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Abstract

The recognition of free-form 3D objects using 3D models under different viewing conditions based on the geometric hashing algorithm and

global veri®cation is presented. The matching stage of the algorithm uses the hash-table prepared in the off-line stage. Given a scene of

feature points, one tries to match the measurements taken at scene points to those memorised in the hash-table. The technique used for feature

recovery is the generalisation of the CSS method (IEEE Trans. Pattern Anal. Mach. Intell., 14 (1992) 789±805), which is a powerful shape

descriptor expected to be an MPEG-7 standard. Smoothing is used to remove noise and reduce the number of feature points to add to the

ef®ciency and robustness of the system. The local maxima of Gaussian and mean curvatures are selected as feature points. Furthermore, the

torsion maxima of the zero-crossing contours of Gaussian and mean curvatures are also selected as feature points. Recognition results are

demonstrated for rotated and scaled as well as partially occluded objects. In order to verify match, 3D translation, rotation and scaling

parameters are used for veri®cation and results indicate that our technique is invariant to those transformations. Our technique for smoothing

and feature extraction is more suitable than level set methods or volumetric diffusion for object recognition applications since it is applicable

to incomplete surface data that arise during occlusion. It is also more ef®cient and allows for accurate estimation of curvature values. q 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

Object recognition is a major task in computer vision.

Surface curvature provides a unique viewpoint invariant

description of local surface shape. Differential geometry

[8] provides several measures of curvature, which include

Gaussian and mean curvatures. Combination of these curva-

ture values enables the local surface type to be categorised.

In this paper the recognition of free-form 3D objects

using 3D models based on the geometric hashing technique

and global veri®cation is addressed. This technique is useful

for partially occluded objects. The model information is

indexed into a hash-table using minimal transformation

invariant features. The feature points on the object are

detected by convolving local parametrisations of the surface

with 2D Gaussian ®lters [23,44]. Some interest features are

extracted from the objects, so that both the model object and

the observed scene can be represented by sets of these inter-

est features. The recognition of a partially occluded object

in a scene amounts to the discovery of a match between a

subset of the scene interest features and a subset of the

interest features of some model object. The recognition

time depends directly on the complexity of the scene to be

recognised.

The paper is concluded with examples showing 3D

objects with their local curvature maxima as well as the

maxima of torsion of zero-crossing contours of Gaussian

and mean curvatures, located and displayed on the surface.

Furthermore, the matching results for 3D surfaces with

arbitrary shapes in a database will be presented.

The organisation of this paper is as follows. Section 2

gives a brief overview of previous work on 3D object

representation, recognition and matching including the

disadvantage(s) of each method. Section 3 reviews the

relevant theory from differential geometry and explains

how a multi-scale shape description can be computed for

a free-form 3D surface. Section 3 explains curvature estima-

tion and detection of local maxima. Section 4 describes the

geometric hashing technique for model-based object recog-

nition. Section 5 presents results and discussion. Section 6

contains the concluding remarks.
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2. Literature survey

This section presents a survey of previous work in

representation and recognition of 3D surfaces. Sinha

and Jain [31] provide an overview of geometry-based

representations derived from range data of objects.

Comprehensive surveys of 3D object recognition

systems are presented by Besl and Jain [1], Chin and

Dyer [4] and Suetens et al. [37]. Some representation

schemes for 3D objects have adopted some form of

surface or volumetric parametric models to characterise

the shape of the objects. Current volumetric representa-

tions rely on representing objects in terms of general

cylinders, superquadrics, set-theoric combinations of

volume primitives as in constructive solid geometry

(CSG) or spatial occupancy [3,26,28,32]. However, it

may not be possible to express objects with free-form

surfaces using, for example, superquadric primitives.

Although there are several methods available to model

a surface, triangular meshes are the simplest and most

effective form of polygons to cover a free-form surface.

The common types of polygonal mesh include the trian-

gular mesh [9] and the four-sided spline patches. Trian-

gular meshes have been utilised in our work.

Polyhedral approximations [6] ®t a polyhedral object

with vertices and relatively large ¯at faces to a 3D object.

Their disadvantage is that the choice of vertices can be quite

arbitrary, which renders the representation not robust.

Smooth 3D splines [36] can also be ®tted to 3D objects.

