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Abstract

A novel technique for multi-scale curvature compu-
tation on a smoothed 3-D surface is presented. This
is achieved by convolving local parametrisations of
the surface with 2-D Gaussian filters iteratively. In
our technique, semigeodesic coordinates are con-
structed at each vertex of the mesh which becomes
the local origin. A geodesic from the origin is first
constructed in an arbitrary direction such as the
direction of one of the incident edges. The smooth-
ing eliminates surface noise and small surface detail
gradually, and results in gradual simplification of
the object shape. The surface Gaussian and mean
curvature values are estimated accurately at mul-
tiple scales together with curvature zero-crossing
contours. The curvature values are then mapped
to colours/grey-scales and displayed directly on the
surface. Furthermore, local maxima of Gaussian
and mean curvatures as well as the torsion max-
ima of the zero-crossing contours of Gaussian and
mean curvatures were also located and displayed
on the surface. These features can be utilised by
later processes for robust surface matching and ob-
ject recognition. Our technique is independent of
the underlying triangulation and is also more effi-
cient than volumetric diffusion techniques since 2-D
rather than 3-D convolutions are employed. An-
other advantage is that it is applicable to incom-
plete surfaces which arise during occlusion or sur-
faces with holes.
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1 Introduction

Curvature estimation is an important task in 3-D
object description and recognition. Surface curva-
ture provides a unique view-point invariant descrip-
tion of local surface shape. Differential geometry [1]

provides several measures of curvature, which in-
clude Gaussian and mean curvatures. Combination
of these curvature values enable the local surface
type to be categorised.

This paper introduces a new technique for multi-
scale curvature computation on a smoothed 3-D
surface. Complete triangulated models of 3-D ob-
jects are constructed and using a local parametri-
sation technique, are then smoothed using a 2-D
Gaussian filter. The technique considered here is a
generalisation of earlier multi-scale representation
theories proposed for 2-D contours [5] and space
curves [3]. More details of the diffusion technique
as well as literature survey appear in [4].

In our approach, diffusion of the surface is
achieved through convolutions of local parametrisa-
tions of the surface with a 2-D Gaussian filter [4, 8].
Semigeodesic coordinates [1] are utilised as a natu-
ral and efficient way of locally parametrising sur-
face shape. The most important advantage of our
method is that unlike other diffusion techniques
such as volumetric diffusion [2] or level set meth-
ods [7], it has local support and is therefore ap-
plicable to partial data corresponding to surface-
segments. This property makes it suitable for ob-
ject recognition applications in presence of occlu-
sions. It is also more efficient than those tech-
niques since 2-D rather than 3-D convolutions are
employed.

The paper contains examples showing 3-D ob-
jects with their Gaussian and mean curvature values
estimated. To visualise these curvature values on
the surface, they are then mapped to colours/grey-
scales. Colour mapping is a scalar visualisation
technique provided in a software package called Vi-
sualisation Toolkit (VTK) [6]. Once surface cur-
vatures are estimated, then curvature zero-crossing
contours are recovered and displayed on the sur-
face. Finally, local maxima of Gaussian and mean
curvatures as well as the maxima of torsion of zero-
crossing contours of Gaussian and mean curvatures
were also located and displayed on the surface.

The organisation of this paper is as follows. Sec-
tion 2 describes the relevant theory from differential



geometry and explains how a multi-scale shape de-
scription can be computed for a free-form 3-D sur-
face. Section 3 covers the computation of Gaussian
and mean curvatures as well as their zero-crossing
contours and maxima. Section 4 presents results
and discussion. Section 5 contains the concluding
remarks.

2 Semigeodesic Coordinates

Free-form 3-D surfaces are complex hence, no global
coordinate system exists on these surfaces which
could yield a natural parametrisation of that sur-
face. Studies of local properties of 3-D surfaces are
carried out in differential geometry using local co-
ordinate systems called curvilinear coordinates or
Gaussian coordinates [1]. Each system of curvilin-
ear coordinates is introduced on a patch of a regular
surface referred to as a simple sheet. A simple sheet
of a surface is obtained from a rectangle by stretch-
ing, squeezing, and bending but without tearing or
gluing together. Given a parametric representation
r = r(u,v) on a local patch, the values of the param-
eters u and v determine the position of each point
on that patch. Construction and implementation
of semigeodesic coordinates in our technique is de-
scribed in [4].

