of the normal vector by an amount equal to the
curvature at that point. Similarly, during reverse arc length evolution, every point
will move in the opposite direction of the normal vector by an amount equal to the
curvature at that point. It follows that if S; and S2 are on opposite sides of T'(P),
after an infinitesimal amount of reverse arc length evolution they will intersect. This
is a contradiction of the assumption that S is simple before touching itself. Assume
then that &; and Sy are on the same side of T'(P). Note that S; and S cannot be
overlapping. Since they would still be overlapping after an infinitesimal amount of
reverse arc length evolution, which is also a contradiction of the assumption that S
is simple before touching itself. Let &1 be the segment inside Ss, i.e., the tangent to
S always has §; to the same side. It can be seen that &7 has a larger curvature at
P than S5. Therefore, after an infinitesimal amount of reverse arc length evolution,

point P on &1 and point P on Sy will move in the same direction, but point P on
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S1 will move by a larger amount. It follows that after an infinitesimal amount of
reverse arc length evolution, §; and Sy will intersect, which is again a contradiction.

It follows that S remains simple during arc length evolution [203].

4.3 Curvature Estimation

This section presents techniques for accurate estimation of Gaussian and mean cur-
vatures at multiple scales on smoothed free-form 3-D surfaces. Differential geometry
provides several measures of curvature, which include Gaussian and mean curvatures
[123, 44]. Initiated from the principal curvatures (see Appendix A.2), k; and ko at a
point P of a surface are the largest and smallest values of normal curvatures for all
directions at P. The product of the principal curvatures at a point P of a surface

equals the Gaussian curvature of the surface at that point

K = kiks (4.7)

Similarly, the arithmetic mean of the principal curvatures at a point P of a surface

equals the mean curvature of the surface at that point

_k‘l—l-k'z
2

H

(4.8)

Consider a local parametric representation of a 3-D surface with coordinates u and
v at Equations (4.1) and (4.2), Gaussian curvature K exists at regular points of
a surface of class C2. When r(u,v) corresponds to semigeodesic coordinates, K is
given by

— buubvv - buv2

4.9
3 +ys + 2 (4.9)

where subscripts denote partial derivatives, and

byy = AZyy + Byuy + Cayy
A2 + B2 + 02

byy = Az + Byyy + Czyy
A? + B2 + (7

_ Azyy + Byuy + Czuy

VA B2+ (P
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in which
A= Yu2y — 2ulv
B = xy2y — 29Ty

C= TulYv — Yuly

Mean curvature H also exists at regular points of a surface of class C2. Again, when

r(u,v) corresponds to semigeodesic coordinates, H is given by

by + (22 + 92 + 22)bya

H=
2(z3 + 5 + 2)

(4.10)

The mathematical properties of this two surface curvature functions are now dis-
cussed in more detail. Both Gaussian and mean curvature values are direction-free
quantities. They are invariant to arbitrary transformation of the (u,v) parameters
as well as rotations and translations of a surface. Combination of these curvature
measures enables the local surface type to be categorized. On smoothed surfaces of
3-D objects, the variables for estimating the Gaussian and mean curvatures for each

point (i.e. P(z(u,v),y(u,v),z(u,v))) in Equation (4.2) of the surface are defined as

follows:
Ty = z(u,v) ® W, Ty = z(u,v) ® W,
Yu = y(u,v) ® W, Yuu = Y(u,v) ® W,
Zu :z(u,v)®w, zuu:z(u,v)@)%,
Ty :m(u,v)®w, Tow :w(u,v)®W,
wo= o) @ 2000 e TR )
2y = 2(u,v) ® LG(Z’;’U), 2o = 2(U,v) ® 782(;5;;’2“’0) ,
2
Ty = (U, ) ® %,
Yuv = Y(u,0) ® %,
2
2wy = 2(u,v) ® 0GCu,v,0) C;(ZéZ’U)

where the corresponding local neighbourhood data z(u,v), y(u,v) and z(u,v) at

each point are convolved with the partial derivatives of the 2-D Gaussian function
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G(u,v,0). Finally, curvature values on a 3-D surface are estimated by substituting

these values into Equations (4.9) and (4.10) respectively.

4.4 Torsion Estimation

Generally, 3-D surfaces are represented by 3-D meshes that may have a large number
of points. The process of storage and computation of such a surface could cause
enormous problems in term of large memory size and long processing time. Many
3-D objects have flat and curved surfaces; the zero crossing curvature contours
of these objects are space curves that are geometric invariant and stable. This
important local feature can be used to recognize any surface which is either complete
or occluded. Therefore, the multi-scale torsion-based shape features for space curves

are considered here.

Torsion is the instantaneous rate of change of the osculating plane with respect to the
arc length parameter. The osculating plane at a point P is defined to be the plane
with the highest order of contact with the curve at P (see Definition 5 in Section
4.1.1). Applying the Frenet’s trihedron for this space curve (also see Appendix A.1),
torsion 7 is a local measure of the non-planarity of a space curve. The set of points
of a space curve are the values of a continuous, vector-valued, locally one-to-one

function
I'=T(u) = (z(u), y(u), z(u)) (4.12)

where z(u), y(u) and z(u) are the components of r(u), and u is a function of arc

length of the curve. The smoothed curve is defined as

in which
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and the 1-D Gaussian function is

g(u,0) = e2? (4.13)

In order to compute torsion 7 at each point of the curve, it is necessary to express
this in terms of the derivatives of z(u), y(u) and z(u) [118]. In the case of an
arbitrary parametrization, torsion can be given by

r(u) = 2(yz — 2y) — y(@z — 2%) + 2(Zy — §)
(92 — 20)7 + (25 — 38)7 + (4§ — §5)?

(4.14)

where £, y and Z are the convolutions of z(u), y(u) and z(u) in Equation (4.12) with

the first derivative of a 1-D Gaussian function (4.13).

. 0g(u,o . ?g(u, o y Bg(u,o
i=a(w o 2D e T o g o PULD),

. 0g(u, o . ?g(u, o y Pg(u,o
i=y) ® 280y TIND e TILD - (45)

) dg(u,o . 0%g(u, o . #g(u,o

® denotes convolution. Note that #, ¢, Z, &, ¥ and Z represent convolutions with
the second and third derivatives of Equation (4.13), respectively. While derivative
estimation can be sensitive to noise, thus torsion estimation takes place only after
sufficient smoothing has been applied to the data, and is therefore a robust process.

This also helps to reduce the number of feature points used for matching later on.

Once Gaussian and mean curvatures have been determined at each point of a 3-
D surface, zero crossing contours of those curvatures are also recovered from that
surface. In general, these contours are space curves. Torsion is computed at each
point of the contours using Equation (4.14), and now the local maxima of absolute
values of torsion are then recovered. These points are added to the set of feature
points extracted from the surface for object recognition. Since torsion has invari-
ance, stability, local support, efficiency and ease of implementation, the surfaces
represented by these characteristics could therefore benefit from such compact and

robust information.
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4.5 Geometric Hashing

The geometric hashing technique for model based object recognition was introduced
by Lamdan and Wolfson [93, 92]. Stein and Medioni [172] and Flynn and Jain [39]
have also employed geometric hashing for 3-D object recognition. In a model based
object recognition system one has to address representation and matching problems.
The representation should be rich enough to allow reliable distinction between the
different object models in the database as well as for efficient matching. The in-
formation in the database includes the number of models, model name, number of
features, feature magnitudes and positions. A major factor in a reliable representa-
tion scheme is its ability to deal with partial occlusion. The objects are represented
as sets of geometric features such as points, and their geometric relations are encoded

using minimal sets of such features under the allowed object transformations.

4.5.1 Hash Table

After getting the invariant features from a 3-D object, the next task is to recognize
this object. However, it is not that simple to recognize a free-form 3-D object from a
complex scene. For example, m interest features from an object model and n interest
features from a scene will require n X m ways to match. This is unacceptable for
object recognition when the number of object models in a database is large. Instead,
geometric hashing, an efficient and cost effective approach is used for the model-
base recognition of 3-D objects. It uses the invariant features including the local
maxima, of absolute values of Gaussian curvature, mean curvature and torsion. It
is also based upon an off-line model learning pre-processing technique, where model
information is indexed into a hash table using the invariant features. Geometric
hashing involves voting of observed features and this enables occluded or partial
3-D surfaces to be recognized. The basic elements of geometric hashing are the hash
table and hash addressing algorithm (hashing function/hash code/multi-words key
transformation) [141, 68]. Let there be N hash table entries. They contain (K;, D;)
where K; represents the triplet curvatures k,, kj, k. and D; represents the triplet

distance ratios among dy, ds, d3 in Figure 4.5. They are the invariant feature data
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for the i*" entry (i = 1,2,3,... ,N). Each pair of K; and D; is used to produce an
address A; = f(K;, D;). The hashing function f(K;, D;) is given as follows:

f(ICZ, Dz) = ak; + bD; (4.16)

where ¢ and b are constants. The development of such a multi-word key transfor-
mation has greatly improved the speed of searching and matching in the database.

It also makes geometric hashing an extremely fast method for object recognition.

4.5.2 Matching

C

Figure 4.5: Triplet of non-collinear points A, B and C

The matching algorithm uses the hash table prepared in the off-line stage. Given a
scene of feature points, one tries to match the measurements taken at scene points
to those stored in the hash table [4]. On smoothed surfaces of 3-D objects, the

procedures for indexing data into the hash table are defined as follows:

1. For each 3-D object model in the database, the local maxima of absolute
values of Gaussian curvature are selected as one set of feature points. The
local maxima of absolute values of mean curvature are selected as another set
of feature points. Similarly, the local maxima of absolute values of torsion
of zero crossing contours of Gaussian and mean curvatures are also used as

another two sets of feature points.
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2. Choose an arbitrary ordered triplet of non-collinear points A, B and C to

form a triangle ABC'. Denote the curvature/torsion values of points A, B and
C by kg, ky and k., and the edge lengths AB, BC and CA as dy, dy and djs,
respectively (see Figure 4.5). Select the maximum curvature/torsion value and
maximum edge length to generate an indexed value V; for the hash table. For
example, if k, and d3 are the maximum curvature/torsion value and maximum

edge length, then calculate the indexed value V; as

_ktke  ditdy

Vi=— as

(4.17)

and using the hashing function from Equation (4.16) for generating multi-

words key A; to create an evenly spread hash table [141],

kb+kc+d1+d2

-1
A; 0 x W 7

(4.18)

with a =10 and b= 1.