Their shortcomings are that the choice of knot points is

again arbitrary and that the spline parameters are not

invariant. Generalised cones or cylinders [33] as well as

geons [27] approximate a 3D object using globally para-

metrised mathematical models, but they are not applicable

to detailed free-form objects. Multi-view representations

[29] are based on a large number of views of a 3D object

obtained from different viewpoints, but dif®culties can arise

when a non-standard view is encountered. In volumetric

diffusion [16] or level set methods [30], an object is treated

as a ®lled area or volume. The object is then blurred by

subjecting it to the diffusion equation. The boundary of

each blurred object can then be de®ned by applying the

Laplacian operator to the smoothed area or volume. The

major shortcoming of these approaches is lack of local

support. In other words, the entire object data must be avail-

able. This problem makes them unsuitable for object recog-

nition in presence of occlusion. A form of 3D surface

smoothing has been carried out in Refs. [38,39] but this

method has drawbacks since it is based on weighted aver-

aging using neighbouring vertices and is therefore depen-

dent on the underlying triangulation. The smoothing of 3D

surfaces is a result of the diffusion process [40]. For para-

metrisation of a 3D surface other methods have also been

studied, such as the asymptotic coordinates [17], isothermic

coordinates [8] and global coordinates [2] used for closed,

simply connected objects.

A number of matching topics have been recognised

by researchers as important in 3D object recognition

[7,42]. These are related to object shape complexity,

rigid and ¯exible objects and occlusion. The success

of existing object recognition systems is because of

the restrictions they impose on the classes of geometric

objects. However, few systems can handle arbitrary

surfaces with very few restrictive assumptions about

their geometric shapes.

Object recognition is achieved by matching features

derived from the scene with stored object model representa-

tions. Ef®cient algorithms were developed for the recogni-

tion of ¯at rigid objects based on the geometric hashing

technique [18,19]. The technique was also extended to the

recognition of arbitrary rigid 3D objects from single 2D

images [20]. Stein and Medioni [34] and Flynn and Jain

[7] have also employed geometric hashing for 3D object

recognition. In a geometric hashing technique the model

information is indexed into a hash-table using minimal

transformation feature points. This technique determines

for a given scene's minimal feature set a corresponding

feature set on one of the models, by considering only the

other scene features that vote for the correct interpretation.

Other ef®cient model-based object recognition techniques

are the Hough (pose) clustering [21,35], the alignment

technique [12] and relational structures [43]. 3D objects

have also been modelled as superquadrics with local and

global deformations for recognition purposes [32].

Recent patch-based techniques including point signatures

[5] and spin images [13] perform well on scenes containing

clutter and occlusion. However, these systems have been

designed for single range images, and do not generalise to

more general 3D surfaces which can be obtained by merging

two or more range images. In other words, their effective-

ness is limited by the use of information in only one range

image.

3. Semigeodesic parametrisation.

Free-form 3D surfaces are complex; hence, no global

coordinate system exists on these surfaces which could

yield a natural parametrisation of that surface. Studies of

local properties of 3D surfaces are carried out in differential

geometry using local coordinate systems called curvilinear

coordinates or Gaussian coordinates [8]. Each system of

curvilinear coordinates is introduced on a patch of a regular

surface referred to as a simple sheet. A simple sheet of a

surface is obtained from a rectangle by stretching, squeez-

ing, and bending but without tearing or gluing together.

Given a parametric representation r � r�u; v� on a local

patch, the values of the parameters u and v determine the

position of each point on that patch. Construction and

implementation of semigeodesic coordinates is described

in Refs. [14,23,45,46].
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4. Curvature estimation

This section presents techniques for accurate estimation

of Gaussian and mean curvatures at multiple scales on

smoothed free-form 3D surfaces. Differential geometry

provides several measures of curvature, which include

Gaussian and mean curvatures [8]. Note that Gaussian and

mean curvatures are closely related to principal curvatures.

As a result, principal curvatures can be used as an alterna-

tive. We chose to use Gaussian and mean curvatures since

they are non-directional quantities and more intuitive.