2.1 Geodesic Lines

A geodesic line is defined as a contour which locally
represents the shortest distance on a 3-D surface
between any two points on that contour. Initially a
geodesic line is drawn arbitrarily through the origin
at the local area. This geodesic line is sampled at
equal-sized intervals based on the average length of
triangle edges. The second family of lines are also
geodesic lines. All the lines together form semi-
geodesic coordinates.

Before semigeodesic coordinates can be generated
on a local patch at a chosen vertex V, an arbitrary
geodesic line is required. The edge connecting V
and one of its neighbouring vertices is selected as
the arbitrary direction. Once this direction is de-
termined, the next step is to construct a geodesic
line. This line is constructed on the local 3-D sur-
face by following the geodesic path in a straight line
until an edge or vertex is reached. This new edge
point or vertex becomes a starting point for the
next extension. To continue a geodesic line into the
next triangle, we first measure the angle between
the path and the common edge which the path has
intersected. We then extend the path to the next
triangle using the same angle. The construction of
this geodesic line continues until last edge or vertex
of local area is reached. Same process is repeated to
construct the reverse direction of the geodesic line.

The second family of lines are constructed per-
pendicularly to the above newly created geodesic

line. Each sampled point of that geodesic line is
used as a reference point for constructing these
perpendicular geodesic lines. The perpendicular
lines are constructed in the forward direction as
well as the backward direction with respect to the
geodesic line. This completes the construction of
local semigeodesic parametrisation. Semigeodesic
coordinates can also be constructed at or near a
boundary in case of an incomplete surface or a sur-
face with holes. In such cases, geodesic lines are
constructed as before but they are terminated as
soon as they intersect the surface boundary.

2.2 2-D Gaussian Convolution

Gaussian filtering is a weighted average smoothing
carried out at a vertex and its neighbourhood. The
result of smoothing depends entirely on a vertex
and its neighbourhood. So the filtering uses a lo-
cal area of the surface with its size same as filter
size. A large 3-D triangulated surface is overlaid by
many fixed size small local areas. In order to elim-
inate over-sampling and under-sampling, the area
size must be neither too large nor too small. In
other words, a local area must cover a reasonable
size neighbourhood in order to provide accurate re-
sults. Experiments were conducted with a filter size
of 9 (optimal filter size) with ¢ = 1.0. In order to
smooth a 3-D surface, a fixed size 2-D Gaussian fil-
ter with ¢ = 1.0 is convolved with the local area.
Local parametrisation of the surface yields:

r(u,v) = (x(u,v), y(u,v), z(u,v))
The smooth surface is defined by:
R(u,v,0) = (X(u,v,0), Y(u,v,0), Z(u,v,0))
where
X(u,v,0) =z(u,v) * Glu,v,0)
V(u,v,0) =y(u,v) * G(u,v,0)
Z(u,v,0) = z(u,v) * G(u,v,0)
and * denotes convolution. This process is repeated
at each vertex, and the new vertex positions after
filtering define the smoothed surface. This proce-

dure is iterated several times to yield heat diffusion
of the surface.

3 Curvature Estimation

This section presents techniques for accurate es-
timation of Gaussian and mean curvatures at multi-
ple scales on smoothed free-form 3-D surfaces. Dif-
ferential geometry provides several measures of cur-
vature, which include Gaussian and mean curva-
tures [1]. Consider a local parametric representa-
tion of a 3-D surface r(u, v) with coordinates u and
v, where

r(uvv) = (IE(U,U), y(u’v)v Z(u,’U))



Gaussian curvature K exists at regular points of a
surface of class Cy. When r(u,v) corresponds to
semigeodesic coordinates, K is given by:
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where subscripts denote partial derivatives, and
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Mean curvature H also exists at regular points of a
surface of class Cy. Again, when r(u, v) corresponds
to semigeodesic coordinates, H is given by:

2(af +yp +23)

H

Both Gaussian and mean curvature values are
direction-free quantities. Gaussian and mean cur-
vatures are invariant to arbitrary transformations of
the (u,v) parameters as well as rotations and trans-
lations of a surface.