. Go back to step 2 and repeat the procedure for different triplets of feature

points until all triplets are visited. Note that some of these newly selected
points may have already been chosen in previous selections. Now a hash table
is produced with all the data indexed into its memory from a database. Given
a scene of features from a 3-D object, the indexed value V; as well as its
individual features are matched to those memorized in the hash table. Notice

that the input 3-D object can either be complete or incomplete.

Thus, given a 3-D object in a scene, the following steps are defined for matching

that object to the models database:

4. Repeat steps 1 to 3 above with the scene object, and then for each multi-words

key A; and indexed value V;, check the appropriate entry data and features in

the hash table and database. Tally a vote for each model that appears.

5. If several object models score large number of votes close to each other, then

the most likely candidates will be chosen using global verification applied at

next stage.
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4.6 Global Verification

In general the voting scheme may give more than one solution with very close scores.
In this case, a number of models from the database with close high scores (i.e. a
threshold is used to select the most likely models) are selected for global verification.
Global verification requires the estimation of 3-D transformation parameters for the
surviving models. It is possible to make use of closed form solution techniques
[65, 66, 188, 36] to obtain these parameters. However, these techniques are quite
complex to implement and relatively inefficient. Considering that the estimation
procedure must be repeated many times, it is advantageous to use a method which
is as efficient as possible. A relatively simple and efficient technique that generates
approximate solutions has been developed. It is found that this is quite satisfactory

for this research [122].

For each of selected object models, seven global transform parameters including
scaling (D), translation (d, h,q) and rotation (v, 3, ) are estimated and compared
[41, 163, 195, 94, 15, 202]. These 3-D coordinate transformations are formulated in
terms of the feature coordinates PT = (@ where P is the coordinates for the object
model feature points, 1" is the transformation matrix and @ is the coordinates for the
scene object feature points. This general transformation matrix consists of arbitrary

amounts of scaling, translation and rotation.

From three points of the object as described in Figure 4.5, another point can be
obtained as the centroid [133] of these 3 points in the space. Let Pi(z1p, y1p, 21p),
Ps(zap, y2p, z2p) and P3(xsp, Ysp, z3p) be the 3 non-collinear points selected from the
model object and Py(24p, y4p, 24p) be a point in the 3-D space which is the centroid
of P, P, and P3. A plane P in the space from points P;, P> and Ps is formed.
Now the same procedure is applied to the object in the scene. Let Q1(z14, Y14, 214)s
Q2(2q, Y2q, 22¢), Q3(T3q, Y3q, 23¢) and Qu(T4q, Y4q, 244) be the points in the 3-D space.
Point Q4 is the centroid of points ()1, @2 and Q3, thus a plane @ is also formed.

Hence, the linear equations [118] for the transformation, mapping model points to
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scene points are given by

-wlp Yip 21p 1 11 a e m ] -xlq Y1q zlq-
Top Y2p Z2p 1 b f mo | | %20 Y2 22 (4.19)
T3p Ysp 23p 1 c g p T3q Y3¢ Z3q
| Tap Yap 24p 1 | | d h g | | Tag Yaq 24q |

Note that this approach is employed in order to obtain a quick and approximate
solution which is sufficient for verification. From the set of linear Equations (4.19),
one can solve for the twelve parameters a, b, ¢, d, e, f, g, h, m, n, p and ¢. In order
to verify a match, 3-D scaling, translation and rotation will be used to determine
global consistency. For the scaling factor, the distances from the centroid points P;
and Q4 to their corresponding 3 points are measured and the longest distances for
each triplet are selected. Let D; and Dy be the longest distances selected from the
model object and the scene object, then their ratio is the scaling factor D

D=
Dy

(4.20)

The translation parameters d, h and ¢ can be measured from the distance between
two centroids Py and (4. Now for rotation, let v, 8 and a be the angles in the
z, y and z directions for the rotation of the plane P to the plane @) in 3-D space.
The 3-D rotation matrices about x-axis, y-axis and z-axis denoted R;(7), Ry(f) and

R,(«), respectively, are given by

1 0 0
Ry(y)= |0 cosy — siny

0 siny cosy

cospp 0 sinp
Ry(B) = 0 1 0
—sinfB 0 cosp
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cosa — sina (
R,(a) = |sina cosa 0
0 0 1

The columns (and the rows) of matrices R;(y), Ry(f) and R,(a) are mutually
perpendicular unit vectors and they have determinant of 1, so they are orthogonal.
Therefore, the rotation parameters (v, 8, a) can be obtained from products of

R.(a) Ry(B) Ry(7) [163, 41] and also from the solution of Equation (4.19)

[ 4] -cosa(cosﬁ)—
e sina(cosf3)
m| = —sinf (4.21)
n cosPB(siny)

| p | | cosB(cos) |

Since a number of model objects with close high scores are selected for the global veri-
fication stage, the hash table yields many candidate matches for each selected model.
For each of these candidates, seven global transform parameters are estimated using
the method described earlier in this section. The candidates are compared and if
their corresponding parameters are compatible, they are clustered together. The
largest cluster then indicates the largest group of globally consistent matches for
each model. The model object with the largest cluster is then chosen as the most
likely object present in the scene. The clustering algorithm is quite efficient since it
avoids the creation of an explicit high-dimensional parameter space. The following

is a step-by-step description of the clustering algorithm:

1. Create a cluster for one of the values in the multi-dimensional parameter space.

Consider that value as the centre of the cluster.

2. Find another value which is closer than a threshold to the centre of the cluster,

and add that value to the cluster. If no values are added, go to step 4.
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3. Compute the new centre of the cluster as the centre of mass of the values

already in the cluster. Go to step 2.

4. Repeat this procedure for all values which are not already in a cluster.
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Implementation

Multi-scale representation and recognition of 3-D surfaces using geometric invari-
ants is a complex process. It requires a methodological approach to perform such
a task which includes parametrization of 3-D surface [46, 108, 44, 56, 146], the
application of the smoothing process to a noisy surface at different scales, feature
extraction and object recognition. This chapter starts by explaining the basic struc-
ture of 3-D surfaces and data preparation. It then shows the implementation of local
parametrization of 3-D surfaces, a novel step-by-step approach of arbitrary geodesic
line construction is outlined. It is followed by the creation of the second family of
lines that involves either using orthogonal trajectories to the arbitrary geodesic line
or applying the modulus and amplitude at a local patch. Such a procedure leads to
the construction of semigeodesic coordinates or geodesic polar coordinates [120, 44]
on a free-form 3-D surface. Then a powerful and robust multi-scale smoothing tech-
nique [121, 204, 82, 128] is used to eliminate the unwanted noise on the surface
and at the same time to produce the useful features such as the local maxima of
absolute values of Gaussian curvature, mean curvature and torsion [203, 205, 83].
After the features are extracted, this chapter will then present the recognition of
3-D surfaces using geometric hashing and global verification [122]. The thresholds

are implemented automatically by software.

47



48 Chapter 5. Implementation

5.1 Surface Structure

(a) This human head is (b) Its corresponding tri- (c) A magnified patch
represented by a 3-D sur- angulated mesh of the triangulated mesh
face which is shown in (b)

Figure 5.1: A free-form 3-D surface and its triangulated mesh

As mentioned in previous chapters, the technique for describing a 3-D multi-scale
surface is independent of its underlying structure. In other words, the underlying
structure can be arbitrary. Although several methods are available to model 3-D
surfaces, triangulated meshes are the most popular approach because triangles are
simple from the implementation point of view and they are also the most effective
form of polygons for covering a free-form 3-D surface [86, 140, 149, 148]. Increas-
ingly with the advantage of this type of representation, the technique to visualize
triangulated meshes is embedded in the computer graphic hardware. Figures 5.1(b)
and (c) show an example of a triangulated mesh coming from the human head in

Figure 5.1(a), with each triangle defined by three vertices.

Initially, data information about the triangulated mesh is stored internally in an
array. The basic data structure includes the total number of triangular vertices,
the first vertex and the subsequent vertices. This is followed by the number of
neighbours at each vertex and its neighbours (i.e. minimum three neighbours for
triangulated mesh). These neighbouring vertices are always arranged in an anti-
clockwise direction. For simplicity, the local parametrization is started from the

first vertex. Hence, each vertex and its neighbourhood form a local patch that will
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be eventually parametrized into the semigeodesic coordinates.

Figure 5.2: A phone with two small holes

During the construction and fusion [58, 169] of triangulated meshes, noise may occur
within such a process. Consequently, small unwanted holes very often appear on the
surface (see Figure 5.2). When these holes are reached in the surface smoothing,
the area nearby cannot be filtered due to the incomplete local patch. Hence, the
curvature and torsion cannot be estimated. Therefore, it is logical to cover the
small holes in order to minimize such problems. The procedure for filling a hole is

described as follows:

e Split a hole in half and create two sub-loops.
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e Validate the sub-loops by checking each sub-loop lies on opposite sides of other

sub-loop.
e Check the aspect ratio of each sub-loop.

e The subdivision of each sub-loop continues recursively until all sub-loops con-

sist of three edges.

(a) 3-D surface of a phone and its trian- (b) Decimated surface from (a) and its tri-

gulated mesh with 5564 vertices angulated mesh with 1993 vertices

Figure 5.3: Decimation of a 3-D surface

Before the process of local parametrization is applied to a 3-D surface, the surface
needs to be prepared in advance [78]. For example, a flat surface could be represented
by a few large triangles instead of a large number of small triangles (including needle-
like triangles) that occupy the same surface area. A common approach is to reduce
the number of triangles on the surface by using a decimation technique [159, 62]. For
example, Figure 5.3(a) shows a phone which is represented by 5564 vertices. After
decimation is applied, the number of vertices for the same phone is reduced to 1993
(see Figure 5.3(b)). Obviously, this data preparation can improve the efficiency of
the surface representation. The decimation algorithm used in our work on a 3-D

mesh is as follows:
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1. In alocal region surrounding a point - the centroid of region, distance d between

the region and the point is measured.

2. If the above distance d is less than a predefined threshold, all triangles within

the region are deleted, leaving a hole in the 3-D mesh.

3. The newly created hole is patched by a small amount of flat triangles (see

Figure 5.2) and its procedure for filling a hole.