Consider a local parametric representation of a 3D surface

r � r�u; v�
with coordinates u and v, where

r�u; v� � �x�u; v�; y�u; v�; z�u; v��
Gaussian curvature K exists at regular points of a surface

of class C2. When r(u,v) corresponds to semigeodesic

coordinates, K is given by [15]:

K � buubvv 2 b2
uv

x2
v 1 y2

v 1 z2
v

�1�

where subscripts denote partial derivatives, and

buu � Axuu 1 Byuu 1 Czuu������������������
A2 1 B2 1 C2
p

bvv � Axvv 1 Byvv 1 Czvv������������������
A2 1 B2 1 C2
p

buv � Axuv 1 Byuv 1 Czuv������������������
A2 1 B2 1 C2
p

where A � yuzv 2 zuyv; B � xvzu 2 zvxu and C �
xuyv 2 yuxv: Mean curvature H also exists at regular points

of a surface of class C2. Again, when r(u,v) corresponds to

semigeodesic coordinates, H is given by:

H � bvv 1 �x2
v 1 y2

v 1 z2
v�buu

2�x2
v 1 y2

v 1 z2
v�

�2�

The mathematical properties of the two surface curvature

functions are now discussed in more detail. Both Gaussian

and mean curvature values are direction-free quantities.

Gaussian and mean curvatures are invariant to arbitrary

transformation of the �u; v� parameters as well as rotations

and translations of a surface. Combination of these curva-

ture measures enables the local surface type to be cate-

gorised. On smoothed surfaces of 3D objects, the

procedure for estimating the Gaussian and mean curvatures

are as follows. For each point of the surface,

p�x�u; v�; y�u; v�; z�u; v��
the corresponding local neighbourhood data is convolved

with the partial derivatives of the Gaussian function

G�u; v;s�: Finally, curvature values on a 3D surface are

estimated by substituting these values into Eqs. (1) and

(2), respectively.

4.1. Local curvature maxima

Local maxima of Gaussian and mean curvatures are

signi®cant and robust feature points on smoothed surfaces

since noise has been eliminated from those surfaces. The

process of recovery of the local maxima is identical for

Gaussian and mean curvatures. Every vertex V of the

smoothed surface is examined in turn. The neighbours of

V are de®ned as vertices that are connected to V by an edge.

If the curvature value of V is higher than the curvature

values of all its neighbours, V is marked as a local maximum

of curvature. Curvature maxima can be utilised by later

processes for robust surface matching and object recogni-

tion with occlusion.

4.2. Maxima of torsion of curvature zero-crossing contours

This section brie¯y reviews the computation of torsion.

Torsion is the instantaneous rate of change of the osculating

plane with respect to the arc length parameter. The osculat-

ing plane at a point P is de®ned to be the plane with the

highest order of contact with the curve at P. Intuitively,

torsion is a local measure of the non-planarity of a space

curve [8]. The set of points of a space curve are the values of

a continuous, vector-valued, locally one-to-one function

r�u� � �x�u�; y�u�; z�u��
where x�u�; y�u� and z�u� are the components of r�u�; and u is

a function of arc length of the curve. In order to compute

torsion t at each point of the curve, it is then expressed in

terms of the derivatives of x�u�; y�u� and z�u�: In case of an

arbitrary parametrisation, torsion is given by,

t � _x� �y�z 2 �z �y�2 _y� �x�z 2 �z �x�1 _z� �x �y 2 �y �x�
� _y�z 2 _z �y� 2 1 �_z �x 2 _x �x�2 1 � _x �y 2 _y �x�2 �3�

where _x�u�; _y�u� and _z�u� are the convolutions of x�u�; y�u�
and z�u� with the ®rst derivative of a 1D Gaussian function

G�u;s�

_x � x p
2G

2u
; _y � y p

2G

2u
; _z � z p

2G

2u
�4�

p denotes convolution. Note that �x and �x represent convo-

lutions with the second and third derivatives of G, respec-

tively. While derivative estimation can be sensitive to noise,

torsion estimation takes place only after suf®cient smooth-

ing has been applied to the data, and is therefore a robust

process. This also helps to reduce the number of feature

points used for matching later on.

Once Gaussian and mean curvatures have been deter-

mined at each point of a 3D surface, zero-crossing contours

of those curvatures are recovered from that surface. In

general, these contours are space curves. Torsion is

computed at each point of those contours using the proce-

dure described above, and the maxima of torsion are then
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recovered. These points are added to the set of feature points

extracted from the surface.

5. The geometric hashing algorithm

Geometric hashing technique for model-based object

recognition was introduced by Lamdan and Wolfson

[18,20]. Stein and Medioni [34] as well as Flynn and Jain

[7] have also employed geometric hashing for 3D object

recognition. In a model-based object recognition system

one has to address representation and matching problems.