3.1 Curvature 0-crossing Contours

Having computed curvature values at each vertex
of a smoothed 3-D surface, one can locate curva-
ture zero-crossing contours where curvature func-
tions K or H are equal to zero. Curvature zero-
crossing contours can be useful for segmenting a
smoothed 3-D surface into regions. The process of
recovery of the curvature zero-crossing contours is
identical for Gaussian and mean curvatures. Ev-
ery edge e of the smoothed surface is examined in
turn. If the vertices of e have the same signs of
curvature, then there is no curvature zero-crossing
point on e. However, if the vertices of e have dif-
ferent signs of curvature, then there exists a point
on e at which curvature goes to zero. The zero-
crossing point is assumed to be at the midpoint of
e. The other two edges of the triangle to which
e belongs will then be checked since there will be
another zero-crossing point on one of those edges.
When that zero-crossing is found, it is connected to
the previously found zero-crossing. The curvature
zero-crossing contour is tracked in this fashion until
one arrives back at the starting point.

3.2 Local Curvature Maxima

Local maxima of Gaussian and mean curvatures are
significant and robust feature points on smoothed
surfaces since noise has been eliminated from those
surfaces. The process of recovery of the local max-
ima is identical for Gaussian and mean curvatures.
Every vertex V of the smoothed surface is exam-
ined in turn. The neighbours of V' are defined as
vertices which are connected to V' by an edge. If
the curvature value of V' is higher than the curva-
ture values of all its neighbours, V is marked as
a local maximum of curvature. Curvature maxima
can be utilised by later processes for robust surface
matching and object recognition with occlusion.

3.3 Maxima of Torsion of Curvature
Zero-Crossing Contours

This section briefly reviews the computation of tor-
sion. Torsion is the instantaneous rate of change of
the osculating plane with respect to the arc length
parameter. The osculating plane at a point P is
defined to be the plane with the highest order of
contact with the curve at P. Intuitively, torsion
is a local measure of the nonplanarity of a space
curve [1]. The set of points of a space curve are the
values of a continuous, vector-valued, locally one-
to-one function

where z(u), y(u) and z(u) are the components of
r(u), and u is a function of arc length of the curve.
In order to compute torsion 7 at each point of the
curve, it is then expressed in terms of the deriva-
tives of z(u), y(u) and z(u). In case of an arbitrary
parametrisation, torsion is given by,

_ (i E) — i — 5 + (g — )
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where @(u), y(u) and Z(u) are the convolutions of
z(u), y(u) and z(u) with the first derivative of a 1-
D Gaussian function. Note that & and & represent
convolutions with the second and third derivatives
of a 1-D Gaussian.

4 Results and Discussion

This section presents some results on free-form
surface smoothing as well as curvature estimation.

4.1 Diffusion

The smoothing routines were implemented entirely
in C++. Each iteration of smoothing of a surface
with 1000 vertices takes about 0.5 second of CPU
time on an UltraSparc 170E. The first test object
was a dinosaur with 2996 triangles and 1500 vertices
as shown in Figure 1. The object becomes smoother
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Figure 1: Smoothing of the dinosaur

gradually and the legs, tail and ears are removed
after 10 iterations. The second test object was a
cow with 3348 triangles and 1676 vertices as shown
in Figure 2. The surface noise is eliminated itera-
tively with the object becoming smoother gradually
where after 12 iterations the legs, ears and tail are
removed, as was seen for the dinosaur. These exam-
ples show that our technique is effective in eliminat-
ing surface noise as well as removing surface detail.
The result is gradual simplification of object shape.

4.2 Curvature Estimation

This section presents the results of application of
our curvature estimation techniques. To visualise
these curvature values on the surface, they are then
mapped to colours/grey-scales using the Visualisa-
tion Toolkit (VTK) [6]. Gaussian curvatures are
shown in Figure 3(a). Surface curvature values are
coded as follows: bright = high, dark = low and
other grey-scales designate in-between values. All
convex corners of the dinosaur are bright, indicat-
ing high curvature values, whereas the concave cor-
ners are dark indicating low curvature values and
flat areas are grey since their curvature values are
close to zero. The same experiment was repeated to
estimate the mean curvatures of the dinosaur and
the results are shown in Figure 3(b). This indicates
that mean curvature values for the edges are dif-
ferent than those for flat areas, as expected. The
Gaussian and mean curvatures were also estimated
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(a) Original

(b) 3 iterations

(c) 8 iterations (d) 12 iterations

Figure 2: Smoothing of the cow

for the cow, as shown in Figure 4.