4. The process terminates when all regions and points are visited. Otherwise, the

next region and point are selected, and the algorithm returns to step 1.

When a smoothing process is applied to a 3-D surface iteratively, the size of surface
will be changed because of the different normalization factors of the 2-D Gaussian fil-
ter in Equation (4.5) [167], and this leads to shrinkage [183, 137, 206]. The shrinkage
is caused by the process of averaging. The simplest way to minimize these problems
is to rescale the surface mesh according to its average edge length, where the scale

factor is calculated as

original average edge length

scale factor =
current average edge length

Therefore, the surface can be approximately maintained at the same overall size in

metres.

5.2 Construction of Geodesic Line

In Section 4.1.1, Definition 7, the minimal property of geodesics provides the basic
structure of semigeodesic coordinates at each local patch. Such a local parametriza-
tion can be constructed at each vertex of the mesh and this becomes the local origin.
Starting with the construction of an arbitrary geodesic line, the edge connecting the
local origin vertex and one of its neighbouring vertices is selected as the arbitrary
direction. Once this direction is determined, the next step is to construct a geodesic
line. This line is constructed on the local 3-D surface by following the geodesic path

in a straight line until an edge or vertex is reached. The new edge point or vertex
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becomes a starting point for the next extension. To continue a geodesic line into the
next triangle, firstly the angle between the path and the common edge that the path
has intersected is measured. Then the path is extended to the next triangle using
the same angle. The construction of this geodesic line continues until the last edge
or vertex of the local area is reached. The same process is repeated to construct the

reverse direction of the geodesic line.

Quite often, due to occlusion, it is not possible to construct complete and closed
surfaces. As a result, some local patches may be at a boundary and so the curva-
ture and torsion cannot be estimated. Therefore, it is necessary to stop the local
parametrization process when a geodesic line reaches an occluded area. It then

moves onto the next vertex for next local parametrization process.

5.2.1 Arbitrary Direction of Geodesic Line

w
\

N(B)

Second neighbour

.«
M&e

Figure 5.4: The first segment of the arbitrary geodesic line

Since the direction of the arbitrary geodesic line can be randomly selected, the edge
F'B between vertex B and the first neighbouring vertex F' is chosen to create the
arbitrary direction, as shown in Figure 5.4. The next step is to create the first
segment of arbitrary geodesic line from the vertex B. Then the construction of the

positive portion (+u) of the geodesic line will follow.
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At first, a weighted average normal vector W at vertex B is generated from the unit

normal n; and the vertex angle a; of neighbouring triangles.

m
Y. ain;
W="50— (5.1)
PIRe?
i=1
where m is the number of neighbouring triangles. Therefore, a normal plane N (B)
is defined by the weighted average normal unit vector W and the arbitrary direction
vector FB. Now the intersection I between the normal plane and the opposite edge
C'D produces the first segment BI of the geodesic line. This segment is then sampled
at equal sized intervals. The number of sample points n in this segment depends on
the choice of sample step size and the length of the segment. For a filter size of 9 x 9,
n ranges from —4 to +4, where n is integer and the size of sample steps is equal
to the average edge length of the whole triangulated mesh. At the same time, the
closest vertex at each sample point S;, and the perpendicular direction vector P, S,
are computed and stored for the construction of the second family of lines later on.
Figure 5.4 shows that r is the remaining step for the next segment. Furthermore,
the negative portion (—u) of the geodesic line can be extended from edge BF by

just applying the same sampling procedure. Eventually, these two portions (+u and

—u) are joined together to form a complete geodesic line.

5.2.2 Geodesic Line Extension

Figure 5.5 shows that the segment of a geodesic line which lies on any given triangle

is a straight line. Thus, two situations are considered:

¢ Extension of a geodesic line when it intersects a triangle edge

e Extension of a geodesic line when it intersects a triangle vertex
Now the following theorems address two different situations:

Theorem 6 Suppose a geodesic line intersects an edge e shared by triangles 77 and

T5. The extension of this geodesic line beyond e is obtained by rotating 75 about e
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so that it becomes coplanar with 77, extending the geodesic line in a straight line

on 75, and rotating 75 about e back to its original position.
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Figure 5.5: Geodesic line on a triangulated mesh

Proof Assuming by contradiction, the above theorem does not construct a geodesic
line. Let g1 be the segment of the geodesic line on 77 and let g2 be the segment
of the geodesic line on T5. Rotate T5 about e so that it becomes coplanar with T.
By assumption, g; and go will not be collinear. Hence, for a point P; on ¢; and a
point P> on go, there will be a shorter path from P; to P,. This is the straight line
joining P; to P,. Now rotate T5 back to its original position. The length of the path
just constructed remains the same, so it will still be shorter than the geodesic line
from P; to P5. A contradiction has been reached. Therefore, the theorem described

correctly constructs a geodesic line. Note that the angle € between the path and the
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common edge e which the path has intersected is measured. Then the path to the
next triangle using the same angle is extended. The same construction technique is

used to extend to several triangles as long as they remain in a local neighbourhood.

Theorem 7 Suppose that a geodesic line arrives at a vertex V of the mesh. We
define the normal vector W at V as the average of the surface normals of all the
triangles incident on V weighted by the incident angle. Let N(V) be the plane
formed by the geodesic incident on V' and W. The extension of this geodesic line

beyond V is found by intersecting N (V') with the mesh.

Proof The curvature vector K of the path lies in the plane N(V'). K is perpendic-
ular to tangent plane T'(V') which is also defined as perpendicular to W at V. Since
the vector of geodesic curvature K, of the path is obtained by projecting K on the
tangent plane T(V'), the geodesic curvature of the path must be zero. Hence, the

path is a geodesic line as stated at Definition 1 in Section 4.1.1.

5.2.3 Adjustment of Arbitrary Geodesic Line

It is possible that an arbitrary geodesic line could travel near and almost parallel to
an edge. It is also possible for a sample point to be very close to a vertex or edge.
In these cases, the failure to find the intersection of the parallel lines or the failure
to calculate the distance between very close points, may result in a computational
fault during the construction of a perpendicular direction for the second family of
lines. Therefore, a fine adjustment or alignment [4] to the direction of the arbitrary
geodesic line or the position of a sample point is required. The criterion for these
adjustments is based on the average edge length L of the entire surface. Figures
5.6(a) and (b) show that if the length of IU is very small compared with L, the
segment VI and the edge VU are almost parallel. Thus the segment VI is adjusted
and placed over the edge VU. Similarly, if the sample point S; is relatively close to
the edge M K with respect to L or the sample point Sy is very near to the vertex
V, the sample point S; is moved towards the edge M K or the sample point So is

moved to the vertex V.
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Figure 5.6: The adjustment of the arbitrary geodesic line and the sample points

5.2.4 To Generate the Perpendicular Direction

For generating the perpendicular direction to arbitrary geodesic line, many different
conditions have to be considered. If a sample point is placed on a vertex .S, a normal
plane N(S) can be created by the weighted average normal vector W at the vertex,
and a segment vector SI of the arbitrary geodesic line, as shown in Figure 5.7. Then
the perpendicular direction vector PS on the surface is obtained by rotating the
normal plane 90° anti-clockwise from SI. To eliminate the unwanted intersection,
the rotated normal plane must only intersect with the edge of one of the neighbouring

triangles from anti-clockwise.

When a sample point of the arbitrary geodesic line resides on the edge of a triangle,

three different cases arise during constructing the perpendicular direction:

o If the segment I.S of the arbitrary geodesic line and the edge CD are orthog-
onal, a part of this edge becomes the perpendicular direction vector PS (see

Figure 5.8(a)).
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Figure 5.7: A perpendicular direction of an arbitrary geodesic line

e If the angle ¢ between the segment IS of the arbitrary geodesic line and the
edge CD is less than 90° as shown in Figure 5.8(b), the perpendicular direction
vector PS is produced by rotating the segment I.S by 90° anti-clockwise. Then

the rotated segment intersects with an edge on the same triangle CDE.

e If the angle ¢ is greater than 90°, the segment IS is rotated 90° clockwise.
Then the rotated segment intersects with an edge on the same triangle CDFE,
it produces a segment P’S of new geodesic line (see Figure 5.8(c)). Now this
segment P'S of the geodesic line is extended from the triangle C DE towards
the triangle GDC, by using the same construction technique mentioned in
Theorem 6. This newly created segment becomes the perpendicular direction
vector PS of the arbitrary geodesic line. This method has the advantage
of simplifying the construction of the perpendicular direction vector. It also

produces the correct second family of lines in such a case.

Furthermore, when the segment 11’ of the arbitrary geodesic line lies on the common
edge CD, the perpendicular direction vector PS at the sample point S is defined
by rotating the common edge C'D on the right hand side triangle GDC, 90° anti-
clockwise at the sample point S (see Figure 5.9(a)). Finally, if a sample point S is

inside a triangle, the perpendicular direction vector PS is defined by simply rotating
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Figure 5.8: Creation of a perpendicular direction of the arbitrary geodesic line when

a sample point resides on the edge of a triangle
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Figure 5.9: Creation of perpendicular direction from the segment of the arbitrary
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the segment I1" of the arbitrary geodesic line 90° anti-clockwise at the sample point

S as shown in Figure 5.9(b).

5.3 Semigeodesic Coordinates

Second family of Lines

el "'Arbitrary Geodesic Line

Where "0"s are the semigeodesic coordinates and "B" is the current vertex.

Figure 5.10: A completed semigeodesic coordinates on a triangulated mesh

The semigeodesic coordinates are produced by sampling the second family of
geodesic lines at regular intervals. This second family of lines are constructed per-
pendicularly to an arbitrary geodesic line. Firstly, each sample point of the arbitrary
geodesic line is used as a reference for constructing the second family of geodesic
lines. Secondly, the second family of lines must start at the perpendicular direction
of sample points of arbitrary geodesic line. Then, using a similar technique as de-
scribed in previous Section 5.2.2, the perpendicular geodesic lines are constructed
in the forward direction, as well as the backward direction. Now the following algo-

rithm shows the complete parametrization procedure at each local patch:
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1. Construct a geodesic line from the local origin in an arbitrary direction such

as the direction of one of the incident edges.

2. Construct the other half of the geodesic line by extending it through the origin

in the reverse direction.

3. Parametrize that geodesic line by the arc length parameter at regular intervals
to obtain a sequence of sample points. The sampling interval should be pro-
portional to the average edge length of entire surface so that the over sampling

or under sampling could be minimized.