The representation should be rich enough to allow reliable

distinction between the different objects in the database as

well as ef®cient matching. A major factor in a reliable repre-

sentation scheme is its ability to deal with partial occlusion.

The objects are represented as sets of geometric features

such as points, and their geometric relations are encoded

using minimal sets of such features under the allowed object

transformations.

5.1. Matching

The matching stage of the algorithm uses the hash-table

prepared in the off-line stage. Given a scene of feature

points, one tries to match the measurements taken at scene

points to those memorised in the hash-table. On smoothed

surfaces of 3D objects, the procedure for indexing data into

the hash-table is as follows. For each 3D object in the

database:

1. The local maxima of Gaussian curvature are selected as

feature points. Furthermore, local maxima of mean

curvature and the torsion maxima of the zero-crossing

contours of Gaussian and mean curvatures are also

selected as feature points.

2. Choose an arbitrary ordered triplet of non-collinear

points A, B and C to form a triangle ABC. Denote the

curvature values of points A, B and C by ka, kb and kc, and

the edge lengths AB, BC and AC as d1, d2 and d3, respec-

tively, see Fig. 1. Select the maximum curvature value

and edge length. Let ka and d1 be maximum curvature

value and edge length, then calculate the indexed value

IV for the hash-table as,

IV � ka

kb

ka

kc

d2 1 d3

d1

�5�

3. Go back to step (2) and repeat the procedure for different

triplets of feature points. All possible triplets of feature

points which are not collinear are considered. Note that

some of the newly selected points may have already been

chosen in previous stages.

We now have produced a hash-table with all the data

indexed into its memory from a given database. Given

a scene of feature points from a 3D object, we try to

match the index value IV as well as the individual ratios

to those memorised in the hash-table. Notice that the

input 3D object can either be complete or incomplete.

Thus, given a 3D object in a scene, the matching proce-

dure is as follows:

4. Repeat steps (1)±(3) above, and then for each indexed

value IV check the appropriate entry in the hash-table.

Tally a vote for each model which appears at that

location.

5. If several objects score a large number of votes close to

each other, then the most likely candidate will be chosen

using global veri®cation applied at the next stage.

The voting is done simultaneously for all models in the

hash-table. The overall recognition time is dependent on the

number of feature points in the scene. Our aim is to signi®-

cantly reduce the number of feature points that are due to

noise. This is achieved through the smoothing process

which also removes noise. In order to ®nd the optimal

smoothing scale for each object, we employed the following
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Fig. 1. Triplet of non-collinear points A, B and C.

Fig. 2. Curvature maxima of the phone handset.

Fig. 3. Curvature maxima of the dinosaur.



multi-scale procedure:

² Apply one iteration of smoothing and count the number

of feature points recovered from the object.

² Repeat the ®rst step until several iterations of smoothing

have been carried out. Construct a graph of the number of

feature points vs. the number of iterations.

² Smooth this graph, and ®nd the point where the slope is

minimised. This indicates that the features have become

stable at the corresponding scale which is used as the

optimal scale for smoothing.

4.2. Global veri®cation

In general the voting scheme may yield more than one

candidate solution with very close scores from the

geometric hashing stage. In this case we use a threshold to

select the most likely models.

Global veri®cation requires the estimation of the 3D

transformation parameters for the surviving models. It is

possible to make use of closed-form solution techniques

[6,10,11,41] to obtain these parameters. However, these

techniques are quite complex to implement and relatively

inef®cient. Considering that the estimation procedure must

be repeated many times, it is advantageous to use a method

that is as ef®cient as possible. We have developed a rela-

tively simple and ef®cient technique which generates

approximate solutions. We ®nd that this is quite satisfactory

for our application [24].