Next, the curvature zero-crossing contours of
these surfaces were found and displayed on the
surface using VTK. Curvature zero-crossing con-
tours can be used for segmenting surfaces into re-
gions. Figures 5(a) and (b) shows Gaussian cur-
vature zero-crossing contours for the smoothed di-
nosaur. Figures 5(c) and (d) shows mean curvature
zero-crossing contours for the same object. The
same experiments were repeated for cow, and the
results are shown in Figure 6. Notice that the num-
ber of curvature zero-crossing contours are reduced,
as the object is further smoothed.

Next, the local curvature maxima for the

(a) Gaussian (b) Mean

Figure 3: Curvature values on the dinosaur



(b) Mean

(a) Gaussian

Figure 4: Curvature values on the cow

(a) One iteration (b) 6 iterations

(c) One iteration (d) 6 iterations

Figure 5: Gaussian (top row) and mean (bottom
row) curvature zero-crossing contours on dinosaur

(a) One iteration (b) 6 iterations

(c) One iteration

(d) 6 iterations

Figure 6: Gaussian (top row) and mean (bottom
row) curvature zero-crossing contours on the cow

smoothed dinosaur were computed. The local max-
ima of Gaussian curvature are displayed on the sur-
face as shown in Figure 7(a). Figure 7(b) shows
the local maxima of mean curvature for the same
object. The local maxima of Gaussian and mean
curvatures for the cow are shown in Figure 8. All
curvature maxima are shown after one iteration.

Finally, the torsion maxima of curvature zero-
crossing contours which are alternative features
that can be used for matching are determined and
displayed on the object. Figures 9(a) and (b) show
the torsion maxima of curvature zero-crossing con-
tours of the dinosaur for Gaussian and mean curva-

(b) Mean

(a) Gaussian

Figure 7: Curvature maxima of the dinosaur



(a) Gaussian (b) Mean

Figure 8: Curvature maxima of the cow

(a) Gaussian

(b) Mean

Figure 9: Torsion maxima of curvature zero-
crossing contours of the dinosaur

tures, respectively. Figure 10 shows the results for
the cow.

These features can be utilised by later pro-
cesses for robust surface matching and object
recognition with occlusion.  Animation of sur-
face diffusion can be observed at the web site:
http://www.ee.surrey.ac.uk/Research/VSSP/demos/css3d/

5 Conclusions

A novel technique for multi-scale curvature com-
putation on a smoothed 3-D surface is presented.
In our technique semigeodesic coordinates are con-
structed at each vertex of the mesh which becomes
the local origin. A geodesic from the origin is first
constructed in an arbitrary direction such as the
direction of one of the incident edges. During the
diffusion process, 3D surfaces were also sampled lo-
cally using different step sizes. Complete triangu-
lated models of 3-D objects are constructed and
using a local parametrisation technique, are then
smoothed using a 2-D Gaussian filter. The smooth-
ing eliminated the surface noise and small surface
detail gradually, and resulted in gradual simplifi-
cation of object shape. The surface Gaussian and
mean curvatures were also estimated. To visualise

(a) Gaussian (b) Mean

Figure 10: Torsion maxima of curvature zero-
crossing contours of the cow

these curvature values on the surface, they are then
mapped to colours/grey-scales, and shown directly
on the surface using the Visualisation Toolkit. All
convex corners of the surface indicated high Gaus-
sian curvature values, whereas the concave corners
indicated low Gaussian curvature values and the
curvature values of flat areas are close to zero.

Gaussian and mean curvature zero-crossing con-
tours were also recovered and displayed on the
surface. Results indicated that as the surface is
smoothed iteratively, the number of curvature zero-
crossing contours were reduced. Curvature zero-
crossing contours can be used for segmenting sur-
faces into regions. Furthermore, the local maxima
of Gaussian and mean curvatures as well as the
torsion maxima of zero-crossing contours of Gaus-
sian and mean curvatures were also located and dis-
played on the surface. These features can be utilised
by later processes for robust surface matching and
object recognition with occlusion.
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