4. At each sample point on the arbitrary geodesic line, construct a perpendicular

geodesic line (i.e. the second family of lines) and extend it in both directions.

5. Parametrize each of the geodesic lines constructed in the previous step by the
arc length parameter at regular intervals. The sampling interval should be

equal to what was used in step 3.

Figure 5.10 shows for a triangulated mesh example, the complete semigeodesic co-
ordinates at a local origin (vertex B). Once the construction of semigeodesic co-
ordinates for that local patch is accomplished, the algorithm moves onto the next

vertex of the triangulated surface.

5.4 Geodesic Polar Coordinates

Geodesic polar coordinates can be constructed at each vertex of the mesh. The

following procedure is used:

e Construct a geodesic line from the local origin in an arbitrary direction such

as the direction of one of the incident edges.

e Let N be the normal plane at the origin defined by the geodesic line constructed

in the previous step and the weighted average normal vector W.

e Rotate IV about W by an angle a and intersect it with the mesh to obtain the

next geodesic line emanating from the origin.
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e Repeat the previous step until IV is back in its original position.

e Parametrize each of the constructed geodesic lines by the arc length parameter
at regular intervals to obtain a sequence of sample points on each geodesic line.
The sampling interval should be proportional to the average edge length of the

whole surface.

5.5 Multi-Scale Gaussian Convolution

After the semigeodesic coordinates for the local patch are determined, the next step
is to introduce a smoothing process at each local patch to eliminate noise and to
reduce surface details as well as at the same extracting features. This approach is
done in using a 2-D Gaussian convolution. The position vector at each semigeodesic
coordinate is weighted and averaged by a 2-D Gaussian filter (see Figure 5.11). The
formula for this filter is

1 _@?+?)
26 202

G(u,v,0) =

2no

G(u, v, o)

Fo.16
;0.14
;0.12
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2 ) ) 2 a

(a) Top view (b) Side view

Figure 5.11: 2-D Gaussian filter with size 9x 9

Taking into account the range of u and v, the extent of each side of the 2-D Gaussian

filter is 8¢ + 1 a normalization constant. The filter needs to have sufficient sample



5.5. Multi-Scale Gaussian Convolution 63

points in order to provide an accurate result. However, if the size of neighbourhood is
too large, the computation becomes inefficient. Furthermore, the standard deviation
o of the Gaussian distribution is directly proportional to the size of local patches.
A suitable compromise between size and efficiency is considered. Hence, a value of

1 is chosen for the fixed standard deviation o and this results in a 9 by 9 filter.

After the 2-D Gaussian filter is defined as above, the next step is to convolve every
point r(u, v) on the local patch with the filter. Hence, a smoothed point R(u, v, o) on
the surface is obtained (see Equations (4.2), (4.3) and (4.4)). This process is repeated
at every local patch. Eventually, a complete new smoothed surface is produced.
Then the next further step is to produce the multi-scale surface smoothing. Multi-
scale surface smoothing is an iterative process that has the evolution properties as
mentioned in Section 4.2.1. Hence, this smoothing process can reduce the noise on

the surface and can also provide the surfaces at different scales.

Due to the displacement of vertices which occurs as a result of smoothing, either
very small or very thin/needle-like triangles can be generated. Actually, some parts
of the surface become very thin, e.g. dumbbell shape. These areas are composed of
either very small or very thin/needle-like triangles before they collapse. Hence, such
areas are no longer a simple surface. Detection of this type of surface is based on
the length of the shortest side of triangle becoming less than a small threshold. This
threshold is chosen as a small fraction of the average edge length over the entire
surface. Since the odd triangles cause computational problems at each iteration,
they are either removed or merged with neighbouring triangles using segmenta-
tion/decimation [160]. However, the number of triangles on the surface decreases
after segmentation/decimation. As a result, refinement [62] is applied in order to
maintain the number of triangles on the surface. Now smoothing continues either
for the whole surface or for each part independently after segmentation. The results

of this segmentation are shown in Figures 6.6 and 6.7 at Section 6.1.1.
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5.6 Surface Curvature

So far a technique for the diffusion of a 3-D surface is demonstrated. The local sur-
face type can be categorized by estimating surface curvatures. This section presents
a review of techniques for estimating Gaussian and mean curvatures of surface of a
3-D object. These are then modified to estimate curvature at multiple scales on a
free-form 3-D surface. Differential geometry provides several measures of curvature,
which include Gaussian and mean curvatures. Consider a local parametric repre-
sentation of R? of 3-D surface. The general parametric representation is shown in

Equations (4.1) and (4.2).

The Gaussian curvature exists at regular points of a surface of class C2. The Gaus-
sian curvature function K is defined by Equation (4.9). Gaussian curvature is pos-
itive at elliptic points, negative at hyperbolic points and zero at parabolic points.
The mean curvature function H is given by Equation (4.10). With the change of gra-
dient of the surface the mean curvature changes its sign. Both Gaussian and mean
curvatures values are direction-free quantities, i.e. magnitude only. Gaussian and
mean curvatures are invariant to arbitrary transformation of the (u,v) parameters,
to scaling, to translation and to rotation of a surface. A combination of curvature
measures enables the local surface type to be categorized. On smoothed surfaces of
3-D objects, the following procedures for estimating the Gaussian and mean curva-
tures are used. The first and second partial derivatives of the Gaussian function,

Equation (4.5), with respect to u and v are obtained (see Figure 5.12).

Then for each point P(z(u,v),y(u,v), z(u,v)) of the surface, the corresponding lo-
cal neighbourhood data is convolved with the partial derivatives of the Gaussian

function (see Equations (4.11)).

5.6.1 Local Maxima of Absolute Values of Curvature

Local maxima of absolute values of Gaussian and mean curvatures are significant
and robust feature points on smoothed surfaces since noise has been eliminated

from those surfaces. The process of recovery of the local maxima of absolute values
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Figure 5.12: Partial derivatives of the Gaussian function
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is identical for Gaussian and mean curvatures. Every vertex V of the smoothed
surface is examined in turn. The neighbours of V' are defined as vertices which are
connected to V' by an edge. If the absolute curvature value of V is higher than the
absolute curvature values of all its neighbours, then V' is marked as a local maxima
of absolute values of curvature. Such maxima can be utilized by later processes for

robust surface matching and object recognition with occlusion.

5.7 Curvature Zero Crossing Contours and Torsion
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Figure 5.13: Derivatives of 1-D Gaussian function

Having computed curvature values at each vertex of a smoothed 3-D surface, one
can locate curvature zero crossing contours where curvature values K or H of neigh-
bours change sign. Their curvature functions must pass through zero between the
neighbours. Curvature zero crossing contours can be useful for calculating torsion
local maxima of absolute values. The process of recovery of the curvature zero
crossing contours is identical for Gaussian and mean curvatures. Every edge e of
the smoothed surface is examined in turn. If the vertices of e have the same signs
of curvature, then there is no curvature zero crossing point on e. However, if the
vertices of e have different signs of curvature, then there exists a point on e at which
curvature goes to zero. The zero crossing point lies on the edge e. The other two
edges of the triangle to which e belongs will then be checked since there will be

another zero crossing point on one of those edges. When that zero crossing is found,



5.8. Optimal Scale 67

it is connected to the previously found zero crossing. The curvature zero crossing
contour is tracked in this fashion. Then the contour is sampled and convolved with
the 1-D Gaussian filter using Equations (4.14) and (4.15). The first and second and
third derivatives of the filter are shown in Figure 5.13 and their equations are

og(u,0)  —u  _u?

Bu 0'3\/%
’g(u,0)  u?—0* _u2

o o5\r
Bg(u,0)  3uoc? —u? o

ous N o™/ 2w

Now torsion of the contour is calculated. Then the local maxima of absolute values

of torsion are used for matching.

5.8 Optimal Scale

After the local maxima of absolute values of curvature and torsion have been com-
puted and stored, geometric hashing and object recognition are now considered.
Section 4.5 shows that the voting is done simultaneously for all models in the hash
table. The overall recognition time is dependent on the number of feature points
in the scene. The aim is to reduce the noise and number of small feature points.
This is achieved through the multi-scale smoothing process. In order to find the op-
timal scale (i.e. minimum noise, minimum number of small features and maximum

number of significant features) for the scene object, the following procedure is used:

1. Apply one iteration of smoothing and count the number of feature points

recovered from the object.

2. Repeat step 1 until several iterations of smoothing have been carried out. Con-
struct a graph of the number of feature points versus the number of iterations

(see Figure 5.14).

3. Smooth this graph, and find the point where the slope is minimum. This

indicates that the features have become stable at the corresponding scale which
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Figure 5.14: Optimal smoothing scale

is then used as the optimal scale for object recognition.

5.9 Geometric Hashing

The most important parts of geometric hashing are hash table and hash addressing
algorithm (hashing function/hash code/multi-words key transformation). A good
hash addressing algorithm can improve surface matching efficiency. Hence, it is
logical to make use of the curvature/torsion features and edge length of triplet
(see Figure 4.5 in Section 4.5.2); which are then encoded to produce an indexed
value V; in Equation (4.17). Such an indexed value is a unique real number that is
generated by the hashing function. It is also distributed uniformly across the whole
hash space. This indexed value is ideal for representing the triplet and it is also

extremely valuable for creating the multi-words key 4; in Equation (4.18). This
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multi-words key can quickly address an evenly spread hash table with minimum
collisions (see Figure 5.15). Such hash table and hash addressing algorithm apply
to all the combination of triplets from 3-D surface.

Hash table
Entry 1 — Ay Vy <

Entry 2 Aol Wy =1

Entry3 —— A3 V3 =<1~

Entryi —A4; | V; =1 3-D Surface
(penguin)

Entry N ——= A, | V,, =1~

Figure 5.15: Geometric hashing technique using linked lists and linked stacks [85]

on a 3-D surface.

Now four features sets of the models in database and four corresponding features

sets of the scene are matched. They include the local maxima of absolute values of

e Gaussian curvature,
e mean curvature,
e torsion of zero crossing contours of Gaussian curvature and

e torsion of zero crossing contours of mean curvature.