From the three points of the scene model selected for

matching, as discussed in the previous section, another

point is also determined which is the centre of gravity of

all three points in the space. Let P1�x1p; y1p; z1p�;
P2�x2p; y2p; z2p� and P3�x3p; y3p; z3p� be the three non-

collinear points selected from the model object and

P4�x4p; y4p; z4p� be a point in the 3D space which is the centre

of gravity of P1, P2 and P3. We then form a plane P in the

space from all of these points. The same procedure is also

applied to the object in the scene. Let Q1�x1q; y1q; z1q�;
Q2�x2q; y2q; z2q�; Q3�x3q; y3q; z3q� and Q4�x4q; y4q; z4q� be the

points in the 3D space. Point Q4 is the centre of gravity of

points Q1, Q2 and Q3, thus a plane Q is also formed. We

linearise the problem to simplify solution; hence, the linear

equations for the transformation, mapping model points to

scene points are given by [22],

x1p y1p z1p 1

x2p y2p z2p 1

x3p y3p z3p 1

x4p y4p z4p 1

26666664

37777775´

a e m

b f n

c g p

d h q

26666664

37777775 �
x1q y1q z1q

x2q y2q z2q

x3q y3q z3q

x4q y4q z4q

26666664

37777775
�6�

Note that this approach is employed in order to obtain a

quick and approximate solution which is suf®cient for veri-

®cation. From the set of linear equations (6), one can solve

for the twelve parameters a, b, c, d, e, f, g, h, m, n, p and q. In

order to verify match, 3D translation, rotation and scaling

will be used to determine global consistency. The transla-

tion parameters are �d; h; q�: Let g , b and a be the angles in

the x, y and z directions for the rotation of the plane P in 3D

space. The 3D rotation matrices about the x-axis, y-axis and
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Fig. 4. Curvature maxima of the cow.

Fig. 5. Torsion maxima of curvature zero-crossing contours of the phone.

Fig. 6. Torsion maxima of curvature zero-crossing contours of the dinosaur.

Fig. 7. Torsion maxima of curvature zero-crossing contours of the cow.



z-axis denoted Rx�g�; Ry�b� and Rz�a�; respectively, are

given by

Rx�g� �
1 0 0

0 cos g 2sin g

0 sin g cos g

2664
3775 �7�

Ry�b� �
cos b 0 sin b

0 1 0

2sin b 0 cos b

2664
3775 �8�

Rz�a� �
cos a 2sin a 0

sin a cos a 0

0 0 1

2664
3775 �9�

The columns (and the rows) of matrices Rx�g�; Ry�b�
and Rz�a� are mutually perpendicular unit vectors and

they have a determinant of 1, so they are orthogonal.

Therefore the rotation parameters �g;b;a� can be

obtained from products of Rz�a�Ry�b�Rx�g� and also

the solution of Eq. (6),

a

e

m

n

p

26666666664

37777777775
�

cos a cos b

sin a cos b

2sin b

cos bsin g

cos b cos g

26666666664

37777777775
�10�

For the scaling factor R, the distances from the centre

of gravity points P4 and Q4 to their corresponding three

points are measured and the shortest distances for each
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Fig. 8. Free-form 3D objects used for matching experiments.



object are selected. Let r1 and r2 be the shortest

distances selected from the model object and the

scene object, then their ratio is the scaling factor R.

R � r1

r2

A number of model objects with close high scores are selected

for the global veri®cation stage. The hash-table yields many

candidate matches for each selected model. For each of these

candidates, seven global transform parameters are estimated,

using the procedure described earlier. The candidates are

compared and if their corresponding parameters are compati-

ble, they are clustered together. The largest cluster then indi-

cates the largest group of globally consistent matches for each

model. The model objects with the largest clusters are then

chosen as the most likely objects present in the scene.

Our clustering algorithm is quite ef®cient since it avoids

the creation of an explicit high-dimensional parameter

space. The following is a step-by-step description of our

clustering algorithm:

² Create a cluster for one of the points in the multi-dimen-

sional parameter space. Consider that point as the centre

of the cluster.

² Find another point which is closer than a threshold to the

centre of the cluster, and add that point to the cluster. If

no points are added, go to step 4.

² Compute the new centre of the cluster as the centre of

mass of the points already in the cluster. Go to step 2.

² Repeat this procedure for all points which are not already

in a cluster.