Firstly, four individual hash tables are created off-line from the given models

database. Secondly, the feature triplets from the scene are matched with the data
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in these hash tables. Each matched triplet gives one vote for the corresponding
model. This procedure continues until all permutations of triplets from the scene
are computed. Therefore, the votes from each object model can be converted to the

following score

m

score = x 100

n“3

where m is number of votes from the features set of an object model, n is the number
of features of that object model from the corresponding features set of the database,
and ,C3 = ?’,(nnil?’), is the combination of triplet. Then the total score for each
model is calculated using the average value of above four features sets score. Hence,

the highest score model is now obtained.

5.10 Global Verification

It may be possible to get more than one candidate solution with very close high
scores from the geometric hashing stage. In this case, a threshold is used to select
the most likely models so that global verification can work with those models. For
each of selected object models, seven global transform parameters (including scaling
D, translation d h g and rotation v 8 «) of every triplet are estimated, and then these
candidates are compared with the parameters of scene. The successful candidates
are clustered together. The model with the largest cluster is chosen as the most

likely object. The details of this clustering algorithm can be found in Section 4.6.

To simplify the estimation of seven global transform parameters of triplet in Equa-
tion (4.19), the scale parameter is firstly expressed by D in Equation (4.20),
and the translation parameters (d, h,q) are the displacement between the centroid
Py(x4p, yap, zap) of model triplet and the centroid Q4(Zaq,Yaq,2aq) Of scene triplet.
Since the position vector of all triplet vertices have already been found at the ge-
ometric hashing stage, the centroids can be computed using the section formulae,

and the translation parameters are d = z4g — Tap, h = Yag — Y4p and q = z4q — 24p-
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Furthermore, Equation (4.19) can be reduced and expressed as

T1pa + y1pb + 21pc = 114 — d,  TIREE +Y1pf + 21p9 = Y14 — b,
Topa + Yopb + z2pc = T2g — d,  Tape + y2pf + 22pg = Y24 — D,
T3p0 + Yspb + z3pc = 239 — d,  x3pe + yspf + 23,9 = y3q — h,

Z1pMm + Y1pn + 21pp = 214 — ¢,

Z2pM + Yopn + 2Zopp = 229 — ¢,

T3pm + Yspn + Z3pP = 23¢ — ¢

Now the Cramer’s rule [96] is applied to solve above equations. Given Equation

(4.21) and

T1q —d Yip Z1p

$2q —d y2p 32;0
Tip Yip <ip
T3q — d Y3p <3p
Dl = | m2p yop 22p |> then a= D] = cosa(cosf),
I3p Y3p Z3p
Yiq — h Yip Zl1p Z1qg — 49 Yip Z1p
Y2q — h Y2p <2p Z22q — 4 Y2p Z2p
Ysq —h ysp 23 na(coss) Z3¢ —q Ysp Z3p nf
e= = sina(cosB), m = = —sinf,
D |D|
T1p 21q — 4 Z1p Tip Yip R1qg — 4
T2p Z2¢ —q Z2p T2p Y2p 22¢ — 4
T3p <3¢ — 4 Z3p ﬁ( ) ) T3p Ysp 3¢ — 4 ,8( )
n = = COSD\StN = = COSP\CoSs
|D| ) P |D| Y

Therefore, the rotation parameters are
_ -1 p - n
v = cos ——=———| or sin ——
4+ n2 +p2 + TL2 _|_p2
B = cos™? (j: a’ + 62) or sin~!(—m)

1 a .1 e
o = COS P or sin P
(ﬂ:\/a2+62) (:tva2+ez>

Now 3-D scaling, translation and rotation parameters are used for global verification

and the clustering algorithm is used to obtain the most likely object as described in
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Section 4.6. The results indicated that the technique is invariant to the transforma-

tions.



Chapter 6

Results and Discussion

The programs were implemented entirely in C++ [179, 57, 69, 158] and the results
were displayed using Visualisation Toolkit (VTK) [160]. Complete triangulated
models of 3-D objects, and scene objects used for the experiments were constructed
using 3-D laser scanner ModelMaker. This chapter presents research results on

free-form surface smoothing, curvature estimation as well as object recognition.

6.1 Diffusion

9000

(a) 1°* iteration (b) 5" iteration (c) 1°* iteration (d) 5" iteration
Semigeodesic coordinates Geodesic polar coordinates

Figure 6.1: Diffusion of the cube

In order to experiment with the research techniques, both simple and complex 3-D

objects with different numbers of triangles are used. Each iteration of smoothing

73
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(a) Original (b) 10" iteration (c) 20" iteration (d) 100" iteration

Figure 6.2: Diffusion of the foot

(a) Original (b) 1 iteration (c) 3¢ iteration

(d) 81 iteration (e) 12*! iteration (f) 21% iteration

Figure 6.3: Diffusion of the bull
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of a surface with 1000 vertices takes about 0.5 second of CPU time on a Sun Ultra
Sparc workstation. The diffusion results for 3-D surfaces are given in [120]. It should
be noted that Gaussian smoothing causes shrinkage of objects. In general, this is
not a problem. In fact, objects after each iteration of smoothing are rescaled. This

procedure cancels out the resulting shrinkage.

The first test object is a cube with 98 vertices and 192 triangles. The smoothing re-
sults using semigeodesic coordinates (with filter size equal to 9) are shown in Figures
6.1(a) and (b). The original cube is changed to a sphere after five iterations. The
experiment is also repeated using geodesic polar coordinates, and the smoothing
results are shown in Figures 6.1(c) and (d). These results indicate that smooth-
ing using semigeodesic coordinates and geodesic polar coordinates produce similar
results. Therefore, smoothing technique using semigeodesic coordinates with filter

size equal to 9 is applied for the following 3-D surfaces.

The second test object is a foot with 996 triangles and 500 vertices. The smoothing
results are shown in Figure 6.2. The foot also becomes rounded iteratively and
evolves into an ellipsoidal shape after 100 iterations. This technique is examined

further with more complex 3-D objects.

The third test object is a bull with 3348 triangles and 1676 vertices as shown in
Figure 6.3. The surface noise is eliminated iteratively with the object becoming

gradually smoother and after 8 iterations the legs, ears, horns and tail are removed.

The fourth test object is a dinosaur with 2996 triangles and 1500 vertices as shown
in Figure 6.4. The object becomes gradually smoother and the legs, tail, horns and

ears are removed after 12 iterations.

The fifth test object is a rabbit with 1996 triangles and 1000 vertices as shown in
Figure 6.5. The ears disappear after 10 iterations and the object becomes a smooth

and rounded shape.
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(a) Original (b) 27 iteration (c) 5*® iteration
(d) 8" iteration (e) 12" iteration (f) 20" iteration

Figure 6.4: Diffusion of the dinosaur
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(a) Original (b) 52 iteration (c) 10*" iteration (d) 24* iteration

Figure 6.5: Diffusion of the rabbit
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6.1.1 Segmentation

The smoothing process can cause disconnection of object parts. This is a natural
consequence of the heat diffusion of objects. A decimation procedure is applied after
each iteration of smoothing to remove odd-shaped triangles. The procedure can also
segment objects into parts when they become very thin. This is due to the fact that

very thin regions give rise to odd-shaped (elongated) triangles.

Figure 6.6 shows a phone represented by 1996 triangles and 1000 vertices. Notice
that the surface noise is eliminated iteratively with the object becoming gradually
smoother and after 15 iterations the object becomes very thin in the middle [42].
Decimation then removes the thin triangles and segments the object into two parts.

Smoothing then continues for each part as shown in Figure 6.6(d).

The next test object is a chair with 2000 triangles and 1000 vertices as shown in
Figure 6.7, where again the legs of the chair, the joints between the chair and its
back become thin after 4 iterations as previously seen for the phone. The joints are
then removed and the object is segmented into two parts after smoothing, and the

result is shown in Figure 6.7(d).

6.1.2 Open or Incomplete Surface

The smoothing technique is applied to a number of open/incomplete surfaces. Figure
6.8 shows the smoothing results obtained on a part of the foot object shown in Figure
6.2(a). Figure 6.9 shows the results obtained on a part of the phone shown in Figure
6.6(a). This object also has a triangle removed in order to generate an internal
hole. Figure 6.10(b) shows the smoothing and segmentation results obtained on the
lower part of the chair object shown in Figure 6.7(a), and then the small segment is
removed by decimation at the third iteration (see Figure 6.10(c)). Figure 6.11 shows
smoothing results obtained on a partial rabbit. The object is smoothed iteratively

and the ears disappear as well.
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a) Original (b) 374 iteration (c) 15" iteration (d) 25* iteration

Figure 6.6: Diffusion and segmentation of the phone

(a) Original (b) 2™ iteration (c) 4™ iteration (d) 14*® iteration

Figure 6.7: Diffusion and segmentation of the chair

4 4 4

(a) Original (b) 2™ jteration (c) 5*" iteration

Figure 6.8: Diffusion of the partial foot
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(a) Original (b) 3¢ iteration (c) 5} iteration

Figure 6.9: Diffusion of the partial phone

mm M

(a) Original (b) 27 iteration (c) 3¢ iteration (d) 4*1 iteration

Figure 6.10: Diffusion, segmentation and decimation of the partial chair

.

(a) Original (b) 5*" iteration (c) 9** iteration (d) 15*" iteration

Figure 6.11: Diffusion of the rabbit head
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6.1.3 General View of Diffusion

From the results in this section, one can conclude that the proposed technique is
effective in eliminating surface noise as well as removing surface detail and it is also
independent of the underlying triangulation. The result is gradual simplification of
the object shape. It is also true that the technique can apply to segmented, open

and incomplete 3-D surfaces.