6. Results and discussion

6.1. Feature extraction

This section presents some results on free-form surface
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Table 1

Results of geometric hashing for some rotated/scaled objects

Inputs/models Chair Cow Dinosaur Foot Head Leg Man Phone Rabbit

Chair 68 76 66 1 33 27 52 50 47

Cow 21 85 49 1 19 24 41 29 33

Dinosaur 17 54 83 1 21 21 35 29 32

Foot 20 63 57 91 31 37 45 46 37

Head 21 56 59 2 87 21 39 39 44

Leg 21 72 58 2 20 87 55 50 34

Man 16 48 43 1 17 26 59 30 27

Phone 37 96 90 5 50 65 78 116 65

Rabbit 19 55 53 1 28 21 37 0 87

Table 2

Results of global veri®cation for the rotated/scaled objects

Inputs/models Chair Cow Dinosaur Foot Head Leg Man Phone Rabbit

Chair 357 43 22 19 33 13

Cow

Dinosaur 277 3665

Foot 6 35

Head 24 1309

Leg 123 28 1029

Man 224 76 2081 130

Phone 327 180 9395

Rabbit

Fig. 9. Examples of incomplete surfaces.



smoothing and feature extraction. The smoothing routines

were implemented entirely in C11. Each iteration of

smoothing of a surface with 1000 vertices takes about

0.5 s of CPU time on an UltraSparc 170E. The diffusion

and curvature estimation results for 3D surfaces were

given [23,44].

It should be noted that Gaussian smoothing does cause

shrinkage of objects. In general, this is not a problem unless

considered undesirable for a speci®c application. In fact, we

rescale objects after each iteration of smoothing. This proce-

dure cancels out the resulting shrinkage.

Note also that the smoothing process can cause discon-

nection of object parts. This is a natural possible conse-

quence of the heat diffusion of objects. We apply a

decimation procedure after each iteration of smoothing to

remove odd-shaped triangles. This procedure can also

segment objects into parts when they become very thin.

This is due to the fact that very thin regions give rise to

odd-shaped (strongly elongated) triangles.

The ®rst example is a phone handset. After smooth-

ing the object, the Gaussian curvatures of all vertices

were estimated. Then, the local curvature maxima are

computed. The local maxima of Gaussian curvature are

displayed on the surface as shown in Fig. 2(a). Fig. 2(b)

shows the local maxima of mean curvature for the same

object. The local maxima of Gaussian and mean curva-

tures for the dinosaur and cow are shown in Figs. 3 and

4, respectively. All curvature maxima are shown after

one or two iterations.

Next, the torsion maxima of curvature zero-crossing

contours which are alternative features that can be used

for matching are determined and displayed on the object.

Fig. 5(a) and (b) show the torsion maxima of curvature zero-

crossing contours of the phone handset for Gaussian and

mean curvatures, respectively. Figs. 6 and 7 show the results

for the dinosaur and cow, respectively.

These features are utilised by later processes for

robust surface matching and object recognition with

occlusion. Animation of surface diffusion can be

observed at the web site: http://www.ee.surrey.ac.uk/

Research/VSSP/demos/css3d/index.html.

6.2. Matching

This section presents the matching results of the system

applied to free-form 3D surfaces in an object database.

Given a 3D surface in a scene, the aim is to match the

measurements taken at scene points to those memorised in

the hash-table. There are 20 different objects in our data-

base. All of these are shown in Fig. 8. It should be pointed

out that most of the objects in the database correspond to

real range data. They were created by merging range images

of real objects obtained from different viewpoints. The

matching system was implemented entirely in C11 and

ran on an UltraSparc 170E. The system was quite fast

with matching times not exceeding 2±3 CPU seconds in

each case.

Note that while some object recognition systems have

employed greyscale images as their input [12,29], others

have made use of range images [5,13] to achieve
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Table 3

Results of geometric hashing for rotated/scaled incomplete objects

Inputs/models Chair Cow Dinosaur Foot Head Leg Man Phone Rabbit

Chair 70 0 59 1 34 23 41 51 46

Cow 15 46 40 1 18 20 29 32 25

Dinosaur 13 40 68 0 22 14 28 24 30

Foot 25 66 60 38 28 26 49 35 40

Head 19 56 62 0 65 21 54 38 42

Leg 0 0 50 0 0 50 0 0 0

Man 19 0 47 1 24 23 48 34 33

Phone 38 89 87 5 58 56 67 118 68

Rabbit 20 43 46 1 25 21 30 41 52

Table 4

Results of global veri®cation for rotated/scaled incomplete objects

Inputs/models Chair Cow Dinosaur Foot Head Leg Man Phone Rabbit

Chair 196 11 9 6 19 6

Cow 28 6 5 6 8 17 5

Dinosaur 41 1296

Foot 7 4 8 4 2

Head 4 4 24 4 6 2

Leg 1 1

Man 35 17 6 15 370 61 11

Phone 12 781

Rabbit 8 5 5 13 12 312



recognition. These systems have been designed for feature

extraction and matching based on range images, and cannot

cope with more general 3D surfaces. Our system goes

further by accepting 3D surfaces that are more general

than range images. They can be formed by merging two

or more range images obtained from different viewpoints.