6.2 Curvature Estimation

This section presents the results of application of curvature estimation techniques
to 3-D objects using methods described in Sections 4.3 and 5.6. These curvature
estimation results for 3-D surfaces are reported in [203]. The first example is a foot.
After smoothing the object, the Gaussian curvatures of all vertices are estimated
using Equation (4.9). To visualize these curvature values on the surface, they are
then mapped to colours [84] using the Visualisation Toolkit (VTK) [160], and the

results are shown in Figure 6.13(a). Surface curvature colours are coded as follows:

g 2]

Figure 6.12: red=high, blue=Ilow

and other colours designate in-between values. The flat areas are green since their
curvature values are close to zero. The same experiment is repeated to estimate
the mean curvatures of the foot using Equation (4.10) and the results are shown in

Figure 6.13(b). This indicates that mean curvature values for the toes are different
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(a) Gaussian (b) Mean

Figure 6.13: Gaussian and mean curvatures on the foot

(a) 1% iteration (b) 2°¢ iteration (c) 1% iteration (d) 2°¢ iteration
Gaussian mean

Figure 6.14: Curvatures on the rabbit

(a) 1°* iteration (b) 6** iteration (c) 1°* iteration (d) 6*" iteration
Gaussian mean

Figure 6.15: Curvatures on the dinosaur
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(a) 1°* iteration (b) 6% iteration (c) 1** iteration (d) 6" iteration
Gaussian mean

Figure 6.16: Curvatures on the bull

(a) 1°* iteration (b) 37 iteration (c) 1** iteration (d) 3™ iteration
Gaussian mean

Figure 6.17: Curvatures on the phone

reRE®

a) 1°¢ iteration b) 2™ iteration ) 1%¢ iteration d) 2™ iteration

Gaussian mean

Figure 6.18: Curvatures on the chair
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than those for other areas, as expected.

The next object is a rabbit. Its Gaussian curvature values are estimated and results
are shown in Figures 6.14(a) and (b). These results again confirm that the curva-
ture values are high and low at convex and concave areas, respectively. The mean
curvatures of the rabbit are also estimated and the results are shown in Figures
6.14(c) and (d). Moreover, Gaussian and mean curvatures are also estimated for
other objects. Figures 6.15, 6.16, 6.17 and 6.18 show the results for a dinosaur, a

bull, a phone and a chair respectively.

6.2.1 Curvature Error

Two principal curvatures k1 and ke are defined at each point of a 3-D surface of

a sphere. The Gaussian and mean curvatures are calculated as in Equations (4.7)

and (4.8). O’Neill [139] shows the principal curvatures of the sphere, k1 = ko = —%,
where r is the radius of the sphere. Hence, the Gaussian curvature K = kiko = ;17
and the mean curvature H = % = —%. Given r = 2430 units, we obtain

K =17x10"" and H = —4.12 x 10~%. By comparing these calculations with the
experimental results in Figure 6.19, we confirmed that curvature estimation using

our technique is quite accurate.

Furthermore, if a 3-D surface of class C? is given, k1 and ky are the measured values
of k1 and ko. Tt follows that if k1 = k1 4+ ¢ and ko = ko + ¢, where ¢ represents error

(¢ € 1), then the estimated Gaussian curvature is given by
K= k’,"lk’;z = k1ko + €(k1 + kz) + 2

Similarly, the mean curvature H is given by

ki4 ke K+ ks
H = =
7 7 +e
Since the minimal surface (a surface whose mean curvature H vanishes identically; a

surface for which the first variation of the area integral vanishes. A minimal surface

does not necessarily minimize the area spanned by a given contour; but if a smooth
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(a) Sphere radius r = 2430 (b) Sphere with 98 vertices

units

(c) Local patch (d) Semigeodesic Coordinates

(e) Gaussian curvature K = (f) Mean curvatures H =
1.79 x 10~7, whole sphere be- —4.24x10™*, whole sphere be-
comes red comes blue

Figure 6.19: The Gaussian and mean curvatures of a sphere
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Figure 6.20: Gaussian curvature error distribution of the foot
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Figure 6.21: Mean curvature error distribution of the foot
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surface S minimizes the area, then S is a minimal surface) is applied in every local
patch, e(k1 + ko) + €2 < e. It follows that for an error in the values of principal
curvatures k1 and ko, the error in the estimation of Gaussian curvature is expected
to be smaller than that of the mean curvature. On smoothed surfaces of 3-D objects,

the following procedure for curvature estimation error is defined.

Estimation of error in curvature computation is important. As mentioned before,
the direction of the first geodesic line is randomly selected at each vertex. Its
curvature value is k;. Therefore, it is logical to examine the curvature estimation
error in k; against the average curvature value k for all possible directions. Then,
the percentage error in direction 7 at each vertex is given by

|k — K|

_ x 100%
|K|

E; =

. n
Maximum error = max E;
i=1

Minimum error = mineg;
i=1

> Ei

=1
Average error = ——
n

where n is the number of incident edges at a vertex.

Specifically, the direction of each incident edge is defined as a possible direction. The
error estimation procedure is repeated at each vertex. Similarly, the different step
sizes are also applied to this error estimation procedure. The maximum, minimum

and average values of the curvature errors are computed and plotted in the graphs.

Figure 6.20(a) shows the error distribution for estimating maximum Gaussian cur-
vature with the step size varying from 500 units to 3000 units. These results indicate
that for the step size between 1000 units to 2000 units the error is reduced to about
1.2% after one iteration. Then the experiment is repeated for each vertex to com-
pute the minimum error in curvature values of all possible directions. The results

are shown in Figure 6.20(b). These indicate that for the step size between 1000



88

Chapter 6. Results and Discussion

Rahbit Maximum Eroor %

Rahbit Minimum Eroor %

Rabbit Average Eroor %

0.8 - -
1 iteration: SOLID line
0.6 — 5 iterations: ———— -
10 iterations: —.—.
24 iterations: —+—+
0.4 — -
500 1000 1500 2000 2500 3000
Step size
(a) Maximum error
1.6
1.4 -
1.2 -

. 1 1 .
500 1000 1500 2000 2500 3000
Step size

(b) Minimum error

1.6

1.4 —

. 1 .
500 1000 1500 2000 2500 3000
Step size

(c) Average error

Figure 6.22: Gaussian curvature error distribution of the rabbit
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Figure 6.23: Mean curvature error distribution of the rabbit



90 Chapter 6. Results and Discussion

units to 2000 units the error is reduced to about 0.5% after one iteration. When the
average curvature value of all possible directions is calculated, the average curvature
error is about 0.8% after one iteration, as shown in Figure 6.20(c). However, as
the surface becomes iteratively smoother, the errors reduce as shown in Figure 6.20.
After 100 iterations the errors in maximum, minimum and average curvature values
are reduced to 0.6%, 0.4% and 0.5%, respectively. These experiments show they are
not significantly different from the 0.5% quoted for a single iteration. It means the

whole smoothing process is stable and has very small error.

The above procedures are also repeated for estimation of mean curvatures. Figures
6.21(a) and (b) show the error distributions for the estimation of mean curvatures,
and the error is also reduced for the step sizes between 1000 units to 2000 units,
which are about 3.0% and 1.0% for the maximum and minimum mean curvatures,
respectively. For the average value of mean curvature, the error is about 2.0% as
shown in Figure 6.21(c). As the surface becomes smooth iteratively, the errors are
reduced as shown in Figure 6.21 and after 100 iterations the errors in maximum,
minimum and average curvature values drop to about 2.2%, 0.5% and 1.4%, respec-
tively. Notice that the error for the estimation of Gaussian curvatures is lower than

that of the mean curvature as is discussed in the previous section.

Figure 6.22 shows the error distribution for estimating Gaussian curvatures of the
rabbit when all possible directions are selected. Again the errors are reduced for
step sizes between 1000 units to 2000 units and for one iteration, the errors for
maximum, minimum and average Gaussian curvatures are about 1.23%, 0.96% and
1.15%, respectively. After 24 iterations these errors reduce to about 0.92%, 0.5%
and 0.7%, respectively. Figure 6.23 also shows the error distribution for estimating
mean curvature of the rabbit and these results also indicate that the errors for
maximum, minimum and average curvature values are about 2.85%, 2.7% and 2.8%,
respectively. After 24 iterations these errors reduce to about 2.1%, 1.6% and 1.9%,

respectively.

Figure 6.24 shows the error distribution for estimating Gaussian curvatures of the

dinosaur when all possible directions are selected. The errors are reduced for step
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sizes between 1000 units to 2000 units and for one iteration, the errors for maximum,
minimum and average Gaussian curvatures are about 1.23%, 0.94% and 1.10%,
respectively. After 17 iterations these errors reduce to about 0.92%, 0.52% and
0.7%, respectively. Figure 6.25 also shows the error distribution for estimating
mean curvature of the dinosaur and these results also indicate that the errors for
maximum, minimum and average curvature values are about 2.72%, 2.60% and
2.65%, respectively. After 17 iterations these errors reduce to about 2.0%, 1.9% and
1.92%, respectively.

Figure 6.26 shows the error distribution for estimating Gaussian curvatures of the
bull when all possible directions are selected. Again the errors are reduced for step
sizes between 1000 units to 2000 units and for one iteration, the errors for maxi-
mum, minimum and average Gaussian curvatures are about 1.29%, 1.0% and 1.1%,
respectively. After 15 iterations these errors reduce to about 1.0%, 0.54% and 0.76%,
respectively. Figure 6.27 further shows the error distribution for estimating mean
curvature of the bull and these results also indicate that the errors for maximum,
minimum and average curvature values are about 2.70%, 2.57% and 2.62%, respec-
tively. After 15 iterations these errors reduce to about 2.07%, 1.96% and 2.0%,

respectively.

The experiments indicate that estimation of Gaussian and mean curvatures on
smoothed surfaces are quite accurate and not affected by the arbitrary direction of
the first geodesic line when constructing semigeodesic coordinates. This technique

is also applied to a number of incomplete surfaces [204].

6.2.2 Curvature Zero Crossing Contours

Next, the curvature zero crossing contours of these surfaces are found and displayed
on the surface using VTK. Curvature zero crossing contours can be used for calculat-
ing torsion local maxima of absolute values. Figures 6.28(a) and (b) show Gaussian
curvature zero crossing contours for the smoothed phone. Figures 6.28(c) and (d)

show mean curvature zero crossing contours for the same object.

Figures 6.29(a) and (b) show the Gaussian curvature zero crossing contours for the
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(a) 1°* iteration (b) 3¢ iteration (c) 1** iteration (d) 3¢ iteration
Gaussian mean

Figure 6.28: Curvature zero crossing contours on the phone

(a) 1°* iteration (b) 2™ iteration (c) 1** iteration (d) 2™ iteration
Gaussian mean

Figure 6.29: Curvature zero crossing contours on the chair

(a) 1°* iteration (b) 6" iteration (c) 1°¢ iteration (d) 6* iteration

Gaussian mean

Figure 6.30: Curvature zero crossing contours on the rabbit
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(a) 1% iteration (b) 6** iteration (c) 1° iteration (d) 6" iteration
Gaussian mean

Figure 6.31: Curvature zero crossing contours on the dinosaur

(a) 1°* iteration (b) 6" iteration (c) 1% iteration (d) 6" iteration

Gaussian mean

Figure 6.32: Curvature zero crossing contours on the bull
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a) phone (b) chair c) phone ) chair

Gaussian mean

Figure 6.33: Local maxima of absolute values of curvature
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566

a) 1% iteration (b) 6™ iteration ) 1% iteration (d) 6 iteration

Gaussian Mean

Figure 6.34: Local maxima of absolute values of curvature on the rabbit

e 0 e

(a) 1% iteration (b) 6" iteration (c) 1** iteration (d) 6* iteration

Gaussian Mean

Figure 6.35: Local maxima of absolute values of curvature on the bull

(a) 1°* iteration (b) 6" iteration (c) 1°¢ iteration (d) 6* iteration

Gaussian Mean

Figure 6.36: Local maxima of absolute values of curvature on the dinosaur
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(a) dinosaur (b) bull

Gaussian

(c) dinosaur (d) bull

mean

Figure 6.37: Torsion of curvature zero crossing contours and the local maxima of

absolute values
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smoothed chair, and Figures 6.29(c) and (d) show the mean curvature zero crossing
contours for the same object. Figure 6.30 shows Gaussian and mean curvature zero
crossing contours for the smoothed rabbit. The same experiments are also repeated
for the dinosaur and bull, and these results are shown in Figure 6.31 and Figure 6.32
respectively. Notice that the number of curvature zero crossing contours is reduced,

as the object is smoothed iteratively.

6.2.3 Local Maxima of Absolute Values of Curvature

The local maxima of absolute values of curvature for the smoothed phone are com-
puted. The local maxima of absolute values of Gaussian curvature are displayed on
the surface as shown in Figure 6.33(a). Figure 6.33(c) shows the local maxima of
absolute values of mean curvature for the same object. Figure 6.33(b) shows the
local maxima of absolute values of Gaussian curvature for the smoothed chair, and
Figure 6.33(d) shows the local maxima of absolute values of mean curvature for the

same object.

Figure 6.34 shows the local maxima of absolute values of Gaussian and mean cur-
vatures for the rabbit. The local maxima of absolute values of Gaussian and mean
curvatures for the dinosaur and bull are also shown in Figure 6.35 and Figure 6.36 re-
spectively. All local maxima, of absolute values of curvature are shown after smooth-
ing. These features can be utilized by later processes for robust object recognition

with occlusion.

6.3 Local Maxima of Absolute Values of Torsion

Local maxima of torsion absolute values of curvature zero crossing contours are
alternative features that can be used for matching. Figures 6.37(a) and (c) show the
local maxima of torsion absolute values of curvature zero crossing contours of the
dinosaur for Gaussian and mean curvatures, respectively. Figures 6.37(b) and (d)

show the results for the bull. These features are utilized by the surface matching.
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Experiments show above local maxima, of absolute values of curvature and torsion
are stable against the transformations including rotation, translation and scaling.
These features are tested under the conditions of the complete, partial and occluded
3-D meshes. Moreover, these features have been applied in the following object

recognition and the results are stable.

6.4 Object Recognition

Scale factor Rotated in X° Rotated in Y° Rotated in Z°

brick! 5.0 30 30 30
chair 2.3 109 178 138
bull 9.9 332 258 40
cube 7.8 149 143 126
dinosaur 0.9 201 69 355
foot 0.5 45 11 23
head 0.7 309 241 206
leg? 6.3 34 120 275
rider® 0.3 11 349 189
phone 7.0 92 286 211
rabbit 0.1 6 6 6
torus? 1.1 74 304 132

Table 6.1: Scale factors and rotation angles of scene objects.

This section presents the matching results of algorithm applied to 3-D surfaces in a
database. The database consists of several 3-D objects with arbitrary shapes. Given
a 3-D surface in a scene at optimal scale, next step is to match the measurements
taken at the scene to those stored in the hash table. In general, there are a number
of different object models used for matching. It should be pointed out that most of
the object models in the database correspond to real range data, which are shown

previously in this chapter except those object models listed at the footnote (see
12 3 45ee Figures 6.40(a), (k), (n), (t).
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Figures 6.40(a), (k), (n) and (t)). All these models are created by merging range
images of real objects obtained from different viewpoints. The matching system is

fast with matching times not exceeding 2-3 CPU seconds in each case.

S C e n e s

SCOI‘e brick bull chair cube dinosaur foot head leg phone rabbit rider torus

brick | 107 0 1 68 0 0 0 0 0 0 0 1
vt |80 85 76 67 54 63 56 72 96 55 48 79
wmair (83 21 68 49 17 20 21 21 37 19 16 40
M cube |4 0 0 100 0O 0 0 0 0 0 0 1
0 dinosaur| 92 49 66 42 83 57 59 58 90 53 43 86
d fot |0 1 1 0 1 91 2 2 5 1 1 5
e nead |62 19 33 28 21 31 8 20 50 28 17 58
l e 17 24 27 8 21 37 21 87 65 21 26 50
S phone (69 29 50 59 29 46 39 50 116 O 30 97
aobit | (1 33 47 64 32 37 44 34 65 87 27 66
rder |26 41 52 28 35 45 39 55 78 37 59 72
torus |47 2 8 64 3 9 8 7 25 6 4 113

Table 6.2: Matching result of rotated and scaled object from the scenes against the
models within the database. At the end of this geometric hashing stage, object

models M bull, cube and rabbit are correctly recognized.

While some object recognition systems have employed grey scale images as their
input [161, 70], others have made use of range images [22, 79] to achieve recognition.
Those systems have been designed for feature extraction and matching based on
range images, and cannot cope with more general 3-D surfaces. In this research,
the system goes further by accepting 3-D surfaces that are more general than range
images. They are formed by merging two or more range images obtained from
different viewpoints. This makes it possible to obtain more information about the

objects to be recognized, and achieve more reliable recognition.

Once the local maxima of absolute values of curvature and torsion of each object
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are obtained, they are then indexed in the hashing table as explained in Section 4.5.
However, there is no exact correspondence between model vertices in the database
and input scene object vertices. This is because the model and input objects are
subjected to different levels of smoothing followed by decimation that modifies the

vertex structure on those objects.

S ¢ e n e S
Score | brick bull  chair  cube  dinosaurfoot  head  leg phone rabbit rider  torus
brick | 280 - - - - - - - - - - -
bull 10 - 43 - 277 6 - 123 327 - 224 -
chair |44 - 357 - - - - - - - - -

M cube |- - - - - - - - - - - -

O dinosaur| 6 - 22 - 3665 - 24 28 180 - 76 50

d  foot - - - - - 35 - - - - - -

€ head |- - - - - - 1309 - - - - -

1 g - - - - - - - 1029 - - - -

S phone |- - 33 - - - - - 9395 - 130 246
rabbit | - - 13 - - - - - - - - -
idee |- - 19 - - - - - - . 2081-
torus | - - - - - - - - - - - 4567

Table 6.3: The verification results of complete objects from table 6.2.

The first experiment consists of applying arbitrary amounts of scaling and 3-D ro-
tation to the model objects from database, these model objects become the scene
objects (see Table 6.1), and to determine whether they can be recognized correctly
by the system. In the first stage, geometric hashing is applied to the input scene
object. If one of the models M receives a vote count that is substantially higher
than the vote counts for all other objects, then M is selected as the correct object.
Otherwise, two or more models receive high vote counts that are relatively similar.
In this case, the system applies global verification only to the surviving models in
order to select one of them. Table 6.2 shows the results of geometric hashing for the

rotated and scaled scene objects. The numbers shown are the amount of triplets
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on each object model that receives votes. When the score number shown is greater
than 100, some triplets receive more than one vote. It is because their matching
values are near to a number of model’s triplets. Table 6.3 shows the results of global
verification. The numbers shown are the score in the largest clusters for each sur-
viving object model. Blanks with dash indicate that no verification is considered
necessary for the object models. The results show that all input scene objects are

recognized correctly by the system.

S C e n e S

SCOI‘e brick bull chair cube dinosaur foot head leg phone rabbit rider torus

bricc | 100 0 2 37 0 0 0 0 0 0 0 0
vat |80 46 56 50 40 66 56 O 89 43 50 89
chair (95 15 70 50 13 25 19 O 38 20 19 37
Mewbe (10 O 0 100 0O 0 0 0 0 0 0 0
O dinosaur| 70 40 59 37 68 60 62 50 87 46 47 93
d fot |5 1 1 0 0 38 0 0 5 1 1 6
e naa |70 18 34 50 22 28 65 O 58 26 24 49
1 e 20 20 23 12 14 26 21 50 56 21 23 67
S phome |75 32 51 25 24 35 38 118 41 34 104
apbit |80 25 46 75 30 40 42 68 52 33 62
rder |25 029 41 12 28 49 54 67 30 48 84
torus |45 3 10 75 3 4 4 22 8 5 112

o o o O

Table 6.4: Matching results of partial objects from the scenes against the models

from database.

The second experiment makes use of incomplete or partial scene objects that are
again subjected to arbitrary amounts of scaling and 3-D rotation. In order to obtain
partial scene objects, up to 60% of connected vertices are removed from database

model objects. The following steps are utilized for vertex removal:

e A vertex chosen randomly is removed from a given surface.

e Following that, all of its neighbouring vertices within a distance (radius) are
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(b) bull (c) chair

(d) cube (e) dinosaur (f) foot

(g) head (i) phone

(j) rabbit (k) rider (1) torus

Figure 6.38: Partial scene objects
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removed from that surface.

Figure 6.38 shows the partial scene objects used in this experiment. After the fea-
tures of these objects are extracted, the system applies geometric hashing to match
the scene to all database models followed by global verification to the surviving
models. Again, all input scene objects are correctly recognized by the system. This
experiment shows that partial scene objects can also be matched successfully to the
database models by the system. Table 6.4 shows the results of geometric hashing
for a number of rotated and scaled incomplete scene objects, and Table 6.5 shows

the results of global verification.