This makes it possible to obtain more information about the

objects to be recognised, and achieve more reliable recogni-

tion. Once the local maxima of Gaussian and mean curva-

tures of each object are obtained, they are then indexed in

the hashing table as explained in Section 4.1.

Note that there is no exact correspondence between

model vertices and input object vertices. This is because

the model and input objects are subjected to different levels

of smoothing followed by decimation which modi®es the

vertex structure on those objects.

The ®rst experiment consisted of applying arbitrary

amounts of scaling and 3D rotation to the database objects,

and determining whether they can be recognised correctly

by the system. All objects were recognised correctly by the

system. In the ®rst stage, geometric hashing was applied to

the input object. If one of the models M received a vote

count that was substantially higher than the vote counts for

all other objects, then M was selected as the correct object

and the system terminated. Otherwise, two or more models

received high vote counts that were relatively similar. In this

case, the system applied global veri®cation only to the

surviving models in order to select one of them. Table 1

shows the results of geometric hashing for some of the

rotated/scaled objects. The numbers shown are the percen-

tages of triangles on each input object which received votes.

When the number shown is greater than 100, some triangles

received more than one vote. Table 2 shows the results of

global veri®cation. The numbers shown are the number of

points in the largest clusters for each input object. Blanks

indicate that no veri®cation was considered necessary for

the corresponding object.

The second experiment made use of incomplete surfaces

which were again subjected to arbitrary amounts of scaling

and 3D rotation. In order to obtain incomplete surfaces, up

to 60% of connected vertices were removed from database

objects. The procedure utilised for vertex removal was as

follows: a vertex chosen randomly was removed from a

given surface. Following that, all of its neighbouring

vertices were removed from that surface, and all the neigh-

bours of those vertices, etc. This process continued until the
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Fig. 10. Kitchen-ware scene and extracted features.

Fig. 11. Bull-rider scene and extracted features.



desired number of vertices had been removed from the

surface. Fig. 9 shows a few examples of incomplete surfaces

used in the second experiment.

As in the previous experiment, for each input object, the

system applied geometric hashing to all database models

followed by global veri®cation to the surviving models.

Again, all input objects were correctly recognised by the

system. This experiment shows that incomplete surfaces

can also be matched successfully to the database models

by the system. Table 3 shows the results of geometric

hashing for a number of rotated/scaled incomplete objects,

and Table 4 shows the results of global veri®cation.

In the third experiment, three complex scenes were

created each consisting of two or more objects. Fig. 10

shows the kitchen-ware scene and some of the features

recovered from that scene. This scene contains a dish, a

kettle, a spatula and a roller. Fig. 11 shows the bull-rider

scene and the corresponding recovered features. This scene

contains a cow and a rider. Fig. 12 shows the space-station

scene and its recovered features. This scene contains a

space-station and a space-ship attached to it.

As in the earlier experiments, the system applied

geometric hashing to all database models followed by global

veri®cation to the surviving models. In the kitchen-ware

scene, dish scored highest with other scene objects also

receiving high scores. In the bull-rider scene, cow, dinosaur

and rider received the three highest scores, respectively. In

the space-station scene, the station itself received the

highest score. This experiment shows that scenes depicting

occlusion can also be recognised satisfactorily by the

system.

7. Conclusions

The recognition of free-form 3D objects using 3D

models under different viewing conditions based on the

geometric hashing algorithm and global veri®cation was

presented. The matching stage of the algorithm used the

hash-table prepared in the off-line stage. The feature points

on the object were detected by convolving local parame-

trisations of the surface with 2D Gaussian ®lters iteratively.

Smoothing was used to reduce the number of feature

points. The surface Gaussian and mean curvature values

were estimated accurately at multiple scales. In our tech-

nique the local maxima of Gaussian and mean curvatures

were selected as feature points. Furthermore, the torsion

maxima of the zero-crossing contours of Gaussian and

mean curvatures were also selected as feature points.

This technique was also shown to be useful for partially

occluded objects. In order to verify match, 3D translation,

rotation and scaling parameters were used for global

veri®cation and results indicated that our technique is

invariant to those transformations.
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