S c e n e ]
Score | brick  bull  chair cube  dinosaurfoot  head leg phone rabbit rider  torus
brick |46 - - - - - - - - - - -
bull | - 28 11 - 41 7 4 - 12 8 35 -
chair |12 - 196 - - - - - - - - -

M cube |- - - 240 - - - - - - - 19

O dinosaur| - 6 9 - 1296 4 4 1 - 5 17 13

d fot |- - - - - 8 - - - - - -

€ head |- 5 - - - - 24 - - 5 6 -

I eg - 6 - - - - - 1 - - 15 -

S phone |- 17 19 - - - 6 - 781 12 61 86
rabbit | - 5 6 2 - 2 2 - - 312 11 -
rider | - 8 6 - - 4 4 - - 13 370 20
torus | - - - 7”2 - - - - - - - 516

Table 6.5: The verification results of partial objects from table 6.4.

In the third experiment, three complex scenes are created each consisting of two or
more objects. The scene objects have different digitizations and resolutions to their
models in the database. Figure 6.39(a) shows the kitchenware scene. This scene
contains a dish, a teapot, a spatula and a rolling pin. Figure 6.39(b) shows the

bull-rider scene. This scene contains a bull and a rider. Figure 6.39(c) shows the
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space-station scene. This scene contains a station and a spacecraft attached to it.

As in the earlier experiments, the system applies geometric hashing to all scene
models. Then they match against the database as shown in Figure 6.40; followed by
global verification to the surviving models (see Table 6.6). In the bull-rider scene,
bull receives the highest score at global verification. In the kitchenware scene, dish
has the highest score. In the space-station scene, the station scores the highest. This
experiment shows that scenes depicting occlusion can also be recognized satisfacto-

rily by the system.
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(a) Kitchenware (b) Bull-rider

(c) Space-station

Figure 6.39: Scenes for object recognition
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4

(a) brick (b) bull (c) chair (d) concave

(e) cube (f) dinosaur (g) dish
(i) hat (j) head (1) phone
(n) rider (o) rolling pin (p) spatula

N O

(q) spoon (r) station (s) teapot (t) torus

Figure 6.40: 3-D object models in database
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S ¢c e n e s
Geometric hashing score Global verification score
Bull-rider Kitchenware  Space-station | Bull-rider Kitchenware  Space-station

brick 0 0 1 - - -
bull 54 47 51 3699 76 132
chair 17 15 26 - - 35
concave |0 0 0 - - -
cube 0 0 0 - - -
dinosaur |41 39 53 1107 32 118
dish 56 47 41 1573 241 44

M oot 0 1 2 - - -

0 hat 16 16 19 - - -

d head 17 17 26 - - 14

€ leg 19 18 28 - 27 75

1 phone 23 24 46 - 60 400

S rabbic |27 27 36 113 20 31
rider 33 29 38 492 31 68
rolling pin | 28 24 49 340 31 274
spatula | 11 9 17 - - -
spoon 12 10 12 - - -
station |11 15 55 - - 2806
teapot |26 28 45 100 18 27
torus 2 3 11 - - -

Table 6.6: Recognition results.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

A novel technique for multi-scale representation and recognition of 3-D surface using
geometric invariants was presented. The main goal of the research was to be able to
recognize any of the objects from arbitrary viewpoints. The results shown demon-
strate that the method based on multi-scale representations and geometric invariants
was robust with respect to noise and local distortions of underlying shape as well as
invariance with respect to shape-preserving transformations. Using these powerful
representations, the reliable object models features were obtained for matching and

the scene objects were recognized satisfactorily by the system.

One of the major strengths of this research was using the semigeodesic coordinates
for local parametrization. A geodesic from the local origin was first constructed
in an arbitrary direction, and then the second family of lines were sampled to cre-
ate the semigeodesic coordinates. During the diffusion process, 3-D surfaces were
also sampled locally using an appropriate step size. These 3-D surfaces were then
smoothed iteratively using a 2-D Gaussian filter. The smoothing eliminated sur-
face noise, small/unnecessary surface details, and resulted in simplification of object
shape. Meanwhile, the surface Gaussian and mean curvatures were estimated accu-
rately at multiple scales. All convex areas of the surface indicated high Gaussian

curvature values, whereas the concave areas indicated low Gaussian curvature values

111
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and the curvature values of flat areas were close to zero. For the mean curvature, all
convex areas had low mean curvature values but the concave areas had high values.
Similar to Gaussian curvature, the curvature values of flat areas were close to zero.
Furthermore, Gaussian and mean curvature zero crossing contours were also recov-
ered. Results indicated that as the surface was smoothed iteratively, the number of
curvature zero crossing contours was reduced. Then, the local maxima of absolute
values of Gaussian and mean curvatures as well as the torsion of their zero crossing
contours were located. These features were utilized for the process of robust object

recognition.

Other strengths of this research were to be able to recognize free-form objects,
using 3-D models and under different viewing conditions, based on the geometric
hashing algorithm and global verification. The matching features algorithm used the
hash table prepared in an off-line stage. This technique was shown to be useful for
partially occluded objects. To verify matching, 3-D scaling, translation and rotation
parameters were used for global verification. Results indicated that the technique

was robust and invariant to the transformations.

Finally, this research can have considerable impact on other researchers in the field.
Since the research results have been published in several journals and conferences
[82, 83, 120, 121, 122, 124, 123, 125, 203, 204, 205], it should therefore benefit the

computer vision community in general.

7.2 Future Work and Applications

Chapter 6 shows that the 3-D object recognition results are good. Additional fea-
tures such as colour, texture and motion can further enhance the process of object
recognition. Combination of colour, texture, motion and geometric features can be
used to match objects in a large 3-D digital library database. Many 3-D objects
have similar shapes. For example, the previous matching results show that bull and
dinosaur are close because both objects have the same common component features

such as sharp horns, four legs and a large body. A content-based 3-D database
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retrieval system is useful so that these common component features can be classi-
fied and indexed into a relational database. This approach can increase the speed of

matching occluded objects and further improve the robustness of object recognition.

In recent years, there have been many major breakthroughs in image processing re-
search. It is now possible to produce small low-cost cameras and 3-D range scanners
that are useful for industrial automation, mobile robot navigation, guided neuro-

surgery, etc. Considering the above, we suggest the following applications:

e Industrial automation, automobile manufacturing, aerospace industry and ar-
chitecture often deal with 3-D objects. Therefore, 3-D object recognition used
in this research can be applied to those areas. For example, an intelligent in-
dustrial robot with object recognition capability can be used to perform highly
critical tasks such as aircraft fuselage crack and structural inspection, reverse

engineering, etc.

e Outdoor navigation of a civilian vehicle in a structured road environment such
as highways and city roads requires a 3-D recognition system. The recogni-
tion of objects on the road must satisfy many challenging conditions such as
unforeseeable road obstacles, road safety criteria, uncalibrated camera, hostile
and noisy backgrounds. Therefore, the 3-D object recognition system used in
this research can recognize vehicles and pedestrians. It can also calculate the

safe distance from road obstacles and then apply an appropriate speed limit.

¢ Sometimes during a medical operation, a patient needs to be registered to di-
agnostic imagery obtained by structured light extraction of the skin surface,
followed by the insertion of marker pins to be tracked by video processing.
This task calls for a registration process stable with respect to noise arising
from different modes of surface extraction as well as temporal changes in sur-
face geometry exhibited by human beings. Hence, the technique of curvature
estimation used in this research is ideal for such navigational systems for neu-

rosurgical and other surgical operations.

e Finally, this research of multi-scale representation and recognition of 3-D sur-
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faces using geometric invariants can be used to create a sophisticated real-time
reliable mobile robot navigation system. Such system can interact with differ-
ent 3-D objects. It can also work in different environments such as laboratory

and industrial complex.



Appendix A

Differential Geometry

Differential Geometry is the theory of the properties of configurations in the neigh-
bourhood of one of its general elements. It is a study, by means of differential calculus
of properties of the general elements of curves and surfaces that are invariant under

rigid bodies.

A.1 Space Curves

A space curve C is defined as a C? mapping v — M(u) from an interval of R into

R3. Parameter u is the arc length S of C. The 3-D Frenet formulas are

aM
dsS
d_T
ds
dN
dsS
dB
ds

=T
= k&N
= —xT+7B

= —71N

where T is the tangent, N the normal and B the binormal unit vectors to C at the

point under consideration, x the curvature, and 7 the torsion.

115



116 Appendix A. Differential Geometry

A.2 Surface Patches

A surface patch S is defined as a C? mapping (u,v) — P(u,v) from an open set of
R? into R3. Such a patch is intrinsically characterized, up to a rigid motion, by two
quadratic forms, called the two fundamental forms, which are defined at every point

of the patch.

The first quadratic form ®; defines the length of a vector in the tangent plane T'(P).
More precisely, the two vectors P, = g—f: and P, = %—E are parallel to this plane
and define therein a system of coordinates. Each vector in the tangent plane can be

defined as a linear combination AP, + uP,. Its squared length is given by the value

of the first fundamental form ®4
B1(APy + uPy) = A2E + 2MuF + G

with the following definitions for E, F' and G

E = |Py|?
F=P, P,
G = [P

Moreover, the normal N, to § is parallel to the cross-product P, x P, whose length

is the quantity H = VEG — F2.

The second fundamental quadratic form @5 is related to curvature. For a vector

x = AP, + pyP, in the tangent plane, all curves drawn on S tangent to x at P are

<I>1(ac)

considered. All of these curves have all the same normal curvature, the ratio ENOL

with the following definitions

Oy(A\Py + pP,) = ML+ 20uM + p?N

and
0P N,
Cou? |IN|
_ PP N,
oudv  |N||
_*P N,

N

0 N
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It is important to study the invariants of @, i.e., quantities which do not depend
upon the parametrization (u,v) of S. ®2 defines a linear mapping T'(P) — T'(P) by

®5(x) = 1(x) - x. The invariants of @ are those of shape operator .

A.2.1 Principal Directions

The principal directions are the eigenvectors of ¥. Their coordinates (A, u) in the

coordinate system (P, P,) are solutions of the following equation
(FL — EM))? + (GL — EN)Ap+ (GM — FN)p? =0

This yields the following possible values for A and

A=EN—-GL++/(GL—EN)2 —4(FL — EM)(GM — FN)

p=2(FL — EM)

A.2.2 Principal Curvatures

The principal curvatures k1 and ko are the eigenvalues of 9. They are solutions of

the following quadratic equation
(EG — F)k* — (LG+ EN —2FM)k + LN — M? =0

In particular, their product K and their half-sum H are the Gaussian and mean

curvatures of S

LN - M?

~ EG-F?
LG+ EN -2FM
~ 2(EG - F?)
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